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Abstract—Although vehicle platooning promises to improve
transportation efficiency and safety by leveraging communication
between convoy members, preliminary results in previous work
suggest that cyber-attacks could deceive many Cooperative Adap-
tive Cruise Control algorithms, hence endangering the safety of
every participant. This paper deeply analyzes the case of injection
attacks. First, we introduce an extensive security analysis carried
out through realistic simulations, to demonstrate how even slight
and smooth falsification attacks do succeed in fooling the CACC
controllers and cause numerous vehicle crashes. Second, we
present a novel misbehavior detection technique. It leverages
the correlation between multiple motion parameters concerning
both single and consecutive vehicles to evaluate the plausibility
of the information received from the other members. Extensive
validation confirms the effectiveness of the technique proposed:
overall, it succeeds to detect all the attacks simulated and prevents
the occurrence of safety-critical situations.

Index Terms—Platooning, V2V security, Injection attacks, Mis-
behavior detection technique, CACC, VANET

I. INTRODUCTION

Vehicle platooning, characterized by groups of either com-
muters or heavy-duty vehicles traveling very closely together,
safely at high speed, has been widely recognized as a promising
application in the scope of Intelligent Transportation Sys-
tems [1]. Shortened reaction times, limited distances, reduced
speed oscillations and aerodynamic drags are all essential
factors contributing to an increase in safety, comfort and
roadway capacity, while reducing fuel consumption and the
consequent emission of harmful pollutants [2], [3].

To enable vehicle platooning, one key component is the
automated longitudinal control, a control algorithm maintaining
the desired distance from the preceding vehicle and adapting the
speed to the convoy pace. To this end, Adaptive Cruise Control
(ACC) algorithms, based on the information gathered from
local sensors, such as radar, lidar and cameras, are attractive
due to their simplicity. However, it has been shown they are
unable to provide string stability [4] if a constant spacing
policy is adopted (i.e. the distance between two vehicles is
independent from the current speed) and they are associated
with fairly high headways at highway speeds [5, Chapter 6]. To
face these issues, a wide range of Cooperative ACC (CACC)
algorithms has been proposed. They leverage vehicle-to-vehicle
(V2V) communications to obtain extensive information about
positions, speeds and accelerations from the other members
of the platoon, and especially from the leader, to allow for
quicker reactions and guarantee string stability, even when a
small and constant headway is desired [6].

Although previous research confirmed that a performance
increase can be achieved by coupling vehicle platooning
and V2V communications, the reliance upon remotely peer-
generated data opens, at the same time, the possibility for
malicious attacks. Indeed, since CACC algorithms compute
the currently desired longitudinal motion based both on locally
available information and some knowledge received from the
other platoon members, such as their speed and acceleration,
erroneous or falsified pieces of data may cause incorrect
computations that, in the extreme case, might lead to a crash.
During recent years, a great amount of effort has been put in by
standardization bodies to define the network layers necessary to
enable VANETs, along with the associated security properties
that need to be guaranteed. To this extent, the most relevant
standard is IEEE 1609.2, which defines the methods to secure
application messages guaranteeing their authenticity, integrity
and confidentiality, if required. Nonetheless, it targets exclu-
sively at the protection from the so-called external attackers,
those not authorized to participate in the communication, and
guarantees that only the messages originated from legitimate
vehicles are processed by the application layer of the others.

This paper, instead, focuses on the attacks carried on by
internal adversaries (e.g. hacked cars), those that are currently
granted access to the network as legitimate vehicles. In such
a situation, traditional cryptography-based methods are not
suitable to detect misbehavior, since the attackers themselves
do also own the keys necessary to establish the communication:
complementary protections, based on the analysis of the content
of the beacon messages received, need to be established.
Previous work identified two main categories of attacks that
can be perpetrated against CACC algorithms, namely jamming
and data injection, and showed they can seriously endanger the
safety of the victims [7], [8]. Jamming encompasses different
techniques aiming to forbid or severely delay the reception
of legitimate beacons: it can be perpetuated by violating on
purpose the MAC layer, forcing the other participants to wait,
or at higher layers, by means of DoS attacks that cause the
victims to perform useless tasks. Although not being strictly
limited to internal adversaries, jamming attacks cannot be in
any case prevented by traditional cryptography. The second
malicious technique, on the other hand, requires a vehicle
controlled by an attacker to send modified beacons containing
fallacious information; nonetheless, similar side-effects can be
involuntarily originated by undetected malfunctioning sensors.
It is worth pointing out that the injection attack needs to



be perpetrated directly on the originating vehicle, since the
integrity of the network messages is assumed to be guaranteed
by the security measures of the communication protocol. In
the remainder of this paper, we will concentrate exclusively
on injection attacks, being deemed to be more interesting and
challenging, especially from the detection point of view.

