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Abstract

Autonomous air drones, known as Unmanned Aerial Vehicles (UAVs), often ac-
complish missions with real-time video streaming leveraging the available cellular
network. Video streaming is a typical application with stringent Quality of Service
(QoS) requirements, which are not always supported in the whole mission area. In
this thesis, we address the offline path planning problem of finding the optimal path
from a source to a destination in 2D space in order to maximize the communication
quality, given a cellular coverage, and thus providing throughput guarantees to the
video streaming. In addressing the problem, the restricted amount of available energy,
the wind effect, and the path post-smoothing problem are considered. We propose
two innovative path planning algorithms and we show that our algorithms outperform
classical approaches that are oblivious of communication network coverage. Both
algorithms are variants of classical A* algorithm and they optimize the path jointly
in terms of distance and of the experienced throughput by the drone: in this way,
the quality of the video streaming along the path is optimized while preserving the
energy budget for the flight. We describe both of the algorithms and investigate
their performance. Moreover, we introduce a novel path smoothing method that
outperform classing approaches in terms of distance and computation cost. Finally,
in order to prove that our algorithms can be practically utilized in the real-world
path planners, we integrate our proposed path planning algorithms into the popular
QGroundControl (QGC) control station.
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Chapter 1

Introduction

1.1 Introduction

Autonomous air drones are becoming increasingly popular and typically are equipped
with real-time video streaming for surveillance and safety purposes. In recent years,
the UAVs’ excessive variety of applications including delivery, search and rescue,
and inspections, require a highly secure and reliable connection. Focusing on
this objective leads to support the UAVs on cellular network coverage. Wireless
technology can bring many privileges to UAVs such as ubiquitous coverage, high-
speed mobile support, robust security, high reliability and quality of service (QoS).
This aim has been attracted the attention of industry and companies [1], to provide
cellular connectivity for UAVs. For instance, telecommunications leading companies
like Qualcomm and AT&T have set up to develop the connectivity technologies,
including optimization of LTE networks and advancement of 5G technology for
drones [2]. The 3rd Generation Partnership Project (3GPP) is started the study on
enhanced LTE support for UAVs in 2017 [3]. Accordingly, UAVs can leverage the
cellular network infrastructure to support the video streaming communication, in
case of long-distance flights. When planning an autonomous path between a set of
distant way-points, we advocate the adoption of path-planning algorithms which are
aware not only of the obstacles (as in classical approaches) but also of the cellular
coverage, in order to guarantee the stringent requirements of Quality of Service
(QoS) in the communication for video streaming.



2 Introduction

In this work, an offline path planning problem between two generic way-points,
taken into account the provided budget of energy and the required bandwidth in
terms of either average or minimum throughput is addressed. In addition, the cellular
coverage map and possible effects of the wind that could have an impact on the
path trajectory is considered. Moreover, we address the smoothing problem of the
resulting paths of our path-planning algorithms, for the purpose of compensating
for the spatial sampling of the graphs needed for computation and obtaining straight
flying trajectories.

Our main contributions are manyfold.

1. We propose two innovative path-planning algorithms, which are variants of the
popular A* algorithm. The main focus of AT-PP (Average Throughput Path
Planning) algorithm is to maximize the average throughput along the path,
with the purpose of guaranteeing an average level of communication QoS.
The main focus of MT-PP (Minimum Throughput Path Planning) algorithm is
instead to maximize the minimum throughput along the path, with the purpose
of guaranteeing a minimum level of communication QoS. Each of the two
algorithms take into account the on-board accessible amount of energy for
the flight and lengthen the path for the sake of optimizing the communication
quality.

2. By simulation, we evaluate the performance of the MT-PP and AT-PP algo-
rithms, in both presence and absence of the wind. It is numerically shown that
our communication aware approach is capable of outperforming classical ap-
proaches (oblivious of cellular coverage) significantly, concerning throughput,
without exceeding the constraint of energy. Furthermore, we investigate the
effect of energy budget on the resulting paths of MT-PP and AT-PP, and we
show how the energy budget can affect the resulting path.

3. A novel path post-smoothing approach (IPS) is proposed that leads to a reduc-
tion in the computation time comparing with classical approaches.

4. We integrate seamlessly our path planning algorithms into the open-source
QGroundControl control station [4], in order to modify the path between way-
points considering the cellular coverage map. We prove that our algorithms
are practical, by employing them in a real-world path planner.
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This thesis is organized as follows. In Chapter 2, we provide a review to the
required preliminaries for a better understanding of the presented work. First we
investigate the universal applications of the UAVs. We present some statistics
referring to the rapidly growing commercial market and academic interest about the
drones. We describe the fundamental path planning algorithms which are basically
utilized in this work. Next, we concentrate on the environmental disturbances in
path planning and specifically we investigate the effect of wind, and how drones are
dealing with these disturbances. Some popular techniques to compensate the wind
effect is presented and how we compensated for the wind is specifically explored.
Moreover, we explore the effect of restricted on-board energy budget on the path
planning methods, and the factors that should be considered in energy calculation for
path planning are described. The effect of wind in energy consumption is explored as
well. Finally, employing cellular network technology to provide support for drones
in order to enhance communication QoS is investigated. The reasons of requiring a
much more advanced communication for drones and how cellular network technology
fulfills these requirements are explained. Furthermore, the challenges that UAVs are
facing, the communication requirements for UAVs, and the factors to enhance the
cellular network performance for establishing a productive coexistence between the
terrestrial and aerial users are described.

In Chapter 3, our novel communication-aware path planning algorithms are
introduced. We describe the model of the flight area, the drone mobility model, the
energy constraints, and the mobility planning of drone between each two nodes are
explained. We introduce the AT-PP algorithm that maximizes the average throughput
along the path and the MT-PP algorithm that maximizes the minimum throughput
along the path, both subject to the energy budget. The algorithms are well explained
and the pseudo-codes of them are provided in detail. Finally, the post smoothing
methods to smooth the resulting paths including our novel method are explained.

In Chapter 4, the integration of our algorithms in a real-world path planner is
explored. We investigate the QGroundControl (QGC) as apowerful open-source
control station and its communication with the autopilot. The data flow between the
QGC and autopilot, some specific commands, and the communication sequence of
uploading a mission to a vehicle is explained in more detail. Then, we introduce
our designed proxy for monitoring the data which are passing between the QGC and
vehicle. The two faced behavior of the proxy, acting transparently or not, is analyzed
in depth.
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In Chapter 5, The numerical results of our experiments and the performance of
algorithms are presented. Some comparisons based on the path length, computation
time, and energy consumption are presented. Our results are compared with the-
state-of-the-art algorithms.

Finally in Chapter 6, we conclude the thesis.



Chapter 2

Preliminaries

In this chapter, first we concentrate on the extensive applications of drones. We
show that the drone commercial market and the academic interest about drones
are growing rapidly. A prediction of drone potential market value of business
services is presented. Next, a taxonomy of the existing path planning methods is
presented. We introduce the path planners in three groups of graph search based
algorithms, sampling based algorithms and combinatorial algorithms. We explain
some fundamental path planning methods that we have used throughout this work.
We describe Dijkstra’s algorithm [5], that is a graph based algorithm and finds the
shortest path from a single-source to any nodes of the graph. A* [6] algorithm is
introduced which is an extension of Dijkstra’s algorithm and calculates the shortest
path in a much shorter computation time than the canonical Dijkstra’s algorithm,
by considering a smaller search subspace. Then, we explore the wind effect in path
planning. We discuss about the conditions and the most important challenge, i.e.
wind, that the UAVs are facing when they operate in real-world environments and how
UAVs are dealing with it. We introduce some popular techniques to compensate for
the effect of wind. After that, we investigate the significance of energy consumption
and energy restrictions in path planning. Specially, the flying status of UAVs such as
acceleration, deceleration, velocity, and turning angle on the consumption of energy
is investigated. We show that energy consumed in turns, taking off and landing is
not negligible. In addition, we specifically explore the effect of wind on the energy
consumption of the UAVs and describe the method that we used in our work to
anticipate the energy consumption in windy situations. Finally, the employment of
cellular network technology for drones and how the leading companies have setup



6 Preliminaries

to develop this technology in order to provide support for the drones enhancing
safety, control, and communication QoS is investigated. We describe the reasons
that a much more advanced communication is required for modern drones and the
strong points of cellular network technology that fulfills these requirements are
explained. Additionally, we mention the network coverage and interference as the
most important challenges that UAVs are facing in exploiting the cellular networks.
The communication requirements for UAVs and how the cellular network is meeting
those requirements are studied. Furthermore, we look into some factors in order
to enhance the cellular network performance for enabling a productive coexistence
between the terrestrial and aerial users.

2.1 Applications of Unmanned Aerial Vehicles

In recent years, the accessibility and performance of Unmanned Aerial Vehicles
(UAVs) has improved vastly, due to the numerous applications of this new technology.
Currently, in the US and EU, the operations of drones are restricted significantly
(e.g. keeping the vehicle in the operator’s line of sight) in order to safeguard the
airspace, people, and their properties. Since the the UAV technology is improving
(e.g. improvement in collision avoidance systems), and as interested parties gain
experience in UAV technology, a significant relaxation in the regulations is expected.
Thus, predictably a new range of interesting applications for UAVs will be opened.
Base on the market forecast, commercial drone market is developing rapidly. As
an example, the Teal Group Corporation which is under the supervision of Federal
Aviation Administration (FAA), predicts that the commercial drones operation fleet
in the US will be about 3.3 billion dollars in purchase value, by 2020 [7]. Fig. 2.1
indicates the growing academic interest about the aerial vehicles topic [8].

