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Abstract  

This paper presents Best Theory Diagrams (BTDs) employing combinations of 

Maclaurin, trigonometric and exponential terms to build two-dimensional theories for 

metallic and multilayered plates. The BTD is a curve in which the least number of 

unknown variables to meet a given accuracy requirement is read. The present refined 

models are Equivalent Single Layer (ESL) and are implemented by using the Unified 

Formulation developed by Carrera (CUF). The theories that belong to the BTD are 

obtained using the Axiomatic/Asymptotic method and genetic algorithms. Closed-form, 

Navier-type solutions have been obtained in the case of simply supported plates loaded 

by a bisinuisoidal transverse pressure. The influence of trigonometric and exponential 

terms in the BTDs has been studied for different materials and length-to-thickness 

ratios. The results show that the addition of such terms can lead to enhanced BTDs in 

which fewer unknown variables than pure Maclaurin expansions are needed to detect 

3D like accuracies. 
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1. Introduction 

Metallic and multilayered plates are extensively used in various engineering 

applications. With the high demand for such structures, efficient and reliable analysis 

methods are required. Over the last decades, several relevant contributions have been 
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made to improve the classical plate theories (CPT) originally developed for thin 

isotropic plates [1-3].  In fact, the CPT accuracy is poor when the plate is considerably 

thick; local effects are present or in the case of transverse anisotropy and high 

deformability. First shear deformation theories (FSDT) alleviate these problems [4-7]. 

Nevertheless, none of these theories provides accurate transverse stress distributions. 

More accurate theories exploit various strategies; such as higher order shear 

deformation theories (HSDT) that assume quadratic, cubic, higher order and non-

polynomial terms to improve the displacement field along the thickness direction [8-

21]; the use of the Zig-Zag approach [22, 23]; the adoption of mixed variational tools 

[24]. The implementation of refined models can be carried out using Equivalent Single 

Layer (ESL) or Layer-Wise approaches. Excellent reviews of existing ESL and LW 

models can be found in [25-29].  

The structural models mentioned above can be defined as axiomatic. In fact, they are 

based on the intuition of scientists to create simplified kinematic models, which neglect 

some characteristics of the mechanical behavior of a structure. Another approach is the 

asymptotic method in which the expansion of characteristic parameters of the structures 

(e.g., the length-to-thickness ratio) is used to build an asymptotic series. Those terms 

that exhibit the same order of magnitude as the parameter when it vanishes are retained. 

Excellent contributions to the asymptotic method can be found here [30, 31]. 

The present work is embedded in the framework of the Carrera Unified Formulation 

(CUF). According to CUF, the governing equations are given regarding the so-called 

fundamental nuclei whose form does not depend on either the expansion order nor on 

the choices made for the base functions. More details on CUF can be found in [32, 33]. 

ESL and LW models were successfully developed in CUF, as reported in [34]. Refined 

theories lead to accurate analysis at the expense of higher computational cost. To 

develop accurate plate theories with lower computational effort, Carrera and Petrolo 

[35, 36] presented the Axiomatic/Asymptotic Method (AAM). This method is based on 

a preliminary axiomatic choice of a refined model obtained through CUF and evaluates 

the effectiveness of each higher order term of a structural theory against a reference 

solution. Those variables whose influence cannot be neglected are retained. The AAM 

has been applied to several problems, including: static and free vibration of beams [35, 

37], metallic and composite plates [36, 38], shells [39, 40], LW models [41, 42], 

advanced models based on the Reissner Mixed Variational Theorem [43], and 

piezoelectric plates [44].   
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The use of AAM led to the introduction of the BTD [45, 46]. The BTD is a curve in 

which the minimum number of expansion terms – i.e. unknown variables - required to 

meet a given accuracy can be read; or, conversely, the best accuracy provided by a 

given amount of variables can be read. In [47], BTDs were presented for ESL and LW 

composite plate models based on Maclaurin and Legendre polynomial expansions of the 

unknown variables along the thickness.    