Although van der Heijden et al. [8] already studied the effects
of both jamming and injection attacks on CACC algorithms by
means of simulations, some interesting facets still remain to be
explored. In particular, they did not feed the CACC algorithms
with the information obtainable from local sensors, such as
a radar, even when available (e.g. to assess the speed of the
predecessor); indeed, they always leveraged the measurements
obtained through V2V, intrinsically easier to be falsified.
Additionally, the values applied during the data injection were
rather extreme, to such an extent that, in most cases, the attack
could have been detected by even trivial validity checks, as
acknowledged by the authors themselves. Moreover, to the best
of our knowledge, no misbehavior detection algorithms have
been proposed so far that exploit the peculiarities of vehicle
platooning, and in particular the correlation between different
physical variables (i.e. position, speed and acceleration), to
detect attempts to perform injection attacks. In this paper, we
fill this gap through our twofold contribution. First, we extend
the analysis about the effectiveness of data injection attacks,
overcoming the identified limitations. Second, we propose
and validate a novel misbehavior detection algorithm that,
combining the information coming from different sources (i.e.
V2V and radar, when available) and referred to different but
correlated physical characteristics (i.e. position, speed and
acceleration), aims to identify ongoing injection attacks.

The remainder of this paper is organized as follows. Sec-
tion II discusses the existing studies about different security
attacks targeting vehicle platooning and possible misbehavior
detection techniques. In Section III we present an overview of
the Plexe simulator, to outline some preliminary modifications,
and a brief comparison between the different car-following
models therein implemented. Section IV describes the attacker
model adopted and illustrates the results obtained by simulating
the injection attacks. In Section V we detail our novel detection
technique to identify ongoing injection attacks, experimentally
validated in Section VI. Finally, Section VII draws the main
conclusions and proposes directions for further research.

II. RELATED WORK

During recent years, the analysis of security requirements
in the broad context of VANETs has been a proficient
field of research. In 2016, Kerrache et al. [9] presented
a taxonomy of possible attacks, together with a survey of
available countermeasures, encompassing both cryptography-
based and trust management-oriented solutions. Nonetheless,
the peculiarities of VANETs, such as the completely distributed
and peer-to-peer architecture, the strict timing constraints and
the privacy requirements, still leave open points to be studied.

Zooming in on the field of vehicle platooning, most initial
research focused on either control theory aspects or the network

protocols and requirements, leaving the associated security
facets partially unexplored. In 2015, Amoozadeh et al. [7]
presented one of the first investigations about a series of
possible attacks perpetrated against connected vehicles streams,
both at the network and application layer. Their simulations,
performed using the VENTOS platform [10], showed how
platoon instability emerged as a result of message falsification,
while radio jamming attacks succeeded in forcing the CACC
algorithm to degrade to non-cooperative ACC. Finally, they
pointed out the necessity for misbehavior detection techniques
to identify compromised vehicles and secure CACC controllers.
Subsequently, van der Heijden et al. [8] continued along this
line of research by simulating with greater detail the effects
of both jamming attacks and malicious data injections. They
considered the three car-following models implemented at that
time by the selected simulator, Plexe, and concluded that all
the algorithms are affected when under attack, leading in many
cases to potentially fatal crashes. Although being already rather
complete as an analysis, we identified some possible aspects
and limitations still worth of investigation. In particular, their
work neglected the possibility to gather some of the physical
measurements through a radar, intrinsically harder to fool,
rather than using the ones obtained through V2V. Additionally,
they unfairly compared the behavior of the controllers using
different spacing settings and caused easy-to-detect abrupt
and extreme changes in the values received when starting
the injection attacks: in this paper, instead, we implemented
smoother variations, to make the attack much harder to detect.
Finally, they did not study the effects of falsifying at the same
time multiple fields in the transmitted beacons.

Concerning misbehavior detection in the scope of VANETs,
multiple researchers already presented different sensor fusion
techniques and plausibility checks aiming to detect misbehaving
nodes and internal attackers [11]–[14]. Nonetheless, to the best
of our knowledge, the only proposal directly exploiting the
peculiarities of vehicle platoons for this purpose is the paper
recently presented by Lu et al. [15]. In their work, the authors
leveraged the spatial relations between multiple members to
obtain an additional piece of information that can be evaluated
for the detection of possible injection attacks. However, they
did not take advantage from the existing correlations between
the different physical measurements present in V2V beacons.