Uncrewed technology can be beneficial to many industries, since it reduces
the cost. This technology can lower the weight of the vehicle, and consequently
the energy consumption of the UAVs. Moreover, it reduces the cost by making
the vehicle’s cockpit and its facilities unnecessary. UAVs are able to operate in
unreachable and hazardous environments for humans. Fig. 2.3 illustrates some
of the civil applications [9]. Drones have already performed some commercial
applications [10], [11], and new ideas for new applications are appearing in the
media. Some of the applications are discussed as following:
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Fig. 2.1 Academic interest in aerial vehicles is growing dramatically. Reproduced from [8].

• UAVs have already been employed for accessible infrastructures like roads,
oil and gas pipes, and railways in order to track the construction progress, and
to regularly inspect for maintenance. In addition to providing a high quality
video recordings, UAVs offer a safe operation in risky environments. For
instance, the first pilot project of Lufthansa and its partner DJI, utilized UAVs
to inspect rotor blades of wind turbines [12].

• Drone technology is very beneficial in agriculture. Drones are able to monitor
crops, investigate crop health, spray fertilizers, and assess the soil. Market
analysts predict that the largest application of drones in the US will be in
the agriculture in the few coming years [13]. Fig. 2.2 shows the YAMAHA
RMAX Japanese agriculture drone that have been used for over 20 years in
countries like Australia and South Korea. It can carry a payload of up to 31 kg
and has a flight time of up to 1 hour.

• Delivery and transport is another interesting application of drones. Medical
supplies like vaccines and blood can be delivered very fast with a low cost.
The quality of medical service can be improved significantly by using drones
in developing countries. Rwanda, for instance, has begun Zipline commercial
drone deliveries from 2016 [10]. This operation is done by fixed-wing drones
that fly to destinations automatically. Drones release the packages without
landing at the delivery point. The deliveries are faster than previously been
possible by road.
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Fig. 2.2 RMAX, a very popular drone which has been utilized for many years in agricultural
applications. Reproduced from [14].

Fig. 2.3 Examples of UAV civil applications. Reproduced from [9].

There is a huge potential market value in all of the drone applications and in
order to take advantage of this potential, companies should deploy UAVs in civilian
airspace safely an at the lowest cost possible. In [15], it is predicted that the potential
market value of business services that may take advantage of drone technology may
reach several billion dollars (as shown in Fig. 2.4) in some industries.

2.2 Path Planning Algorithms

Path planning problems typically are solved exploiting a method included in one
of the three categories: graph search based algorithms, sampling based algorithms,
and combined algorithms (see Fig. 2.5). Currently, graph search based algorithms
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Fig. 2.4 Estimated potential market value of drone applications. Reproduced from [15].

Fig. 2.5 Categories of different path planning methods. Reproduced from [16].

are dominating the other methods in path planning for robots [16]. The popularity
of graph search based algorithms can be attributed primarily to simplicity of their
implementation and secondly to the early establishment of them. In this section,
we attempt to have a quick review on all the three categories and provide their
advantages and limitations briefly.

2.2.1 Graph Search Based Algorithms

Graph search-based algorithms are based on the fact that, a grid graph is employed
to represent the search space. In order to represent grids as graphs, each cell of the
grid represents a node in the graph and edges of the graph connect the adjacent cells.
Search based algorithms specify an order to search the graph nodes. In fact, the
starting point of the robot and the destination is known and a search algorithm is run
to find a point to point path on the graph.
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Algorithms

Graph search based algorithms compute the path cost by exploring through the nodes
to figure out the optimal path. They have experienced a series of technological
advances during the last decades. Dijkstra algorithm is the first algorithm that finds
the shortest path. One of the common variants of Dijkstra algorithm, fixes a node
as source node and finds the shortest paths from the source to all the other nodes of
the graph, generating a shortest path tree. A few years later, the A* algorithm by
utilizing an admissible heuristic in order to narrow the search space, is introduced.
A* finds the shortest path faster than any other methods. A* as a static algorithm,
rerun the search from the scratch if the search area configuration changes (e.g. a shift
in the configuration of obstacles). We explain Dijkstra and A* algorithms with more
details in the following sections. In 1994, D* algorithm, the first dynamic search
based algorithm is introduced [17]. D* algorithm, also called dynamic A*, is known
for being the basis of planning in the DARPA UGV programs [18]. D* algorithm is
a sensor based algorithm and deals with dynamic obstacles. To this end, D* changes
the weights of edges in real time to establish a temporary map and then guides the
robot from the source to the destination. D* algorithm, as well as A*, calculates
the cost through a forward estimation. Afterwards, Quad-tree D* and Focused D*
are the algorithms that were introduced to deal with the time complexity and space
complexity limitations of the D* algorithm, respectively [19], [20]. Koenig and
Likhachev proposed an algorithm based on LPA* which is similar to a simplified
version of D* and is called D* Lite [21]. D* Lite is very popular as it is similar to
the Focused D* from the behaviour point of view, but simpler to understand and to
code. Actually, D* Lite is being used in most of the current implementations in the
Stentz’s lab (where D* was born).

Limitations

We should not undervalue the success of search-based methods. However, search
based algorithms are subject to some acknowledged limitations. On one hand,
searching on a grid removes the burden of maintaining the graph structure. On the
other hand, since grid graphs have a fixed topology, graph based methods are subject
to the resolution of the grid. Therefore, the resulting path is optimal only at the
employed grid resolution. There is a trade-off between increasing the resolution of the
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Table 2.1 Analysing search based algorithms. Reproduced from [22].

Algorithm Shortcomings Advantages
Dijkstra’s High computational time

Static environment only
Easy implementation in different en-
vironments

A* Heavy time burden
Static environment only
Post smoothing needed

On-line implementation
Fast search ability

D* Poor distance estimation Fast search ability
Adopted to dynamic environments

grid (and therefore resulting paths closer to real optimal path) and computation time.
Table 2.1 provides a straightforward analysis of search based optimal algorithms.

2.2.2 Sampling Based Algorithms

Sampling based algorithms deal with the graph generation problem in the following
way. First, generating a new vertex v. Then, checking if v is inside of an obstacle. If
this condition is met, the cycle starts over or v needs to be projected to the boundary of
the obstacle. Afterwards, edges are connected between v and the visible neighbours
of v. As a result, a path exists between the source and destination vertices. As long
as a proper path is investigated, A* search runs over the graph to find the resulting
path. Since the basis of vertex generation is probabilistic, this approach was initially
introduced as Probabilistic Road Map (PRM) [23], although it is allowed to be done
deterministically by the framework as well.

RRT (Rapidly-exploring Random Tree) method is demonstrated similarly [24].
RRT searches the space rapidly to find a path between the source and destination.
This method is proven to be working very effective on high dimensional spaces.
Moreover, this method is recently adopted for dynamic configurations [25]. The
characteristic of being an overall simple method made the RRT interesting. In order
to implement this method, two challenges are in front. First, a kd-tree must be
implemented. kd-tree is a data structure in order to sort k dimensional vertices, and
it makes the range and nearest neighbor searching operations possible. Second, a
LineOfSight(v1,v2) method is needed to discover whether an edge between vertices
v1 and v2 does exist or not.
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The Voronoi diagram was introduced by Shamos and Hoey [26] in the field of
computational geometry. After a series of form improvement, now is widely utilized
in the field of path planning. Similar to PRM, a global or local graph is created
by Voronoi, the shortest path can not be generated at the same time. Accordingly,
Voronoi needs Dijkstra’s, A*, or D* algorithm in order to find the shortest path. Three
steps of Voronoi path generation is as following: first, sampling the environment
or utilizing other environment construction methods. Second, 3D Voronoi graph
generation. Third, employing a search algorithm to find the shortest path.

Artificial potential field methods was initially introduced by Khatib [27]. This
method has been widely researched and implemented due to a low computational
complexity. In this method, a potential function is assigned to the configuration
space and the vehicle reacts to the potential field force like a particle. The potential
function calculates the destination absorption and obstacle repulsion in the same time
and leads the vehicle along the total force gradient. However, the artificial potential
field methods are prone to be stuck in a local minima. A lot of research has been
done, such as generating navigation functions, to overcome this shortage [28–30].

Sampling based algorithms depend upon the concept of either probabilistic
completeness or resolution. It means that the resulting paths of these algorithms are
optimal solution with a converging probability to 1 as the number of vertices grows
accordingly.

The fundamental rule of appending vertices to a graph randomly and checking the
connections, comparing with the search based methods, is not the most biologically
inspired technique or in another word the most natural approach to path planning.
However, it does not affect the apparent performance of sampling-based methods, but
may affect one’s decision to look for a fast yet method and more natural. Table 2.2
provides a straightforward analysis of sampling based algorithms.

2.2.3 Combinatorial Path Planning

In combinatorial path planning, the search space is essentially represented by a
polyhedral that additional vertices and edges are added to it. As a result, a graph
which is know as road-map is created. Similar to the sampling based path planning
methods, this method looks for the shortest path from the source to the destination.
The difference is that, where the sampling based method populates the free config-
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Table 2.2 Analysing sampling based algorithms. Reproduced from [22].

Algorithm Shortcomings Advantages
RRT Single path

Static environment only
Not optimal

Fast search ability
Low computational time

PRM Costly collision check
Static environment only
Not optimal

Powerful in complex environments
Appropriate for re-planning

Voronoi Static environment only
Not convergent

Appropriate for on line planning

Artificial
potential

Local minima Converges very fast

uration space with new vertices, the combinatorial methods employ the polygonal
obstacle boundaries directly. The are three types for the road-maps: a) shortest
path, b) maximum clearance, and c) cell decomposition. In this thesis, we just
consider the shortest path road map which is the visibility graph [31]. In visibility
graphs, an edge is added between each two mutual in line-of-sight pair of vertices.
The visibility graph has a variety of applications such as VLSI design, art gallery
problems, computer graphics, and in pursuit evasion problems for multiple robots.