The present work presents BTDs using Maclaurin, trigonometric and exponential 

thickness expansions. Some models with trigonometric thickness functions have been 

developed in the literature. Shimpi and Ghugal [13, 48] proposed LW trigonometric 

shear deformation theories for the analysis of composite beams. A zig-zag model was 

developed by Arya et al. [14] using a sine term to represent the non-linear displacement 

field across the thickness in symmetrically laminated beams. Other contributions made 

use of meshless methods [15-17]. Hybrid Maclaurin-trigonometric models were 

proposed by Mantari et al. [49, 50] for bending, free vibration and buckling analysis of 

laminated beams. Mantari et al. [51] presented a generalized hybrid formulation for the 

study of functionally graded sandwich beams, which was extended to the Finite Element 

method by Yarasca et al. [52]. Most recent developments have dealt with thermal 

problems [53] and FGM plates [54]. The trigonometric and exponential functions 

employed in this paper were selected according to Filippi et al. [55, 56]. Due to the high 

expansion order employed, the BTDs are obtained using a genetic algorithm. The 

application of this method to develop accurate reduced models with lower 

computational effort was presented on [46].  

The present paper is organized as follows: a description of the adopted formulation is 

provided in Section 2; the AAM is presented in Section 3; the BTD is introduced in 

Section 4; the results are commented in Section 5, and the conclusions are presented in 

Section 6. 

 

2. Carrera Unified Formulation for Plates 

Plate geometry and notations are given in Fig 1. According to CUF [34], the 

displacement of a plate model can be described as 

                                                                                           (1) 

where   is the displacement vector (        ) whose components are the displacements 

along the x, y, z reference axes.    are the expansion functions and    (   
    

    ) are 
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the displacements variables. If an ESL approach is employed, the behavior of a 

multilayered plate is analyzed considering it as a single equivalent lamina. In this case, 

   functions can be Maclaurin functions of   defined as        . The ESL models are 

indicated as EDN, where N is the expansion order. An example of an ED4 displacement 

field is reported as: 

      
      

      
      

      
 

      
      

      
      

      
 

                                                                                                        (2) 

The present paper investigates the influence of trigonometric and exponential terms. 

Table 1 shows the complete, ED17 set of terms adopted; that is, 51 unknown variables 

were considered. The displacement field of ED17 has 15 Maclaurin terms - the ED4 

terms -, 24 trigonometric terms and 12 exponential terms.  For instance, the full 

expression of the displacement along x is 
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where h is the thickness of the plate. Governing equations are herein omitted for the 

sake of brevity, but can be found in [36]. In this paper, the closed-form solution 

proposed by Navier for simply supported plates is exploited. The displacements are 

therefore expressed in the following harmonic form, 
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where   ,    and    are the amplitudes,   and   are the number of waves, and   and   

are the dimensions of the plate in the   and   directions, respectively.  
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3.  Axiomatic Asymptotic Method  

Literature survey has shown that accurate plate analyses can be obtained by introducing 

higher order terms in a plate model. The introduction of higher order terms offers better 

accuracies at the expense of higher computational cost. The AAM can be seen as a 

method to analyse the contribution of each term to a given problem and retain only the 

effective ones to preserve the accuracy of a higher order model and minimize the 

computational cost. The AAM procedure can be summarized as follows [35, 36],  

1. Parameters such as geometry, boundary conditions, loadings, materials and layer 

layouts are fixed. 

2. A set of output parameters is chosen, such as displacement and stress 

components. 

3. A theory is fixed; that is the displacement variables to be analyzed are defined. 

4. A reference solution is defined; in the present work, fourth-order LW models 

(LD4) are adopted, since these fourth-order model offer an excellent agreement 

with the three-dimensional solutions [42]. 

5. The CUF is used to generate the governing equations for the considered theories. 

6. Each variable displacement effectiveness is numerically established measuring 

the loss of accuracy on the chosen output parameters compared with the 

reference solution. 

7. The most suitable kinematic model for a given structural problem is then 

obtained by discarding the noneffective displacement variables. 