III. SIMULATING VEHICLE PLATOONING

Given the prohibitively high costs and the safety risks
associated with real-world prototypes, in the following we will
exploit a simulator to evaluate the effectiveness of the injection
attacks and validate our proposed countermeasures. Among
the different available alternatives, we identified Plexe [16],
version 2.1, as the best candidate, having it been explicitly
designed to simulate vehicle platooning and being easily
extensible. Plexe implements a set of CACC algorithms on
the top of Veins, a vehicular network simulation framework
coupling the well-established OMNeT++ and SUMO simula-
tors. The former models the communication between different
nodes, implementing a complete vehicular communication



TABLE I
COMPARISON BETWEEN DIFFERENT ACC/CACC ALGORITHMS.

Controller Policy Predecessor Leader
d s a p s a

ACC CTH X X
PATH CVS X X O O O
Consensus Both X O O
Flatbed CVS X X O
Ploeg CTH X X O

stack based on IEEE 802.11p, while the latter provides realistic
microsimulations of physical vehicles.

Concerning the high-level longitudinal controllers, we focus
on the ones implemented by Segata et al. in Plexe. Along with a
non-cooperative Adaptive Cruise Control (ACC) [5, Chapter 6],
the simulator provides four main cooperative algorithms, each
one associated with some peculiar characteristics. The first
car-following model is a constant spacing controller developed
within the scope of the California PATH program [5, Chapter 7].
The second one is a consensus algorithm proposed by di
Bernardo et al. [17], characterized by a reconfigurable topology
and capable of exploiting the information (i.e. positions and
speeds) coming from all the other members of the platoon.
However, we maintained the default implementation, charac-
terized by the leader- and predecessor-following topology (i.e.
every vehicle considers only the messages received from the
leader and its predecessor). The Flatbed controller [18], on
the other hand, exploits a model considering the platooning
vehicles loaded on a virtual flatbed tow truck to emulate a
constant spacing policy. Finally, the last controller considered
is the algorithm designed by Ploeg et al. [19], which is
characterized by a constant time-gap headway policy (i.e. the
distance between two vehicles depends on their current speed)
and requires only the information concerning the preceding
vehicle (i.e. adopts the predecessor-following topology). Table I
summarizes the main characteristics of the different algorithms,
highlighting for each one the associated spacing policy (CVS:
Constant Vehicle Spacing, CTH: Constant Time Headway,
Both). Additionally, it points out the measurements, regarding
both the predecessor and the leader vehicles, required for their
operation (d: distance, p: position, s: speed, a: acceleration)
and whether they need to be obtained through V2V (O). This
comparison is especially important to predict in advance the
types of injection attacks that could affect each controller.

Before simulating the injection attacks, we performed some
preliminary modifications to Plexe, in order to make the
implementation and the behavior of the different controllers
more uniform. In particular, we included the possibility to
select whether to use the measurements obtained from the
radar or the values gathered from V2V communications, in case
both are available. Additionally, we implemented a model to
simulate the uncertainties associated with each sensor: once an
exact value is obtained from SUMO, it is replaced by another
one uniformly extracted from the uncertainty interval. The
modified versions of the two components of Plexe, along with
the configuration files required to reproduce the simulations

presented in the following, are publicly available on GitHub.1,2

IV. ASSESSING THE EFFECTS OF INJECTION ATTACKS

This section presents the enriched simulations performed to
evaluate the impact of different injection attacks on the CACC
algorithms. We begin describing the attacker model adopted,
then we proceed with an overview of the simulation setup and
we conclude by presenting the outcome of the experiments and
a brief discussion about the results obtained.

A. Attacker Model

Since we are concentrating on the effects of security
attacks targeting CACC algorithms, we assume an already
established platoon traveling along a straight road. The different
members exchange periodic beacons secured by means of
well-established cryptographic primitives (e.g. IEEE 1609.2) to
enforce message authentication, integrity and replay protection.
Consequently, we assume the attacker having already gained the
control over a legitimate member of the platoon and, thus, being
able to modify the information contained in the beacons without
being detected by means of integrity checks. For the purpose
of this analysis, it is not relevant how the attacker obtained
its access, e.g. through software compromise or by physical
manipulation of the vehicle itself (either at sensor, network
or software level). However, we assume the attacker to be
precluded from performing any physical action (i.e. accelerating
or braking) on the vehicle under his control.

In our model, as in [8], the primary goal of the attacker
is to cause a crash within the platoon, by destabilizing the
string of vehicles and provoking oscillations in the distance
maintained between consecutive members. Concerning the
attacker’s position, we consider two distinct situations. First, we
assume the attacker to control a non-leader vehicle, a situation
in which it is supposed to be able to directly influence only
the behavior of its immediate follower. Second, we analyze
the possibility it gained the control over the leader vehicle, so
to potentially endanger all the other platoon members.