In visibility graphs, the graph is formed by adding the edges to the nodes in the
graph (node in the graph represents a point location) if there is a visible connection
between them (in other words there is a line-of-sight between them). Therefore, if
the connecting line between two locations does not pass through an obstacle, an
edge is drawn. As a result, the euclidean shortest path problem is decomposed into
two sub problems: a) visibility graph construction and b) employing a shortest path
algorithm such as A* to the graph. Figure 2.6 shows a visibility graph example.

The graph shown in Figure 2.6 is ridiculously dense from the path planning
point of view and most of the edges are not essential. The reduced visibility graph
(RVG) is introduced in [31]. Therefore, the essential edges based on necessary local
conditions are added.

There exist some limitations for the visibility graphs. For example, extending
the visibility graph as a road-map for more than 2D spaces is impractical. In [32]
is shown that point to point planning in 3D spaces with polyhedral obstacles is
a NP-hard problem. However, some approximate solutions have been presented
in [33–35].
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Fig. 2.6 Visibility graph example.

2.2.4 Shortest Path Algorithms

Search based methods utilize graph search algorithms to explore a path or trajectory
over a discrete representation of the problem. Graph search algorithms explore paths
between nodes, initializing from one node and traversing through the edges as far as
the destination is reached. In the following sections, we investigate two of the most
popular and fundamental graph search based algorithms in robotics.

Dijkstra’s Algorithm

Dijkstra’s algorithm is a graph based algorithm that finds the shortest path between
the nodes. Considering a graph G = (V,E) which is consist of a set of vertices V
and edges E, and a non-negative cost c(u,v) is associated to each (u,v), Dijkstra’s
algorithm is able to fix a node as source (usource ∈ V ) node and find the shortest
path to all the graph nodes. This algorithm can be employed in many path planning
applications. Network routing protocols is one of the applications of Dijkstra’s
algorithm which is extensively used. For instance, if the graph nodes represent
the cities and edges of the graph represent the roads, Dijkstra’s algorithm can be
utilized to find the shortest paths from one city as source to all of the other cities.
The associated cost to each edge is usually the distance between the two nodes, but
other costs like safety and traffic can be considered in the cost function.

Dijkstra’s algorithm operates by assigning initial cost values to all of the nodes
(except the source), and improves them progressively. First, it marks all the nodes
as unvisited nodes and collects them in a set which is called unvisited set. Next, the
algorithm assigns a preliminary cost value which is not finalized: sets the source
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node as current node and a cost value of zero and sets infinity to all the other nodes.
Considering the current node, the tentative cost to reach all of its neighbors which
are in unvisited set are calculated. It compares the most recent calculated cost with
the previous assigned cost and updates the value with the lower one. As long as all
the unvisited neighbors of the current node are visited, it marks the current node as
visited and removes the current node from the unvisited nodes set. The algorithm
never visits a visited node for the second time. To this end, in the event that the
planned destination node is marked as visited (destination is reached), or the lowest
tentative cost to the planned destination is infinity (among the other neighbors), the
algorithm terminates. In the latter case the destination is unreachable. Differently,
the algorithm selects the neighbor with the lowest tentative cost as current new node
and repeats the previous steps. The pseudo-code of the Dijkstra’s algorithm is shown
in the Algorithm 1. In the following algorithm, cost [u,v] returns the cost of moving
on the connecting edge of u and v. The parent array is filled with the previous nodes
from the destination to reach the source with the shortest path. S represents the
source node and N represents the graph.

The running time of Dijkstra’s algorithm on a graph can be expressed as a
number of edges (|E|) and number of vertices (|V |) function. The bound tightness
depends on the implementation of set Q. In the simplest implementation of Dijkstra’s
algorithm, that the minimum finder is a linear search through Q set, the running
time is O(|E|+ |V |2) = O(|V |2). The optimal running time can be achieved by
implementing Q with Fibonacci heap [36], and is equal to O(|E|+ |V |log|V |).
Practically, the first implementation is usual, as we used in some of our experiments
in this thesis.

A* Algorithm

Dijkstra’s algorithm finds the shortest paths to all the nodes included in the graph.
In some cases, it is not only required to find the shortest path from a source to a
specific single destination, but also required to optimize the performance of finding
the shortest path (e.g. very large map or a time-critical application). In this case,
A* algorithm, which is based on Dijkstra’s algorithm, is preferable. A* focuses on
searching the graph towards the destination and it performs the search based on the
path cost up to the current node and an estimation of the cost required to reach the
destination. However, in Dijkstra’s algorithm, the search is broadwise. Furthermore,



16 Preliminaries

Algorithm 1 Dijkstra’s Algorithm
1: function DIJKSTRA(N ,S)
2: Create vertex set Q
3: for each vertex v ∈ Q do
4: cost [v] = ∞

5: parent [v] = undefined
6: add v to Q
7: cost [S] = 0
8: while Q is not empty do
9: u = vertex in Q with min cost to u

10: remove u from Q
11: for each neighbor v of u do
12: if cost [u] + cost [u,v] < cost [v] then
13: cost [v] = cost [u] + cost [u,v]
14: parent [v] = u
15: return cost[ ], parent[ ]

it is still guaranteed that A* find the optimal path. A* picks the path in which the f
function is minimized:

f (n) = g(n)+h(n) (2.1)

Where function g is the path cost from the source to the current node and the
heuristic function h represents the estimation of the cost from the current node to the
destination.

Path planning performance of A* depends on the quality of the heuristic. The
value of heuristic should be a lower bound estimation of the cost (cost is assumed
to be only distance) from the current node to the destination. Particularly, if the
heuristic function gives exact distance to the destination (the estimated distance is
equal to the distance on the grid), the algorithm scans only nodes on shortest path
from source to destination. If the heuristic function overestimates the actual distance
to the destination, it is not guaranteed that the discovered path is the optimal path.
Therefore, choosing a proper heuristic function is a significant task. In this thesis, our
path planning algorithm is used with the straight-line distances (Euclidean distance).
The reason behind is that post-smoothing shortens the resulting path much more than
other heuristic functions (e.g. Octile distance), at the cost of higher computation.
In this case, the cost function g does not match the heuristic function h, that is, the
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Algorithm 2 A* Algorithm
1: function A*(N ,S,D)
2: U = N \{S} ◃ Unvisited nodes
3: F = {S} ◃ Frontier nodes
4: V = /0 ◃ Visited nodes
5: for each vertex v ∈ N do
6: g(v) = ∞

7: h(v) = estimated cost from v to D
8: parent [v] = undefined
9: g(S) = 0

10: parent [S] = S
11: while F is not empty do
12: u = vertex in F with min cost to u
13: remove u from F to V
14: if u = D then ◃ Check if arrived to destination
15: return
16: for each neighbor v /∈ V of u do
17: if cost [u] + cost [u,v] < cost [v] then
18: cost [v] = cost [u] + cost [u,v]
19: parent [v] = u
20: if v ∈ U then
21: move v from U to F
22: return unreachable destination

increase in the g function is not exactly equal to the decrease in the h function, and
consequently, A* takes longer to run. Therefor, for the 8-degree grids (we employ
in this work), we use the Euclidean distance from the source to the destination as
a heuristic function. The pseudo-code of the Dijkstra’s algorithm is shown in the
Algorithm 2.

A* algorithm creates three sets of nodes. The frontier nodes (F ) are stored in a
priority queue and the visit procedure expands from them. The visited nodes (V )
are the nodes that have been already visited and will not be visited anymore. The
unvisited nodes (U ) are the remaining nodes, i.e. not frontier nodes and not yet
visited. In Algorithm 2, S represents the source node, D represents the destination
node and N represents the graph. Our novel algorithms that we will present in this
work are variants of A* algorithm.
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2.3 Exploring the Wind Effect in Path Planning

When UAVs are operating in real-world environments, dealing with the wind effect
that leads the aircraft to be drifted in a certain direction, is indispensable. In this
situation, it becomes much more difficult for UAVs to follow certain trajectories. In
order to successfully and precisely execute a planned trajectory, the trajectory must
be designed by considering the physical capabilities of the vehicle and the effect of
wind.

There exist many different techniques to compensate for the effect of wind. We
note some of the popular techniques in the following.

2.3.1 Techniques to Compensate the Wind Effect

One technique to compensate for wind is employing the Monte-Carlo method [37].
In order to represent the state of the vehicle by maintaining a set of the vehicle’s
probable states, the Monte-Carlo method is utilized. Employing this sampling based
representation, a prevision of the flying trajectory is reached. Hence, a prediction
of the trajectory can be generated which includes multiple uncertainty sources and
perturbations with arbitrary distributions in the model. In order to apply this method,
models of the vehicle and atmosphere is required. A simple vehicle model which
takes into account the heading references and the uncertainty of the wind, can be
utilised to decrease the computations in real-time implementation:

x = vicos(ψi)+ωpcos(ωϕ) (2.2)

y = visin(ψi)+ωpsin(ωϕ) (2.3)

ψi = αψ(ψ
c
i −ψi) (2.4)

Where (xi,yi) represents the two dimensional coordinates, ψi represents the
heading of the vehicle, αψ is a known parameter and depends on the characteristics
of the vehicle, and ψc

i is the heading reference to the control system. The atmospheric
model is composed of the wind speed and direction. ωp and ωϕ represent the wind
vector speed modulus and direction respectively in the atmospheric model. Due to
the nature of wind, wind direction strongly depends on the local terrain, mesoscale
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and large scale considerations. Usually the wind direction is forecast utilizing
complicated numerical models. It is modeled here utilizing a Normal distribution
of mean ωφ and standard deviation ωσ

φ
, without loss of generality. Moreover, wind

speed modeled perfectly with Weibull distribution [38] at low altitudes. In the final
model that considers the wind and vehicle’s heading, the model parameters can be
estimated by real flight data.