A graphical notation is introduced to represent the results. This consists of a table with 

three rows, and some columns equal to the number of the displacement variable used in 

the expansion. As an example, an ED4 model (full model) and a reduced model in 

which the term    
 is deactivated is shown in Table 2. The meaning of the symbols ▲ 

and Δ is reported in Table 3. The displacement field of Table 2 is 

      
                     

      
      

 

      
      

      
      

      
 

                                                                                                        (5) 
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4.  Best Theory Diagram 

The construction of reduced models through the AAM can lead to a diagram in which, 

for a given problem, each reduced model is associated with the number of active terms 

and its error computed on a reference solution. This diagram allows editing an arbitrary 

given theory to get a lower number of terms for a given error, or to increase the 

accuracy while keeping the computational cost constant. Considering all the reduced 

models, it is possible to recognize that some of them provide the lowest error for a given 

number of terms. These models represent a Pareto front for this specific problem. As in 

[46], the Pareto front is defined as the best theory diagram (BTD). This curve is case 

dependent since it changes for several problems, i.e. different materials, geometries, 

boundary conditions and output parameters.  

The computational cost required for the BTD construction can be considerable. The 

number of all possible combinations of active/not-active terms for a given model is 

equal to   , where M is the number of unknown variables (DOF) of the model. In the 

case considered in this paper, M is equal to 51. As demonstrated in [46], a genetic 

algorithm can be used to build BTDs with reduced computational costs. In genetic 

algorithms, a solution vector    , where   is the solution space, is called an 

individual or a chromosome. Chromosomes are made of discrete units called genes. 

Each gene controls one or more features of the individual. Genetic algorithms operate 

with a collection of chromosomes, called a population. The population is normally 

randomly initialized. As the search evolves, the population includes fitter and fitter 

solutions, and eventually it converges, meaning that it is dominated by a single solution. 

Genetic algorithms use two operators to generate new solutions from existing ones: 

crossover and mutation. In the crossover, generally two chromosomes, called parents, 

are combined together to form new chromosomes, called offsprings. The parents are 

selected among existing ones base on their fitness. The mutation operator introduces 

random changes at gene level. Each chromosome has a fitness value based on its rank in 

the population. The population is ranked according to the dominance rule. The fitness of 

each chromosome is evaluated throught the following formula: 

                                                                         

where         is the number of solutions dominating   at generation t. A lower rank 

corresponds to a better solution. The number of offsprings the parents have are 
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determined by their rank in the population. A complete explanation of genetic 

algorithms can be found in [57].  

Each plate theory has been considered as an individual. The genes are the terms of the 

expansion along the thickness of the three displacement fields in this manner. Each gene 

can be active or not, the deactivation of a term is obtained by exploiting a penalty or 

row- column elimination technique. The graphical notation is shown in Fig 2. Each 

individual is therefore described by the number of active terms and its error that is 

computed on a reference solution. The dominance rule is applied through these two 

parameters to evaluate the individual fitness. The error of the new models on a reference 

solution was evaluated through the following formula: 

     
∑         

  
  

   

          
                                                     

where   can be a stress/displacement component ( ̅   in this article) and    is the 

number of points along the thickness on which the entity   is computed. Each 

chromosome of the new population its ranked and new dominant chromosomes are 

selected. More details about the implementation of genetic algorithms for BTD can be 

found in [46]. In this paper, 30 generations were used and the initial population was set 

to 1200.  

5.  Results and discussion 

Results deal with simply supported square plates. The load is bisinusoidal and equal to: 

   ̅     (
   

 
)    (

   

 
)                                            

with           .  ̅  is the applied load amplitude,  ̅         and   and   are 

equal to 1. All the reduced models are developed for    , which is computed at 

[  ⁄    ⁄   ], with  
 

 
   

 

 
, where   is the total thickness of the plate. The stress 

    is normalized according to: 

 ̅   
   

 ̅     ⁄   
                                                           

The numerical investigation has considered two metallic plates: a single plate made of 

aluminium and a two-layer plate of aluminium and titanium.  
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5.1. Aluminum plate 

The material properties are E        and       . The length-to-thickness ratios are 

equal to 2.5, 5 and 50.  

An LD4 model assessment was carried out. The results are reported in Table 4; the 

three-dimensional exact elasticity results are obtained as in [58]. The results offered by 

the LD4 model are in excellent agreement with the reference solution. Consequently, 

the LD4 model is used for the computation of the reference solution in this paper. 