All the injection attacks have been simulated by replacing
the content of legitimate beacons with fallacious values before
their transmission. The different variables considered during
the analysis encompassed the ones required by the longitudinal
controllers (i.e. position, speed and acceleration) both individ-
ually and all at the same time. To make the attacks harder
to detect, we opted for smooth variations in the advertised
values, instead of abrupt and instantaneous changes. Figure 1
graphically depicts one illustrative attack applied to speed
values, which is characterized by two main phases. Initially, the
advertised values slowly deviate from the legitimate ones at the
configured linear rate. Once the maximum specified divergence
is reached, the injection attack comes to a steady state and it
is no longer increased. Clearly, the smaller the increase rate
is configured, the longer it takes to reach the attack limit and,
potentially, the harder the misbehavior detection is. Finally, it
is worth pointing out that, although the legitimate values were

1https://github.com/netgroup-polito/plexe-veins
2https://github.com/netgroup-polito/plexe-sumo
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Fig. 1. Graphical representation of an injection attack applied to speed values
advertised through V2V (dashed line: legitimate, solid line: falsified).

supposed constant for graphical reasons, a similar behavior
would have been obtained with a varying speed profile.

B. Simulation setup

All the simulations to assess the effects of the various
injection attacks have been performed in Plexe, comparing the
reaction exhibited by the four car-following models considered
for the evaluation. Although maintaining the main controller
parameters to their default values, as provided in the respective
papers, we decided to level out the desired distance between
consecutive vehicles, in order to guarantee as uniform results
as possible: in [8], instead, the authors unfairly compared the
controllers maintaining different spacing settings for each of
them. In detail, we elected 10 m (corresponding to a time-
headway gap of 0.36 s at 100 km/h) as our predefined choice,
considering a balance between a too packed setup, which cannot
be safely maintained by all the considered controllers in case
of hard braking, and excessive distances, strongly limiting the
advantages of vehicle platooning.

Concerning the overall scenario, we opted to simulate a
platoon of eight vehicles traveling along a straight highway at
a constant desired speed of 100 km/h. Albeit being very simple,
this scenario is deemed to represent the most frequent operating
condition in realistic situations. Moreover, it aims to highlight
as much as possible the effect of the attacks themselves, without
the interference caused by external perturbations. Nonetheless,
for the sake of completeness, we also evaluated the outcome
of the injection attacks when the speed of the leader varies, as
simulated by the sinusoidal scenario provided by Plexe.

Every vehicle is assumed to be equipped with all the sensors
necessary to gather the measurements required by the CACC
algorithms, including a GPS, which is nowadays considered to
be mostly ubiquitous in vehicular networks, and a radar. Regard
the latter, it is always leveraged to measure the relative distance
from the preceding vehicle, thanks to its much higher precision
and reliability compared to GPS triangulation. Concerning the
assessment of the predecessor speed, on the other hand, we
analyzed and compared two alternative solutions, encompassing
the usage of either the values received through V2V or the
measurements gathered using the radar.

Table II summarizes the parameters associated with the
simulated injection attacks, performed considering both the
different variables independently and all at the same time. One
may complain about the specific selection, arguing that different
values could have led to somehow different results. However,
it is worth pointing out that, besides focusing on the exact

TABLE II
INJECTION PATTERNS ANALYZED DURING THE SIMULATIONS.

Variable Attack rate Attack limit

Position 2.5 m/s 50 m
Speed 0.5 km/h/s 10 km/h

Acceleration 0.05 m/s3 1 m/s2

values, the attacks have been configured to be smooth, slowly
incrementing in time and characterized by variations compatible
with normal operation: thus, they are assumed to be hard to
detect. Concluding, all the injection patterns encompass positive
values: preliminary analyses, in fact, revealed how these tend
to cause a reduction in the maintained distances. Hence, they
are associated with much higher safety risks compared to
the opposite behavior inducted by negative variations, simply
increasing the space occupation of the platoon.

C. Numerical results

The full results of the simulations concerning the constant
scenario are presented in Fig. 2. Each line corresponds to
one single run, characterized by a specific combination of
car-following model, falsified variable and radar configuration,
when relevant. As an evaluation metric to measure the effective-
ness of the different attacks, we concentrated on the instabilities
introduced in the distance between consecutive vehicles, due to
its strong safety implications. Hence, for each combination, we
represented the interval [mint,i(dt,i),maxt,i(dt,i)], where t is
simulation time, i the index of the vehicle and dt,i corresponds
to the distance between the ith vehicle and its predecessor at
time t. In other words, the interval is bounded by the minimum
and maximum distances measured between any two vehicles
during the whole simulation. It is worth remembering that the
default distance in absence of attacks is 10 m, while reaching
the 0 m spacing line corresponds to a crash.