Another approach in dealing with the effect of wind on path planning is proposed
in [39] by solving a no-wind case problem with a moving virtual target. In this
method, the velocity of wind and the velocity of virtual target are equal but in
the opposite direction. Therefore, the defined path for the vehicle in this problem
is considered with respect to the moving air frame and is known as “air path”.
Additionally, the path of vehicle in the presence of wind with respect to the ground
is known as “ground path”. The equations of motion are presented in [39] with
all details. The ground path produced by the algorithm is tracked by the control
algorithm. The control algorithm breaks the designed path into smaller paths leading
each one to be approximated by a polynomial. Then, a spatial sliding surface
controller in order to track each polynomial in presence of wind, is utilized. It is
proved that the whole system is robust to the wind disturbances.

One of the common strategies to compensate for the wind in path following is
considering the inertial ground speed of the UAV, which includes the wind effects
inherently [40], [41]. In [40], a guidance algorithm for a UAV is used to fly along a
path which is consist of several way-points. An observer based wind estimator is
included in the guidance algorithm. The perfect wind information are fed into the
look-up table directly. Thus, considering the estimated speed of wind and direction,
the air speed and desiring course change, a proximity distance (that is obtained from
a look-up table) for each way-point is defined. This proximity distance leads to a
smooth converge to any new course by the aircraft without over shoot or under shoot
in strong wind situations. In fact, this look-up table as an efficient method, chooses
the proper look-ahead distance, responding to a course change, wind heading and
speed, and air speed. In [41], a method based on vector fields to generate course
inputs to inner-loop control laws for accurate path following is developed. Vector
fields can be used to track straight-line and circular paths asymptotically, in presence
of strong wind. However, it is noteworthy to mention that tuning of vector fields
is known to be complicated. In this method, the motion equations are represented
in terms of ground speed and course, which are independent of the wind velocity.
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Therefore, the wind disturbance rejection by utilizing course and ground speed
(instead of heading and air speed) together with the vector field for path planning, is
improved significantly. Moreover, the path following errors in the presence of wind
is decreased significantly by using Lyapunov stability arguments.

One explicit approach is considering the wind by directly measuring the wind
or employing a wind observer [42, 43]. In [42], it is aimed to observe a ground
target from a UAV which is affected by the wind. The path follower algorithm is
robust to the wind and does not rely on heading or wind knowledge. However, local
wind information is required for a constant line-of-sight geometry. The estimate
of the wind leads to a approximate solution for the camera field of view, and the
error in the wind estimation leads to the target moving in the camera field of view.
Therefore, the wind direction and speed must be continuously estimated. Air data
instruments measure the air speed, GPS measures the ground speed and course, and
wind speed and course relates to the heading of aircraft. The direction and speed of
wind can be considered as unknown initial conditions, in case of constant wind, and
can be measured by means of an observer. A nonlinear observer can be constructed
to estimate the wind direction and speed in case of knowing the aircraft heading. It
leads that the vehicle to improve the ability to stabilize the sensors and camera at the
target. In [43], an alternative method to design a guidance controller for a UAV is
proposed to perform the path following in windy situations. In order to eliminate the
the wind effects, an observer-based disturbance control approach is adopted. In a
two-step strategy, first a nonlinear disturbance observer estimates the unknown wind,
then in order to improve the control performance, the estimates are embedded to the
control system design. As a result, the aircraft flies into wind with a trimming angle
to compensate for the perpendicular wind component to the path.

One possibility to compensate for the wind is described in [44], estimating the
direction of the wind through an adaptive back stepping procedure. In this method,
the focus of control strategy is on reducing the path deviation of the aircraft from
the designed path in the lateral dynamics in presence of wind. By considering the
adaptation laws to estimate the wind parameters, the control scheme is derived. The
robustness of the control system is proved by considering unknown wind gusts in
simulations.

Another popular approach is founded on a nonlinear guidance logic to track the
trajectories [45]. This method, in the computation of commanded lateral acceleration,
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utilizes inertial speed and in case of external disturbance, such as wind, adds adaptive
capability to the speed change of vehicle due to the wind. The performance of this
controller is compared with linear (PD and PID) controllers. It is revealed that the
vehicle is moving around the desired path with a cross-track error in a range about
20 to 60 meters, using linear controllers. The linear feedback controller with a fixed
gain, has limitations to immediately remove the errors, due to the inertial speed
changes by wind. On the other hand, nonlinear guidance logic follows the path with
an error less than 7 meters. The reason behind is that the nonlinear logic method
considers the inertial velocity changes due to the wind and corrects the situation
accordingly. Great privileges of this method is that it is simply and intuitive to be
tuned, the guidance commands’ magnitude is always upper bounded, and it is flexible
in setting the initial conditions.

Considering the effect of wind not only helps to follow the generated paths more
accurately, but also leads to be able to calculate the energy consumption of the
aircraft more precisely. We will show in the next section how considering the effect
of wind can help us to calculate the energy consumption during the flight.

2.4 Energy Aware Path Planning and the Wind Ef-
fects on Energy Consumption

Although UAVs have a lot of different applications, they also face many challenges.
In particular, the performance and endurance of UAVs are fundamentally restricted
by the energy on-board. The on-board energy is particularly finite as a consequence
of vehicle’s size and weight restrictions. Therefore, energy efficient path planning for
maximizing the performance of the UAV and enabling it to accomplish the mission
with a limited amount of energy is of paramount importance.

2.4.1 Flying Status

It is important to mention that the flying status of UAVs (including acceleration,
deceleration, velocity and turning angle) is deterministic in the energy consumption
of UAV’s propulsion. Thus, it requires to be taken into account in energy efficient
designs for UAV path planning.
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Fig. 2.7 Power consumption during maximum acceleration. Reproduced from [46].

Fig. 2.8 Power consumption during maximum acceleration. Reproduced from [46].

Turning Angle

There are a large variety of drones and each possesses its own unique physical
characteristics. Therefore, it is a difficult task to derive a parametric energy model
to predict the consumption of energy in different flying conditions. We utilized the
model which is proposed in [46], that analyzes the energy consumption for a specific
drone type (IRIS quadrotor). A set of experiments are performed to realize the effect
of different operating conditions on the energy consumption of the drone. The IRIS
quad-copter’s weight is about 1.3 kg, equipped with 850 kv motors, and powered with
a battery of 3S lipo 11.1 V 5.5 Ah, and a PX4 autopilot. In one of the experiments,
the drone accelerated and decelerated at full throttle, and the speed and absorbed
current are monitored from the on-board GPS and control board, respectively. The
power consumption is calculated from the Ohm’s law. Fig. 2.7 and Fig. 2.8, show the
power consumed during the maximum acceleration and deceleration, respectively.

In another experiment, the power consumption is calculated in different flight
conditions, such as climbing, hovering (v = 0), horizontal flight, and landing. The
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Fig. 2.9 Power consumption as a function of constant speed. Reproduced from [46].

results are shown in Fig. 2.9. Therefore, the energy consumption in a flight with
constant speed v is as following:

Ev = P(v)
d
v

(2.5)

The consumed energy for climbing and landing from a height of ∆h is computed
as:

Eclimb = Pclimb
∆h

vclimb
(2.6)

Eland = Pland
∆h

vland
(2.7)

And, the consumed energy during hovering in a time interval of [t1, t2] is com-
puted as:

Ehover = Phover(t2 − t1) (2.8)

In the final experiment, the power consumption of drone during the turns is
calculated. Considering the angular rotation speed as ωturn = 2.1 rad/s and the



24 Preliminaries

power consumption in a turn as Pturn = 225 W/s, the energy to cover a turn with ∆θ

angle can be calculated as:

Eturn = Pturn
∆θ

ωturn
(2.9)

2.4.2 Wind Disturbances

Wind is the most significant environmental factor that can affect the UAVs, including
the speed and direction of the wind. Although the wind can incur resistance to the
movement of drones, it can benefit the energy consumption of the drone in some
cases as well. Hence, considering the wind in the energy consumption of the drone
is crucially significant.

There are many path planning methods that consider the energy consumption of
the drone in the path planning [47–50], however they do not consider the effect of
wind in their energy calculation.

In most of the work like in [51–53], the authors usually compensate the wind
in the control loop design of the UAVs to keep the position error of flight path as
minimum as possible with respect to the desired path. However, we are compensating
for the wind disturbances during the path computation, before the flight. This method
helps us to be able to explore the effect of the wind in energy consumption of the
drone. Accordingly, we are able to precisely calculate the energy consumption of
the drone and plan the most appropriate path for it. We calculate the near-optimal
path offline, considering the expected wind. The drone internal flight controller
compensates in real time for the actual wind conditions experienced while following
the path computed according to the expected wind.

In the following section, we describe the way we compensated the wind effect
offline, to consider its effect in the energy consumption of the drone.

Offline Wind Compensation

As we explained before, a lot of different methods have been presented to compensate
for the wind recently, and wind is generally compensated online and in the control
loop design of the drones to keep the minimum deviation from the desired path.
Despite that, we compensate for the wind in our algorithms offline and during the
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path generation. As a result, the wind effect is considered in energy consumption of
the drone. Our path planner considers the wind speed, direction and energy budget
of the UAV and then plans the most suitable path for that specific situation.