The first method that was used to build the BTD is based on the evaluation of all 

possible combinations of an ED4 polynomial model obtain by the AAM. Figure 3 

shows the error of each theory and the corresponding BTD. Figure 4 shows the 

difference between the BTDs built from a polynomial, ED4 model and the model with 

trigonometric and exponential terms. The former is indicated as Pol, and the 

corresponding BTD was obtained using the AAM only. The latter is referred to as 

Hybrid, and the related BTD was obtained using the genetic algorithm. For the sake of 

clarity, the entire BTD for the hybrid model was not reported. In fact, only the last 15 

terms portion of the curve is shown to have a direct comparison with the ED4 model. 

Table 5 presents the best hybrid models for   ⁄  = 2.5; ME indicates the number of 

active terms. For instance, the best hybrid model for  ̅   with five unknown variables is 

the following: 
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)    

  (10) 

        
  
      

Likewise, the best model for  ̅   obtained via ED4 with five unknown variables is: 

      
     

 

                            
              (11) 

            

Table 6 shows the comparison between the best models obtained via ED4 and those 

from the hybrid model. The plate model of Eq. (10) can detect the in-plane stress with 

1.0681 % of error on the layer-wise solution, while in comparison the plate model of 
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Eq. (11) has an error of 3.0488 %. Tables 7 and 8 show the best models for   ⁄  = 5. The 

 ̅   distribution along the thickness is reported for different plate length-to-thickness 

ratios in Fig. 5. The evaluation of   ̅   is performed by means of the reduced models 

reported in Tables 5 and 7. The notation used is NHRM, where N is the number of 

variables in the hybrid reduced models (HRM). 

The results herein reported for the aluminium plate suggest that: 

 A genetic algorithm makes it possible to construct BTDs for higher-order hybrid 

theories when the AAM is not viable. 

 BTDs for thick plates are enhanced by trigonometric and exponential terms. In 

fact, these terms lower the error for a given number of variables on Maclaurin-

based BTDs.  

 More often than not, the exponential terms are more important than the 

trigonometric ones. 

 On the other hand, less significant improvements were observed in the case of 

thin plates. That is, the influence of trigonometric and exponential terms is less 

relevant. 

 In general, the adoption of reduced models enhances the computational 

efficiency to a great extent. In fact, very few displacement variables are needed 

to meet accuracy levels higher than 95 %. 

 

5.2. Bimetallic plate 

A two-layer plate made of two isotropic layers has been considered. Aluminium and 

titanium were used. The former has E          and       . The latter has E 

        and       . The length-to-thickness ratios are equal to 2.5  and 5. Each 

layer has the same thickness in both cases.  

The BTD for   ⁄  = 2.5 and   ⁄  = 5 length-to-thickness ratios are reported in Fig. 6. The 

best models for   ⁄  = 2.5 are given in Table 9, whereas Table 10 shows the comparison 

between the best hybrid and Maclaurin models. Figure 7 shows the stress distribution 

via various best models. Tables 11 and 12 present the best models for   ⁄  = 5. For 

intance, the best hybrid model with six degrees of freedom for the   ⁄  = 2.5 case is the 

following: 



10 
 

       
 

      
     (

   

 
)    

  
 
     

  (12) 

          (
  

 
)     

Likewise, the best Maclaurin model for  ̅   with six degrees of freedom for the   ⁄  = 

2.5 case is:  

       
      

 

      
     

      
  (13) 

       

The results reported for the bimetallic plate suggest that: 

 As for the one-layer case, higher the thickness, more important are the 

trigonometric and exponential terms.  

 In particular, the trigonometric terms are more effective than the exponential 

terms for the bimetallic composite plate studied. 

 

6. Conclusions 

Best Theory Diagrams for metallic and multilayered plates have been presented in this 

paper. BTDs are curves in which, for a given problem, the minimum number of 

unknown variables necessary to meet an accuracy requirement can be read; or, for a 

given number of variables, the minimum error that can be obtained is provided. The 

axiomatic/asymptotic method and genetic algorithms have been employed together with 

the Carrera Unified Formulation to develop refined ESL models. In particular, a 

combination of Maclaurin, trigonometric and exponential polynomials has been used to 

define the displacement field along the thickness of the plate. Simply-supported plates 

have been analyzed via Navier-type closed form solutions. The results suggest the 

following guidelines and recommendations:  

1. In general, the use of the AAM and the BTD lead to reduced refined models 

with very few unknown variables, but 3D-like accuracies.  