Figure 2a depicts the outcome of the falsification attacks
when perpetrated by a non-leader vehicle. Concerning the
different variables, the position injection was clearly ineffective,
since the distance from the preceding vehicle was directly
evaluated using the radar; similar considerations hold also for
the speed falsification, in case the measurements are gathered
through this sensor. Both speed (if the radar is not exploited)
and acceleration forgery, on the other hand, succeeded in
fooling the PATH and Ploeg controllers, causing in most
situations a crash, while they introduced no perturbations
when the other controllers were adopted. In most cases the
outcome of the injection attack can be easily predicted looking
at whether the falsified variable is considered or not by each
controller. Instead, the low sensitivity to the speed falsification
demonstrated by the Flatbed controller depends on the default
settings, assigning very limited importance to such variable.
Finally, the attack encompassing all the variables originated
slightly larger oscillation intervals than the most successful
injection alone. It is also worth mentioning that crashes always
occurred between the attacker and its direct follower.

Moving to the attacks perpetrated by the leader (Fig. 2b),
it is evident the higher success rate compared to the previous
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Fig. 2. Distance from the preceding vehicle under different injection attacks perpetrated by (a) a non-leader vehicle, (b) the leader vehicle. Each interval
represents the minimum and maximum distances measured between any two vehicles (expected distance: 10 m); the zero line corresponds to an occurred crash.

situation. Nonetheless, exactly the same results are associated
with the Ploeg algorithm in both cases, since it leverages only
the information concerning the preceding vehicle. Regarding
the other controllers, a crash was almost always the outcome of
both speed and acceleration falsifications, with the availability
of the radar being insignificant unless the PATH algorithm was
selected. The Consensus controller, on the other hand, was the
only one susceptible to the position injection attack, due to
its peculiar characteristics. As before, the synchronous attack
caused the most significant perturbations, combining the effects
of the individual attacks. Finally, the crashes occurred mostly
between the attacker itself and the second vehicle, although in
some cases, especially when the radar was used to measure
relative speeds, the third vehicle bumped into its predecessor.

D. Discussion

The analysis presented above confirmed the effectiveness
of the examined injection attacks and the associated security
implications. As expected considering the comparison matrix
introduced in Table I, each controller is susceptible to different
attacks, depending on its peculiar characteristics. The PATH
algorithm is the one that suffers the most when receiving
counterfeit beacons, due to its dependence on multiple variables.
Both the Consensus and the Flatbed controllers, on the other
hand, are only susceptible to speed falsifications perpetrated
by the leader vehicle. Nonetheless, the former relies on the
knowledge of the GPS position of the convoy leader, a piece of
information that may not be always available with the required
precision even in the absence of attackers. The latter, on the
other hand, simply requires all members to share a common
speed value: although the default implementation exploits
the one obtained from the leader for simplicity, agreement
algorithms may be developed to mitigate the presence of
attackers. Finally, the Ploeg algorithm, leveraging only the
information coming from the predecessor, shows a more limited
susceptibility to the considered injection attacks, suffering only
when bogus acceleration values are received (if the relative

speed is evaluated using the radar). However, it is the only
controller analyzed based on a CTH spacing policy, implying a
different desired distance depending on the current convoy pace.
Concerning the sinusoidal scenario, no relevant differences
emerged compared to the already presented simulations, with
only very little additional perturbations introduced by the
oscillations in the speed of the leader vehicle.

V. DETECTING INJECTION ATTACKS

No widespread diffusion of vehicle platooning can occur until
viable countermeasures are developed to mitigate the effects of
possible attacks. This section presents our novel misbehavior
detection technique that, continuously analyzing different pieces
of information, possibly coming from multiple uncorrelated
sources, evaluates the plausibility of the messages received
to detect as soon as possible ongoing attacks. The algorithm
proposed leverages the peculiarities of vehicle platooning and
it is based on two main insights. First, it acknowledges that
the different physical variables regarding a single vehicle (i.e.
position, speed and acceleration) cannot evolve independently:
instead, they are bound by the well-known kinematic equations.
Second, moving in a convoy, consecutive vehicles tend to react
to the same stimuli, thus showing very similar motion patterns:
inconsistencies could be a clear clue of a falsification attack.