Algorithm 3 Offline wind compensation
1: function GROUNDDISTANCE(u,v):
2: return

p
(xu − xv)2 +(yu − yv)2

3: function FLIGHTDISTANCE(u,v):
4: input: vd drone speed
5: input: v⃗w wind speed vector
6: if xv > xu then ◃ θ declares the angle of the drone direction w.r.t x axis
7: θ = arctan(yv − yu)/(xv − xu)
8: else if xv < xu then
9: θ = 180+ arctan(yv − yu)/(xv − xu)

10: else
11: if yv > yu then
12: θ = arctan(yv − yu)/(xv − xu)
13: else
14: θ =−90
15: if vw > 0 then
16: γ =wind_direction −θ ◃ γ represents the angle between drone direction and

wind direction
17: else
18: γ = 180+ wind_direction −θ

19: // solve the system of equations (3.2)-(3.6)
20: vwx = |vw|× cosγ

21: vwy = |vw|× sinγ

22: vdy =−vwy

23: vdx =
q

v2
d − v2

dy
24: vgx = vdx + vwx

25: vgy = vdy + vwy

26: tuv =
p
(xu − xv)2 +(yu − yv)2/

q
v2

gx + v2
gy

27: FLIGHTDISTANCE(u,v) = tuv × vd
28: return tuv × vd

Algorithm 3 represents the function that we will utilize in our offline path planner
algorithms to compensate for the wind.

Considering the wind disturbances and the turning angle in our offline path
planning algorithms enables us to calculate the energy consumption of the drone
very precisely. Consequently, the estimated energy consumption for a mission is
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much closer to the real consumption and leads us to implement our algorithms in
real-world path planners effortlessly (as we will show our implementation in the
following chapters).

2.5 LTE Network for Unmanned Aerial Vehicles

The users of smart phones and Internet of Things (IoT) make the most of using
cellular network coverage which is providing high capacity and extensive area
wireless data services. It is highly interesting to employ cellular networks to provide
support for UAVs enhancing safety in operations, control, and communication quality
of service. Furthermore, cellular networks enable the UAVs to operate beyond visual
range securely. Consequently, utilizing cellular networks attracted the attention of
industry and companies [1], to provide cellular connectivity for UAVs. For instance,
telecommunications leading companies like Qualcomm and AT&T have set up to
develop the connectivity technologies, including optimization of LTE networks and
advancement of 5G technology for drones [2]. The 3rd Generation Partnership
Project (3GPP) is started the study on enhanced LTE support for UAVs in 2017 [3].
Terra Drone global UAV company and KDDI telecommunications operator jointly
released a “4G LTE control system” that enables the users to control UAVs via 4G
LTE network [54].

2.5.1 Cellular Networks Assisting UAVs

There are several reasons to prove that much more advanced communication is
required for modern UAVs. We announce some of them as following:

• High speed digital data transmission in order to provide a high quality video
streaming and supporting modern autopilots. Data rate requirement for video
streaming defined by 3GPP [1] is up to 50 Mb/s.

• Beyond visual range operations and multi-UAV operations that make the point
to point communication obsolete.

• Providing the required safety and security for the UAVs in operation that
depends on a reliable communication.
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• 3GPP requirements to ensure a proper command and control are data rates up
to 100 kb/s and packet error rate less than 1% [1].

• Robust UAV navigation which makes the traditional UAV navigation (like
Global Positioning System that is vulnarable to satellite signal disturbances as
a result of bad weather conditions or tall buildings blockage) ineffective.

As a result, cellular network technology has the features that are noticed above
in order to provide a proper communication for the low altitude (< 120 m) UAVs.
Some of the strong points of cellular technology are as following:

• The infrastructures are already installed and are ready-to-use. Thus UAVs
can reuse all the cellular antennas which are already deployed all around the
world.

• Seamless handover across the whole network coverage.

• High capacity to support a numerous number of UAVs.

• high potential in developing and setting up new technologies to improve the
performance of the system.

• Very reliable and providing a good quality of service.

• Highly secure communication (for instance, estimating to confront tampering
with communications and eavesdropping).

In the next sections, we investigate the challenges that UAVs are facing in
using the cellular network. Furthermore, we discuss the requirements for UAV
communications and the way cellular networks may provide these requirements.

2.5.2 Challenges in Serving UAVs via LTE Network

Here we notice two of the most important challenges that we are facing in utilizing
the LTE networks to serve the low altitude UAVs [55]. Network coverage is one of
the main challenges. Originally, Cellular networks are designed and optimized for
terrestrial wide-band communication. Therefore, the cellular network antennas are
down tilted in order to prevent energy from propagating into other cells [56]. Since
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Fig. 2.10 Low altitude UAVs connectivity with terrestrial mobile networks.

the antennas are down tilted, it is more probable that the low altitude UAVs be served
by the side lobes of antennas which are farther. In Fig. 2.10, the scenario is shown in
detail. In fact the UAVs are more interested in sky propagation of antennas than the
terrestrial propagation.

Interference is the other main challenge. Since propagation in the sky is more
favorable for the low altitude UAVs, they might produce up-link interference for
the cellular cells in the vicinity and experience down-link interference from the
same cells. Furthermore, by increasing the number of UAVs and consequently
the UAV connections, the up-link interference (if not managed properly) may lead
to performance degradation for the user equipments on the ground. Solving the
interference issues is one of the main tasks of the 3GPP study [57] to improve the
LTE support for the UAVs.

The features of interference and coverage for the cellular connected UAVs are
completely different from terrestrial one. In the next sections we explore the feasibil-
ity and potential enhancements in order to improve the efficiency of the connection
for the low altitude UAVs without effecting the performance of user equipments on
the ground.

2.5.3 Communication Requirements

Cellular network enabled UAVs have considerably different communication and
spectrum requirements comparing with terrestrial cellular communication [58]. The
communication between the UAVs and ground can be classified into two aspects:
command and control (C&C) and payload communication. Command and control
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refers to a safe control and reliable operation of the UAV from the ground control
station side. Some of the C&C messages are as following:

• Remote control

• Status monitoring (velocity, altitude)

• Formation flying

• Regulatory compliance

– Identification

– Path planning and collision avoidance

– Location service

Fulfilling the C&C requirements is very vital for a successful UAV operation.
Thus, stringent requirements are essential and the cellular network must address
these requirements.

C&C Cellular Support

Obviously, the ability to control the vehicle position and orientation is vital for the
UAVs. For non-autonomous UAVs, a pilot controls the vehicle from a remote base
station. For autonomous UAVs, that have a predefined flight plan, the possibility of
interrupting the predefined plan by a pilot and take the control of vehicle in real time
need to be considered for safety.

A reliable communication interface between the pilot and vehicle is needed to
perform these operations. Such interface must fulfill the following requirements:

• Pilot commands to the vehicle and telemetry data to the pilot must be transmit-
ted reliably.

• Real time control of the vehicle requires low latency.

• Serving many UAVs in the same area requires enough capacity.

• Resistance to natural or artificial source interference is necessary.
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• Sufficient coverage for UAV communication.

• Operating safely in case of link failure.

Mobile network and Wi-Fi are the best candidates to fulfill the requirements of
this control interface. We compare both technologies based on the above require-
ments in Table 2.3 [9].

Losing the C&C link may leads to catastrophic consequences. Therefore, C&C
link of UAVs must operate over protected spectrum based on the International Civil
Aviation Organization (ICAO) announcement. Cellular network has such potential
and can provide a reliable C&C for UAVs.

Payload communication such as image, and real-time video streaming requires
much higher data rate comparing to C&C. Full HD video transmission for instance
requires several Mbps. Cellular network has also the potential to recover HD video
as well.

2.5.4 Enhancing the Cellular Network Performance

Originally, cellular network is designed for terrestrial communication. Although
they are already qualified to support the low-altitude UAVs, and since the number
of cellular connected UAVs are increasing, beside focusing on improving the safety
and reliability of UAV missions, the cellular industry has initiated to enhance the
cellular network performance by doing technical improvements in order to provide
better services to UAVs.

In order to enable a productive coexistence between the traditional terrestrial
user equipments and the new aerial vehicles, the following factors must be consid-
ered [58]:

• 3-D coverage: Since UAVs have higher altitude comparing with the conven-
tional users on the ground, the cellular antenna height required to be exceeded.
However, preliminary measurements by Qualcomm have shown that the cur-
rent aerial coverage by side lobes of antennas for low altitude UAVs are
satisfactory. For scenarios that are along fixed aerial corridors (e.g. pipe
checkup), “UAV highway” concept (coverage only along certain fixed aerial
corridors) can be utilized.
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Table 2.3 Comparing mobile network and Wi-Fi technologies, considering control require-
ments fulfillment.

Requirement Mobile Network Wi-Fi
Transmitting data
reliably

Cellular network operates in li-
censed spectrum and resource
allocation is managed. Con-
sequently, it is free from con-
gestion and for special appli-
cations is able to give priority
to resources to improve relia-
bility.

Wi-Fi provides reliable trans-
mission in uncongested spec-
trum, while in congested
and unlicensed spectrum inter-
rupts in data delivery.

Low latency Cellular network can manage
latency by providing quality
of service tools using resource
management algorithms.

Wi-Fi manages latency by
providing quality of service
management tools, but the
achieved latency relies on the
congestion level in the unli-
censed spectrum.

Enough capacity There is a defined capacity for
cellular network in the cov-
ered area.

Wi-Fi capacity is usually lim-
ited due to the interference
from other unlicensed spec-
trum users in the area.

Immune from in-
terference

Mobile network works in li-
censed spectrum and is free of
interference due to the unman-
aged users. However, if com-
munication is degraded due to
the interference, a handover to
another base station solves the
problem.

Multiple users can operate in-
dependently and with mini-
mum interference in identical
spectrum.

Sufficient cover-
age

Cellular network is extendable
to everywhere (within the cov-
ered area of network) by doing
a handover.

The Wi-Fi range is limited.

Safe operation in
failure

If communication to one base
station is lost, a handover to
another base station is possi-
ble.

If the Wi-Fi link is lost,
there is no solution except re-
establishing the connection.
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Table 2.4 3GPP required improvements and solutions to fulfill UAV requirements.