2. For thick plates, the best models built via hybrid models are more accurate than 

those obtained via only Maclaurin expansions.  
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3. For thick plates, exponential and trigonometric terms improve the accuracy of 

the model while maintaining a low computational cost. As the length-to-

thickness increases, the effectiveness of non-polynomial terms vanishes. 

4. The exponential terms are more influential to analyze thick, one-layer plates. 

5. The trigonometric terms are more important for multilayer, thick plates.  

The systematic computation of BTDs via AAM and CUF can represent a powerful tool 

to evaluate the effectiveness of any structural model. In fact, any type and order of 

expansions of the unknown variables can be dealt with in a unified manner. The use of 

genetic algorithms reduces the computational costs to a great extent. Future works 

should tackle the construction of BTDs for multiple outputs (stresses and 

displacements) and LW models. 
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hybrid ED17 model via a genetic algorithm (GA - Hybrid), bimetallic plate, (a)   ⁄  = 
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Tables 

Table 1.  
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Table 2.  

Full model representation  Reduced model representation 
   

▲ ▲ ▲ ▲ ▲  ▲ Δ ▲ ▲ ▲ 

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ 

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ 

 

 

Table 3.  

Active term  Inactive terms 

▲  Δ 

 



19 
 

Table 4.  

 
 ⁄   100 10 5 2 

3D  0.2037 0.2068 0.2168 0.3145 

LD4  0.2037 0.2068 0.2168 0.3165 

 

 

Table 5.  

    
  ⁄  

 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ 

 

    
  ⁄  

 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
Δ Δ Δ ▲ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ 

 

    
  ⁄  

 

Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
Δ Δ Δ ▲ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ 

 

    
  ⁄  

 

Δ ▲ Δ Δ ▲ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ 
Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
▲ Δ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ 

 

    
  ⁄  

 

Δ ▲ Δ Δ ▲ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ 
▲ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
▲ Δ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ 

 

    
  ⁄  

 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ ▲ 
Δ ▲ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ ▲ 
▲ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ 

 

 

 

Table 6.  
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   % Error – Pol  % Error – Hybrid  
 

 
  ⁄  5.3733 1.5256 

 
  ⁄  3.0488 1.0681 

 
  ⁄  2.2678 0.9818 

 
  ⁄  1.8438 0.8775 

 
  ⁄  1.4362 0.7697 

 
  ⁄  1.2159 0.6849 

 

Table 7.  

    
  ⁄  

 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ 
Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

    
  ⁄  

 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ 
Δ ▲ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

    
  ⁄  

 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ ▲ Δ Δ 
Δ ▲ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

    
  ⁄  

 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ ▲ Δ Δ 
▲ ▲ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

    
  ⁄  

 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ ▲ Δ Δ 
▲ ▲ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ 
▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
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Table 8.  

   % Error – Pol % Error – Hybrid 
 

 
  ⁄  1.5953 0.7624 

 
  ⁄  0.9047 0.3665 

 
  ⁄  0.5067 0.3143 

 
  ⁄  0.4078 0.2956 

 
  ⁄  0.3435 0.2782 

Table 9.  

    
  ⁄  

 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ 
▲ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ 

 

    
  ⁄  

 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ ▲ Δ Δ Δ 
▲ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ 

 

    
  ⁄  

 

Δ ▲ Δ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ ▲ Δ Δ Δ 
▲ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ 

 

    
  ⁄  

 

Δ ▲ Δ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ ▲ ▲ Δ Δ Δ 
▲ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ 

 

Table 10.  

   % Error – Pol % Error – Hybrid 
 

 
  ⁄  2.6854 1.1179 

 
  ⁄  2.0312 0.6227 

 
  ⁄  1.8048 0.5467 

 
  ⁄  1.6409 0.4550 
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Table 11.  

    
  ⁄  

 

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
Δ Δ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

    
  ⁄  

 

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
Δ Δ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

Table 12.  

   % Error – Pol % Error – Hybrid 
 

 
  ⁄  2.9200 1.8927 

 
  ⁄  1.6858 1.5900 
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Figure 2. 
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Figure 4. 
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Figure 7. 
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