A. Correlation between physical variables

Let us initially delve into the relationship between the
correlated variables and consider a 1-D scenario, as represented
by a straight highway. For a sufficiently small time interval ∆T ,
we can approximate the evolution of the physical quantities as:{

p(t+ ∆T ) = p(t) + ∆T · v(t) + 0.5 ·∆T 2 · a(t)

v(t+ ∆T ) = v(t) + ∆T · a(t)
(1)

where p(t), v(t) and a(t) represent respectively the position,
speed and acceleration of one vehicle at time t. Thus, the
intuition behind this first pillar of the misbehavior detection
technique consists in comparing the values received through
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V2V with the ones estimated by means of (1), to understand
whether subsequent beacons contain plausible pieces of data or
not. If a single variable is injected, in fact, it would immediately
start to diverge from the predicted values, acting as a warning
signal of a possible misbehavior. This approach could be easily
bypassed in case a coordinated attack is performed, i.e. the
three correlated variables are modified respecting the same
equations used for the prediction. Nonetheless, forcing the
attack to encompass all the variables contained in a beacon
makes the injection itself easier to spot using complementary
techniques, as detailed later on.

Although promising, the naïve technique just presented, and
in particular the estimation of the physical variables by means
of (1), is characterized by an intrinsic limitation. In fact, due
to approximations, sensor uncertainties and real-world non-
linearity, the estimation would immediately start to diverge
from the correct values, becoming soon useless to be compared
with the received ones. To face this issue, the bare estimation
is replaced with the values obtained by means of a Kalman
Filter [20]. It is an algorithm estimating the state of a process
by combining theoretical predictions and measurements coming
from noisy sensors, to correct the real-world drifts that cannot
be captured by simplified models. In other words, the filter tends
to mediate between the estimation and the actual measurements
depending on the associated confidence intervals, converging
towards the true values very rapidly.

Summarizing the general idea, during normal operation the
values received from the network and the estimations generated
by the Kalman Filter are expected to be similar, confined in
a very limited tolerance band. Instead, injected beacons are
supposed to cause an increasing divergence, thus being an
indicator of an ongoing attack. Figure 3 provides a graphical
representation of this expected behavior. On the left side of
the graph, when legitimate beacons are sent, the Kalman Filter
is perfectly able to follow the measurements received through
V2V, even if characterized by an evident noise. Soon after
the beginning of the injection attack, on the other hand, the
values received and the estimation start to become increasingly
different, immediately highlighting the inconsistency.

B. Correlation between different vehicles

Considering the correlation between different physical vari-
ables does not prevent an attacker from injecting all of them

Leader

Pred.

Beacon
(p, s, a)

Beacon
(p, s, a)

KF

KF

Radar measurements
(d, ∆v)

Misbehavior
Detection
Algorithm

· · · · · ·

V2V

V2V Yes

No

Fig. 4. High-level representation of the inputs required by the misbehavior
detection algorithm, including the V2V beacons, the estimations computed by
the Kalman Filters and the radar measurements (if available). The output is a
boolean value indicating whether an attack is currently detected or not.

in a coordinated way. To this end, the second pillar of the
proposed misbehavior detection technique is based on the
comparison between the behavior shown by different vehicles
belonging to the same platoon. Indeed, being constrained by
identical CACC algorithms, consecutive members are expected
to act coherently. Additionally, each vehicle is forced by the
longitudinal controller to maintain a fixed distance from its
predecessor: hence, a violation of this fundamental rule is a
clear indication of a possible misbehavior. However, although
one may leverage only this last, seemingly trivial validity check
to identify ongoing attacks, it would delay the detection until the
injection already caused most of its effects, by strongly reducing
the safety margins. Instead, our proposal combines multiple
evaluations to anticipate the detection instant, triggering the
countermeasures as soon as an incoherence is observed.

Figure 4 summarizes at a high-level the information required
by the misbehaviour detection algorithm to operate. Assuming
the attacker controls at most one member of the platoon, every
vehicle can independently execute the misbehavior detection
algorithm on its own, by leveraging only the messages received
and the local estimations computed through Kalman Filters.
Nonetheless, every vehicle can use its radar to gather privileged
information concerning its own predecessor. Therefore, by com-
paring and combining independently gathered measurements,
every vehicle is able to enrich its own knowledge, making it
harder to be deceived by its predecessor and, consequently,
increasing the safety of the whole platoon.