3GPP Release Required improvements and solutions
Release 14 1- Introduction of requirements.

2- 5G requirements defined in high level.
Release 15 1- Agreement to study on UAVs .

2- LTE bearers meet the C&C requirements (latency, through-
put, reliability, etc).
3- LTE bearers meet the payload (e.g. HD video) require-
ments (latency, throughput, reliability).
4- Making sure that UAVs do not interrupt ground LTE users.
5- Meeting regulations for UAV communications.

Release 16 1- Making sure that UAVs can use the LTE positioning tech-
nologies.
2- Making sure that for vehicle-to-vehicle communications,
the proximity services of LTE can be used.
3- Making sure that UAVs identification requirements are
match with the LTE supported identities.

• Unique channel: High altitude of UAVs usually leads to a strong line-of-sight
links between the UAV and base station. This unique channel on one hand
creates strong communication channel between the UAV and base station,
and on the other hand the line-of-sigh links domination cause the inter cell
interference more critical for cellular systems.

• Aerial-ground interference: In down-link communication (base station to
UAV), UAV may receive interference from other base stations due to the line-
of-sight channels. In up-link communication (UAV to base station), UAV may
cause interference to the adjacent non-related base stations.

• Up-link traffic: The original cellular network is designed for dominant down-
link communication. However, the UAV communications with cellular network
requires a higher data rate in up-link (like for video streaming) than the down-
link, which must be considered in new generations.

In Table 2.4, the solutions and developments in order to address the use of LTE
for UAVs in 3GPP releases are shown [59].



Chapter 3

Communication-Aware UAV Path
Planning

In this chapter, we present our novel communication-aware path planning algorithms
which are applicable for UAVs. First, we compare our work with the-state-of-the-art
works, explaining the lacks and shortages of other works, and the advantages of our
work. Then we address the problem of generating the near-optimal path from one
point to another for a UAV and the challenges that we are dealing with. We describe
the model of the flight area that our algorithms are working on it. Moreover, we
describe the drone mobility model, the energy constraints, and the mobility planning
of drone between each two nodes. After that, we introduce our path planning
algorithms which are the variants of classical A* algorithm. The AT-PP algorithm
that maximizes the average throughput along the path and the MT-PP algorithm that
maximizes the minimum throughput along the path subject to the budget of energy.
We explain the algorithms and their performance in detail providing the pseudo-code
of the algorithms. Finally, we investigate the methods to smooth the resulting paths
and introduce our novel path smoothing method called A*IPS.

This chapter has previously been published as: Afshin Mardani, Marcello Chi-
aberge, and Paolo Giaccone. Communication- aware uav path planning. In 2018 6th
IEEE International Conference on Wireless for Space and Extreme Environments
(WiSEE) [60].
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3.1 Related Work

Up to now, various path-planning methods and algorithms for UAVs have been
developed [61], but they are entirely unaware of the cellular network coverage. The
algorithm in [62] is a heuristic search based on A*, which iteratively optimize the
path during the available search time. Lazy Theta*, proposed in [63], is an any-angle
path finding algorithm in which the resulting paths are not constrained to the form of
graph edges and is faster than Theta* algorithm [64]. In [65], a heuristic-based re-
planning algorithm (AD*) is presented that continuously improves its solution while
time allows, and corrects its solution when updated information is received. In [66],
inspiring by A* algorithm and Dubins path, a path planning method to discover the
shortest, flyable and safe path for fixed wing UAVs with obstacle escape is presented.
In [67], the authors discussed any-angle path planning algorithms that are variants
of classical A* algorithm. In their method, through propagating information along
grid edges, short paths are found without constraining the resulting paths to grid
edges. In [68], a path planning method to create trajectories for aerial vehicles in a
two dimensional space is proposed in order to avoid risky areas, conflict, and no-fly
zones. In sampling based algorithms like Rapidly-exploring Random Trees (RRT)
that is introduced in [24], the algorithm is able to find a sub-optimal path in a high
dimensional space while some pre-defined information about the robot operating
space is required. The RRT has no optimization process and re-planning procedure.
Therefore, an improved version RRT* [69] is proposed to bridge this gap.

Recently, a lot of research has been done to optimize the path for UAV commu-
nication systems for different setups. In [70], the authors used an aerial wireless
coverage 3-D modeling in mission planning of aerial vehicles for monitoring and
surveillance of vast areas like long linear utility infrastructures. In [71], the flying
trajectory of UAV is optimized for up-link communications. In [72], the authors used
a UAV-based mobile relay in order to send data to different group of users. They
optimized the data volume and relay trajectory based on the visiting sequence to
the different group of users. In [73] and [74], the UAVs’ movement is optimized to
improve the network connection of a UAV assisted ad-hoc network. In [75], a multi-
antenna UAV flying over a collection of single-antenna mobile ground nodes for
providing relay services for mobile ad hoc networks is considered. They optimized
the heading of UAV in order to optimize the up-link communication performance.
In [76], they investigated a communication system with multi-antenna UAVs as
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relays between ground-based terminals and a network base station. They developed a
closed form expression to optimize the UAV heading based on knowledge of the user
terminal’s future position, in order to maximize the uplink data rate. They attempted
to keep the rate of each individual link above a certain threshold. In [77], the authors
employed the UAVs as aerial base stations as a promising solution to enhance the
performance of existing cellular systems. They exploit the UAV’s high mobility to
serve a group of users on the ground in order to maximize the minimum average rate
among all the users, by jointly optimizing the trajectory of the UAVs, controlling
the transmit power, and scheduling the user association and communication. In [78],
a UAV-enabled orthogonal frequency division multiple access (OFDMA) system
is studied, where the UAV is dispatched as a mobile base station to serve a group
of users on the ground. The minimum average throughput of all ground users is
maximized while meeting a given set of constraints, by jointly optimizing the UAV
trajectory and OFDMA resource allocation. In [79], a comprehensive framework for
hyper-dense small-cell networks assisted by caching UAVs is proposed, its feasibility
is analyzed, and the secure transmission is discussed. UAVs are utilized to provide
data traffic to mobile users cooperatively with small-cell base stations, due to their
lower cost and higher mobility. The work in [80] studies a hybrid cellular network
with UAV-aided offloading at the edges of multiple cells, by accounting for the
interference between ground base stations and UAV. The UAV trajectory is selected
to maximize the sum rate of edge users by avoiding the interference, while the rate
requirements of all the users are guaranteed.

However, in none of the above works the energy consumption of the UAVs and
the effect of wind on the energy consumption has been considered.

In general, UAV communication systems may encounter various new chal-
lenges [81]. In fact, the performance of UAV communication networks are highly
confined by on-board energy. Thus, maximizing the information bits while min-
imizing the energy consumption in the same time is of paramount importance.
Furthermore, minimizing the energy consumption of UAV systems regarding the
energy expenditure in propulsion power consumption to support the movements
and maintaining the UAV in the sky, is more important than reducing the energy
consumption in communication circuits and signal transmission.

Moreover, in many researches trajectory optimization has been studied, but not
particularly for communication purposes. Many algorithms have been developed on
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energy-aware UAV path planning. For instance in [46], path optimization problem
is studied considering the energy consumption of UAV, but the communication
performance is not covered. In [82], the task of seeking out the goal while considering
the total energy consumption of UAV to be minimized is studied. This optimization
depends on unknown disturbances, like wind. In this study, the communication is
neglected as well.

In [83], the authors represented a multi-layer architecture for intelligent naviga-
tion of Remotely Piloted Aircraft Systems (RPAS) in urban environments. In the
path planning layer, the planner computes an optimal way point-based path, then
the on-line planner continuously updates the offline path. Their algorithm searches
for an optimal path that minimizes the cost function. It minimizes the risk-cost, the
estimated energy consumption, and the length of the path. Another example is [84]
which proposes a shortest trajectory planning for UAVs on an embedded GPU. A fast,
energy-efficient global planner for multi-rotor UAVs has been developed supporting
human operator during rescue mission. The planner is suitable for real-time path
re-computation in dynamically varying environments but of small area (no more than
200 m2). The work in [85] proposes a multi-objective path finder that can discover
Pareto-optimal solutions concerning energy consumption and length of the path.
Their solution is on the basis of NAMOA* search algorithm that exploits a monotone
heuristic cost function. Unfortunately, in all of these works the effect of network
coverage is completely neglected.

Several recent works have targeted the path planning for UAVs considering
the energy efficiency and network yield, simultaneously. But the absence of wind
as a crucial factor on the UAV’s energy consumption and trajectory planning is
sensible. In [47], the energy-efficient designs for drone communication is studied,
where a drone is exploited to communicate with the base station. In this work, the
energy efficiency maximization via path optimization is performed. The work in [48]
proposed a computationally efficient suboptimal algorithm that can saves energy by
50 percent, increases network throughput by 15 percent, and extend network lifetime
by 33 percent compared to the-state-of-the-art. In [49], the offline path finding
problem for UAVs is addressed. The authors in this work attempted to discover
paths that meet mission objectives, are safe considering collision and grounding, are
fuel efficient, and satisfy criteria for communication. In [50], they proposed a joint
UAV trajectory and power control scheme that significantly enhances the achievable
rate of UAV communication system comparing to benchmark schemes. Particularly,
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they maximized the average achievable rate from the UAV to the ground receiver
over a finite communication period by jointly optimizing the UAV trajectory and
transmit power allocation. These are subject to maximum speed of UAV, initial/final
locations, and average transmit power constraints. Nevertheless, in all of the above
cited works, the wind effects on the energy consumption is neglected.