C. Formalization of the misbehavior detection technique

In the following, we formalize the different components of
the proposed misbehavior detection technique. Let li, pi, vi
and ai represent respectively the length, position, speed and
acceleration of the ith vehicle in the platoon, with di = pi−1−
pi−li−1 and ∆vi = vi−1−vi denoting the relative distance and
speed from its predecessor; moreover, the superscripts indicate
whether each value is obtained through V2V communication
(·V2V), Kalman Filter estimation (·EST) or radar measurement
(·RAD). Additionally, let δ be the expected distance between
any two vehicles, εx the sensor uncertainty associated with
the variable x and σEST

di
= σEST

pi
+ σEST

pi−1
, σEST

∆vi
= σEST

vi + σEST
vi−1

the standard deviations as provided in output by the Kalman
Filter along with the estimation. Finally, let |·| indicate the
absolute value and · the simple moving average of the previous
n data, for some user-configured n. Then, for each vehicle i,



a misbehavior is detected if any of the following inequalities
is violated for more than a specified tolerance interval ∆Tth:

|dEST
i − δ| < α1 · δ (2)∣∣dV2V

i − dEST
i

∣∣ < α2 · 3σEST
di

(3)∣∣vV2V
i − vEST

i

∣∣ < α3 · (εV2V
v + 3σEST

vi ) · (1 + α8|ai|) (4)

|dRAD
i − δ| < α4 · δ (5)∣∣dRAD

i − dEST
i

∣∣ < α5 · (εRAD
d + 3σEST

di
) (6)∣∣∆vRAD

i −∆vV2V
i

∣∣ < α6 · (εRAD
∆v + 2εV2V

v ) · (1 + α8|ai|) (7)∣∣∆vRAD
i −∆vEST

i

∣∣ < α7 · (εRAD
∆v + 3σEST

∆vi) · (1 + α8|ai|) (8)

where αk for k = 1 . . . 8 are all non-negative user-defined
constants, α1 < 1 and α4 < 1.

Inequalities (2) to (4) are based only on the information
received through V2V communication and estimated by means
of Kalman Filters; hence, they can be evaluated independently
by and for each member of the platoon. They aim to assess the
coherence between the readings concerning one vehicle (4) and
across consecutive vehicles (2), (3). Instead, inequalities (5)
to (8) do require additional measurements obtained through the
radar and, thus, are suitable to be verified only by the follower
of each vehicle. Their purpose, besides the trivial safety check
provided by (5), is to compare pieces of information coming
from different sources, to verify their soundness.

The left-hand side of every inequality is a difference, used to
evaluate how similar the quantities of interest are. In most cases,
a moving average is leveraged to mediate between consecutive
values and attenuate the oscillations caused by noisy readings:
the larger the window size, the smoother the average is obtained,
at the cost of an increase in the detection delay. Differently,
the right-hand side represents a threshold, depending on user-
defined parameters and the uncertainties associated with the
measurements. Additionally, inequalities (4), (7) and (8) also
encompass a correcting factor based on the current acceleration:
indeed, velocity changes are expected to temporarily increase
the oscillations also during normal operation.

VI. VALIDATION

To evaluate the validity of the proposed misbehavior detec-
tion technique, we implemented the constraints expressed by
inequalities (2) to (8) as an extended application within Plexe.
Every platoon member continuously inspects the behavior of
both the leader and its own predecessor, to verify the coherence
of the information received. Whenever an injection attack is
identified, being this paper focused on the detection phase, we
simply switch the control algorithm to non-cooperative ACC.
Although increasing the distance between consecutive vehicles,
and reducing the advantages of vehicle platooning, we deem
this approach to be sufficiently conservative and able to prevent
possible safety issues. At the same time, we leave as a future
work the evaluation of more complex countermeasures.

Similarly to the analysis presented in Section IV, we
experimented with injection attacks targeting both the three
variables of interest (i.e. position, speed and acceleration)
independently and all at the same time; in the latter case,

TABLE III
AN EXCERPT OF THE MAIN SIMULATION PARAMETERS.

Simulation duration 90 s
Repetitions 1000
Controller CACC (δ = 10 m)

Beacon frequency 10 Hz

Initial speed uniform (90 km/h, 110 km/h)
Maximum speed uniform (130 km/h, 150 km/h)

Acceleration (min, avg, max) 0.1 m/s2, 0.5 m/s2, 2.0 m/s2

Acceleration probability uniform (0.15, 0.25)
Deceleration (min, avg, max) 0.1 m/s2, 0.75 m/s2, 4.0 m/s2

Deceleration probability uniform (0.15, 0.25)
Step duration (min, avg) 0.5 s, uniform (1.5 s, 3.0 s)

Attacker Leader vehicle
Attack start uniform (15 s, 75 s)

Position inj. (rate, limit) uniform (1 m/s, 5 m/s),
uniform (25 m, 75 m)

Speed inj. (rate, limit) uniform (0.05 m/s2, 0.25 m/s2),
uniform (1 m/s, 5 m/s)

Acceleration inj. (rate, limit) uniform (0.025 m/s3, 0.1 m/s3),
uniform (0.25 m/s2, 1 m/s2)