A lot of research has been done on following certain trajectories by UAVs under
some circumstances. They mostly investigate the effect of wind on following a
generated path accurately in order to accomplish the assigned tasks. This effect
can be considered in the control loop design of the UAVs to keep the position error
of flight path under a determined error with respect to the desired path. Therefore,
the wind disturbances are not considered in the path generation. The work in [86]
considered the effect of wind that causes the aircraft to drift in a certain direction. A
method is designed based on an accelerated A* algorithm that follows the trajectory
planner to take into account the wind effects. In [87], UAV path following in
cluttered environments under windy conditions in a two dimensional configuration
space is investigated. They designed a novel guidance law with low computational
complexity which allows the UAV to follow the path with minimum deviation.
In [88], the authors presented an algorithm based on the idea of following a vector
field that converges smoothly to the desired path. Their work includes the technique
of dealing with wind disturbances when following a generic sufficiently smooth 2-D
path.

There is not a unique approach to compensate for wind effects in trajectory
planning for UAVs. For instance, in [39], the authors dealt with the wind disturbances
on trajectory planning by iteratively solving a no wind case problem with a moving
virtual target. In most of the work like in [51–53], the authors usually compensate
the wind in the control loop design of the UAVs to keep the position error of flight
path as minimum as possible with respect to the desired path. However, we are
compensating for the wind disturbances during the path computation, before the
flight. This method helps us to be able to explore the effect of the wind in energy
consumption of the drone. Accordingly, we are able to precisely calculate the energy
consumption of the drone and plan the most appropriate path for it. We calculate the
near-optimal path offline, considering the expected wind. The drone internal flight
controller compensates in real time for the actual wind conditions experienced while
following the path computed according to the expected wind.
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3.2 The Path Planning Problem

In this work, the problem of generating the near-optimal path from an initial way-
point to another one in a 2-D space for an autonomous UAV is addressed. We
maximize the quality of the video streaming application during the flight in our
innovative communication-aware approach by considering the accessible energy
on-board and the expected wind conditions. Noteworthily, we compute the trajectory
offline and upload it to the drone flight controller. Then, it follows the offline path
and compensates for the actual disturbances during the flight.

3.2.1 Flight area

We modelled the flight area, as shown in Fig. 3.1, based on a grid graph. Indeed, we
subdivided the cellular coverage area into parts with a regular tessellation and placed
each node at the center of each square. We associated each node with a throughput
value which is an average throughput value experienced within the corresponding
square. An edge connects the nodes corresponding to adjacent squares. In our study,
8-degree grid graph is considered, i.e. eight neighbors for every node. It is notable
that our approach is extendable to any other type of grid graph.

Formally, we define the flight area with an undirected grid graph G = (V,E). We
associate node i ∈V with a physical position (xi,yi) and the throughput bi. bi is the
drone experienced throughput in the area in the proximity of node i when uploading
the streaming data to the cellular network. The physical distance di j is associated
with the edge (i, j) ∈ E connecting nodes i to j.

Fig. 3.1 8-degree grid graph and the corresponding coverage map.
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This work is focusing on the path planning for the UAVs. We are concentrating
on how to design a path for a mission that the drone experience the maximum
throughput while the throughput map is given. Therefore, in this work, the average
throughput experienced in each square is assumed to be known in advance. This
information can be obtained through some coverage maps obtained by means of
on-field measurements or on some channel model applied into the square area.

For the sake of simplicity, obstacles are not considered in the flight area, even
though we can easily extend the methodology to this scenario by removing the
corresponding nodes and edges.

3.2.2 Drone Mobility Model

The drone is assumed to fly at constant air speed vd , and its power consumption is
equal to P. The drone’s total available on-board energy is E0. The required energy
due to traveling from node i to node j is Ei j. The source node is is the node that the
drone departs from as the starting way-point, and the destination node id is the node
that the drone terminates the mission as the destination way-point. A path comprised
of multiple way-points decomposes into several segments, and the algorithm runs
for each segment.

Let P be the set of all possible loop-less paths connecting is to id and let p ∈ P

be a generic path. The path planning aim is finding a path p ∈ P that connects
is to id such that maximizing the communication performance, contingent on the
following amount of energy:

∑
(i, j)∈p

Ei j ≤ E0 (3.1)

3.2.3 Mobility Planning Between Two Nodes

Considering the problem in which the drone needs to move from way-point i to j.
Let vdx be the drone air speed, along the x-axis and vdy be the drone air speed, along
the y-axis. Let vgx and vgy be the drone ground speed, along the x-axis and y-axis,
respectively. Let ti j be the flight time from i to j. The wind speed is assumed to be
constant and its speed along the two axes are vwx and vwy.
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Table 3.1 Variable definitions.

Parameter Description Unit
bi Cellular network throughput at node i bit/s
di j Physical distance m
Ei j Energy consumed between two nodes J
E0 Total energy of UAV J
ti j Time of flight s
P Power consumption W
vd Air speed of UAV m/s
vg Ground speed of UAV m/s
vw Wind speed m/s

Now the following system of equations can be written:

vgx = vdx + vwx (3.2)

vgy = vdy + vwy (3.3)

x j − xi = vgx · ti j (3.4)

y j − yi = vgy · ti j (3.5)

v2
dx + v2

dy = v2
d (3.6)

where the effect of wind and the actual ground speed are related by (3.2) and (3.3); the
traveled physical distance is related to the ground speed by (3.4) and (3.5); eventually,
the air speed of drone is related to its two components by (3.6). The drone speed and
its flight time are calculable by solving the above equations. Therefore, the flight
distance travelled by the drone is vd · ti j, and the energy consumption between node i
and j is:

Ei j = P · ti j (3.7)

The ground distance from node i to j is equal to the Euclidean distance between
them. The total transferred data along the path from node i to j is bi · ti j. Table 3.1
contains the introduced parameters and their descriptions altogether.

Considering the energy model employed in [46], the energy consumption of
the drone depends on different operating conditions, such as speed, horizontal
and vertical acceleration, and turning angle. We do not consider the consumed
energy in climbing and descending, since it is common in all path plannings and
does not affect the path. Moreover, we do not have any hovering period in our
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applications. Therefore, we consider the energy consumption during the rotations
based on the work in [46]. The energy required to cover all the n turns (with angles
θk,k ∈ {1,2, ...,n}) included in the path is computed as:

Eturns =
n

∑
k=1

Pturn
θk

ωturn
(3.8)

where ωturn represents the angular rotation speed, Pturn represents the power con-
sumed during the rotations. Therefore the total consumed energy is computed
considering also all the energy spent for all the turns along the path:

Etot = Eisid +Eturns (3.9)

3.3 Near-Optimal Communication-aware Path Plan-
ning

Our propounded approaches approximate the optimal path founded on the classical
A* search algorithm for path planning, adopted in many contexts as robotics and
video games. A* was designed for finding the shortest (or approximately shortest)
path in a much shorter computation time than canonical Dijkstra’s algorithm, by
considering a smaller search subspace. Actually, A* employs a cost function which
is the summation of two functions. Function g (in common with Dijkstra’s algorithm)
represents the cost of the path from the source to the current node, and function h is
a user provided heuristic function that estimates the cost of the path from the current
node to the goal. Computation time and optimality is conditional on the choice of
heuristic function. Particularly, if the estimated cost by the heuristic function is equal
to the real cost, the algorithm only expands the nodes on the least cost path from the
start to the goal.

3.3.1 Path Planning Algorithms

In this section, we present our path planning algorithms as variants of the A* algo-
rithm.
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Algorithm 4 Average-Throughput Path Planning (AT-PP)
1: function AT-PP(N ,{bv}v∈N ,S,D,P,vd ,E0,β )
2: for each vertex v ∈ N do ◃ Initialization, for each vertex
3: path_bw[v] = -1 ◃ Throughput from S to v
4: acc_path_bw[v] = -1 ◃ Cumulative throughput from S to v
5: parent[v] = -1 ◃ Parent of node v
6: ground_path_distance[v] = ∞ ◃ Ground distance from S to v
7: flight_path_distance[v] = ∞ ◃ Flight distance from S to v
8: path_hops[v] = -1 ◃ Number of nodes from S to v
9: path_time[v] = -1 ◃ Flight time from S to v

10: path_energy[v] = ∞ ◃ Energy from S to v
11: path_cost[v] = ∞ ◃ Cost based on A*
12: path_bw[S] = acc_path_bw[S] = bS ◃ Setting the values for S
13: parent[S] = S
14: ground_path_distance[S] = flight_path_distance[S] = path_hops[S] = 0
15: path_time[S] = path_energy[S] = 0
16: path_cost[S] = GROUNDDISTANCE(S,D)
17: U = N \{S} ◃ Unvisited nodes
18: F = {S} ◃ Frontier nodes
19: V = /0 ◃ Visited nodes
20: while F is not empty do ◃ Visit all the frontier nodes
21: u = argminv∈F {path_cost[v]} ◃ Find the min cost node in F
22: move u from F to V
23: if path_energy[u]> E0 then ◃ Check the required energy to reach u
24: continue ◃ If greater than E0, consider a new node in F

25: if u = D then ◃ Check if arrived to destination
26: return ◃ End. Return the whole state, from line 4 to 11
27: for each neighbor v /∈ V of u do◃ Check all the neighbors of u that are in U or

F
28: if v ∈ U then
29: move v from U to F ◃ Move v to the frontier, if is not there
30: bw = (acc_path_bw[u]+bv) / (path_hops[u]+1) ◃ Average throughput along

the path
31: path_bw[v] = bw
32: acc_path_bw[v] = acc_path_bw[u] + bv

33: parent[v] = u
34: ground_path_distance[v] = ground_path_distance[u] + GROUNDDIS-

TANCE(u,v)
35: flight_path_distance[v] = flight_path_distance[u] + FLIGHTDIS-

TANCE(u,v,vw,wdir)
36: path_hops[v] = path_hops[u] + 1
37: path_time[v]=path_time[u]+FLIGHTDISTANCE(u,v,vw,wdir)/vd
38: path_energy[v] = path_energy[u] + P× tuv

39: path_cost[v]=(flight_path_distance[u]+FLIGHTDISTANCE (u,v,vw,wdir)) +
FLIGHTDISTANCE(v,D,vw,wdir) + β/path_bw[v] ◃ Main cost function

40: return error - unreachable destination
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AT-PP Algorithm

This algorithm is a modified version of A* on grids. We provided the pseudo-code
of the algorithm in the Algorithm 4. For the sake of readability, degenerate cases are
neglected. In this algorithm the average throughput along the path is maximized, as:

max
p∈P

∑
(i, j)∈p

bi

|p|
(3.10)

contingent on the budget of energy. Accordingly, we modified the cost function
of A* as is shown in ln. 39. Our cost function combines the estimated distance to
the final destination D and the inverse of the average throughput (“path_bw”) up to
some node. Therefore, by increasing the average throughput, an average level of
communication QoS is guaranteed.