Detection parameters

∆Tth = 1 s, n = 10,
α1 = 0.33, α2 = 1, α3 = 1,
α4 = 0.25, α5 = 1, α6 = 1,

α7 = 1, α8 = 0.05

Sensor uncertainties
εV2V
p = 1 m, εV2V

v = 0.1 m/s,
εV2V
a = 0.01 m/s2, εRAD

d = 0.1 m,
εRAD
∆v = 0.1 m/s

we simulated both a non-coordinated attack, where the three
variables are falsified without a particular relation between
one another, and a coordinated one, respecting the kinematic
equations expressed by (1). To account for a large number of
distinct situations, we generated a different motion pattern
for the leader vehicle in every simulation, by randomly
combining acceleration and deceleration steps. Each step is
characterized by a particular duration and intensity, drawn from
exponential distributions with configurable means. Finally, we
reproduced the uncertainties associated to the different sensors,
to make the simulations more realistic. Table III summarizes
the most relevant simulation parameters, concerning both
the motion pattern generation, the attacker behavior and the
detection algorithm. To increase the validation coverage, we
executed a thousand simulations, randomly extracting most
parameters from a uniform interval at the beginning of each run.
Regarding the detection parameters, the values have been tuned
empirically, leaving for the future a more thorough analysis.

Table IV presents in an aggregated form the outcome of the
simulations, highlighting the percentage of injection attacks
correctly identified along with the average delay between the
attack start and the actual detection instant. Overall, it is
evident the effectiveness of the misbehavior detection technique
herein presented: all falsification attempts have been correctly
spotted within very few seconds. As expected, however, the
coordinated attacks were the hardest to detect. While coherence
analyses, alone, were not sufficient to recognize these more
advanced injection attempts, the availability of complementary
measurements coming from the radar made their identification



TABLE IV
OUTCOME OF THE SIMULATIONS: PERCENTAGE OF ATTACKS CORRECTLY
IDENTIFIED AND AVG DETECTION DELAY (WITHOUT AND WITH RADAR).

Injection Attack w/o radar w/ radar
Detect. [%] Delay [s] Detect. [%] Delay [s]

None 1.2 - 0.6 -
Position 99.8 1.75 100.0 1.75
Speed 99.8 2.81 100.0 2.81
Acceleration 99.8 3.80 100.0 3.79
All 99.8 1.76 100.0 1.75
Coordinated 4.4 6.00 100.0 3.90

possible. Although only the direct follower of the attacker
can obtain the necessary radar measurements, simulations in
Section IV pointed out that the most affected vehicle is indeed
the follower itself. Thus, this protection is deemed to be com-
pletely sufficient to prevent the safety implications arisen as a
consequence of the attack. Concerning the different inequalities
presented, (3) and (4) accounted for the detection of almost
all attacks but in the case of coordinated ones, which required
the contributions of (7) and (8). Finally, after having enabled
the “degrade to ACC” countermeasure, no attacks succeeded
in causing a crash but in a couple of very specific cases (i.e.
if the leader vehicle is hard braking while the other members
switch to ACC), ascribable to the limitations of the naïve
countermeasure. Overall, it is the clear demonstration of the
effectiveness of the misbehavior detection technique proposed.

VII. CONCLUSIONS AND FUTURE WORK

Vehicle platooning is one of the most promising applica-
tions in the scope of Intelligent Transportation Systems and
cooperation has been widely recognized as a key feature to
advantage from all its benefits. However, previous research
suggested CACC algorithms can be easily fooled by various
cyber-attacks. As previous simulations were done with limited
and rather extreme scenarios, this paper proposed an extended
security analysis by means of simulation, focusing on a wider
and more realistic range of injections attack scenarios. As
expected, different longitudinal controllers reacted differently
to various message falsifications, depending on the variables
leveraged by each algorithm and their specific peculiarities.
Nonetheless, the overall results confirmed the effectiveness of
the attacks, as proved by the considerable number of crashes
simulated between vehicles. Starting from these considerations,
the second part of the paper advanced the state of the art
by presenting a novel misbehavior detection technique. Its
aim is to continuously evaluate the coherence of the beacons
received, by comparing their content with local estimations
computed by means of Kalman Filters. Additionally, whenever
available, measurements coming from a different sensor (i.e. a
radar) are leveraged to enrich the local knowledge and simplify
the detection of attacks encompassing multiple variables.
Extensive simulations confirmed the validity of the approach
proposed that, combined with degradation to non-cooperative
ACC as a simple countermeasure, succeeded to detect all the
considered attacks and prevented catastrophic crashes. As future

work, we plan to examine alternative and more sophisticated
countermeasures to be adopted once an attack is identified.
Additionally, we will focus on the development of an algorithm
to automatically fine tune the different detection parameters
depending on the specific situation, to further reduce the
probability of false positives and shorten the sensing time.
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