AT-PP algorithm maintains several values for every vertex v (ln. 3-11):

• path_bw(v) is the throughput from the start node to node v found so far. It is
used in the cost estimation of node v in the cost function.

• acc_path_bw(v) is the cumulative throughput from the start node to node v,
and it is utilized for average throughput calculation.

• parent(v) allows to retrieve the resulting path when the algorithm terminates.

• ground_path_distance(v) contains the ground distance from the start node to
node v.

• flight_path_distance(v) contains the flight distance from the start node to node
v considering the effect of wind. This value is used in the estimate of the cost
of node v in the cost function.

• path_hops(v) contains the number of nodes from start node to node v.

• path_time(v) is the flight time from the start node to node v, considering the
wind.

• path_energy(v) is the flight energy consumption from the start node to node v,
considering the wind.

• path_cost(v) is the cost of the path from start node to node v.
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As in usual Dijkstra and A*, AT-PP algorithm creates three sets of nodes. The
frontier nodes (F ) are stored in a priority queue and the visit procedure expands
from them. The visited nodes (V ) are the nodes that have been already visited and
will not be visited anymore. The unvisited nodes (U ) are the remaining nodes, i.e.
not frontier nodes and not yet visited. As long as the frontier nodes list is not empty
(ln. 20) (if it is empty, it announces that the destination is unreachable (ln. 40)), the
algorithm selects the node with minimum path cost (ln. 21) from the frontier nodes
as the current visiting node. First, it moves the current visiting node from frontier
nodes to visited nodes (ln. 22), then it checks the required energy to reach the current
visiting node (ln. 23). In case of exceeding the energy budget, the algorithm fetches a
new node from the frontier nodes (ln. 22). Otherwise, in the next step, it checks if the
current visiting node is the destination or not (ln. 25). If yes, the algorithm extracts
the obtained path and terminates. Otherwise, it updates all the neighbors of the
current visiting node which are not already visited (ln. 27). It checks each neighbor
if it is in frontier nodes or not (ln. 28). If that neighbor is not included in frontier
nodes, it will be moved there (ln. 29), and all the values will be updated (ln. 31-38).
In this algorithm, throughput is the average along the path (ln. 30). Finally, the path
cost will be updated in (ln. 39). This procedure continues until the algorithm reaches
to the destination.

The fundamental difference in our algorithm from A* is that our algorithm does
not examine whether the value of the g function of visiting node plus the length of
the straight line from the visiting node to the next neighbor node is smaller than
the value of the g function of the next neighbor node. In our algorithm, distance is
considered in the cost function plus the inverse of the bandwidth of the next neighbor.
Afterwards, the neighbor of the visiting node with minimum cost will be sent to the
frontier nodes list of the algorithm. Therefore the node with minimum cost from the
frontier nodes list will be the next visiting node. Then, the algorithm searches for the
path with minimum cost. Consequently, both the throughput and the distance are
optimized in the resulting path.

In the cost function, the bandwidth is weighted by a factor β . This coefficient is
tuned to be a comparable value with the other part of the cost function. It will be
shown in Chapter 5, Sec. 5.3, β is numerically tuned to maximize the throughput in
different scenarios for a specific coverage map.
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The available on-board energy E0 is taken into account by pruning the visit as
long as the energy consumption overshoots E0 (see ln. 23). Notably, it is probable
not to find any path due to the incompatibility of the energy consumption and E0

(see ln. 40).

MT-PP Algorithm

In this algorithm the minimum throughput along the path is maximized, contingent
on the budget of energy. We modified the cost function of A* and defined the
worst-case throughput cost function for the algorithm as following:

max
p∈P

min
(i, j)∈p

bi (3.11)

Therefore, by keeping the throughput above a minimum level, a minimum level
of communication QoS is guaranteed.

We provided the pseudo-code of the algorithm in the Algorithm 5. This is an
iterative algorithm and functions as follows, mimicking a dichotomic search. At
the beginning, the algorithm finds the shortest path while the minimum throughput
is maximized. In this situation, if the calculated energy consumption is less than
the available on-board energy, the resulting path is the best and final path. On the
contrary, if the calculated energy consumption for the resulting path is greater than
the energy budget of UAV, an initial threshold value th is assumed by the algorithm.
th could be set equal to the average throughput achievable in the area. In this part,
the algorithm maintains three variables: throughput level (blevel), which contains the
highest throughput value that the algorithm could obtain in the first stage for the
resulting path, throughput step (bstep), which contains the decrement value in each
iteration, and throughput resolution (bres), which determines the final resolution for
the solution. At the beginning, bstep is set equal to half of the maximum achievable
throughput in the coverage map. On the basis of a variant of AT-PP, the algorithm
selects the path such that the throughput at some visited node is computed as the
minimum along the path (unalike to ln. 30 of AT-PP).

On the termination of each iteration, th increases in order to maximize the
minimum throughput. The algorithm may not find a path with a minimum throughput
≥ th (possibly due to the energy restriction), then it decreases th in the following
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Algorithm 5 Minimum-Throughput Path Planning (MT-PP)
1: function DRONEPATHPLANMT-PP()
2: (Graph,S,D,P,bn,vd ,(xn,yn),E0,β ,N ,bstep,bres,blevel ):
3: PATHMT-PP() ◃ Compute the path
4: while bstep >= bres do ◃ As steps are greater than resolution
5: if path_energy > E0 then
6: bstep = bstep/2 ◃ Each step will be half of previous step
7: blevel = blevel −bstep ◃ Throughput decreases by one step
8: if blevel < bres then
9: blevel = min{bn} ◃ Throughput is minimum
10: PATHMT-PP()
11: else if path_energy < E0 and blevel < min{bS,bD} then
12: bstep = bstep/2
13: blevel = blevel + bstep ◃ Throughput increases by one step
14: PATHMT-PP()
15: else
16: break
17: function PATHMT-PP()
18: for each vertex v ∈ N do ◃ Initialization, for each vertex
19: path_bw[v] = -1 ◃ Throughput from S to v
20: acc_path_bw[v] = -1 ◃ Cumulative throughput from S to v
21: parent[v] = -1 ◃ Parent of node v
22: ground_path_distance[v] = ∞ ◃ Ground distance from S to v
23: flight_path_distance[v] = ∞ ◃ Flight distance from S to v
24: path_hops[v] = -1 ◃ Number of nodes from S to v
25: path_time[v] = -1 ◃ Flight time from S to v
26: path_energy[v] = ∞ ◃ Energy from S to v
27: path_cost[v] = ∞ ◃ Cost based on A*
28: path_bw[S] = acc_path_bw[S] = bS ◃ Setting the values for S
29: parent[S] = S
30: ground_path_distance[S] = flight_path_distance[S] = path_hops[S] = 0
31: path_time[S] = path_energy[S] = 0
32: path_cost[S] = GROUNDDISTANCE(S,D)
33: U = N \{S} ◃ Unvisited nodes
34: F = {S} ◃ Frontier nodes
35: V = /0 ◃ Visited nodes
36: // Visit all the frontier nodes
37: while F is not empty do
38: u = argminv∈F {path_cost[v]} ◃ find the min cost node in F
39: move u from F to V
40: if u = D then ◃ Check if arrived to D
41: return All parameters from line 4 to 11
42: // Check all neighbors
43: for each neighbor v /∈ V of u do ◃ Check all the neighbors of u that belongs to U or F
44: if v ∈ U then
45: move v from U to F ◃ Enter v to the frontier, if its not
46: if (flight_path_distance[u] + FLIGHTDISTANCE(u,v) < flight_path_distance[v]) then ◃ Update, in case of

better flight distance
47: bw = min{path_bw[u],bv} ◃ Throughput is min along the path
48: path_bw[v] = bw
49: parent[v] = u
50: ground_path_distance[v] = ground_path_distance[u] + GROUNDDISTANCE(u,v)
51: flight_path_distance[v] = flight_path_distance[u] + FLIGHTDISTANCE(u,v)
52: path_time[v] = path_time[u] + FLIGHTDISTANCE(u,v)/vd
53: path_energy[v] = path_energy[u] + P× tuv
54: path_cost[v] = (flight_path_distance[u] + FLIGHTDISTANCE (u,v)) + FLIGHTDISTANCE(v,D) +

β/path_bw[v] ◃ Cost function
55: return error - unreachable destination
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iteration. A dichotomic search is adopted in order to optimize the selection procedure
of th values. The process terminates as long as the algorithm achieves a given
precision on the minimum throughput along the path.

The obtained path approximates the one with the maximum throughput possible
compatible with the available energy. However, when the resulting path corresponds
to the minimum distance path, and the calculated energy consumption is still not
compatible with the available energy, then there does not exist any path for this
mission that meets the energy budget.

3.3.2 Path Smoothing

The MT-PP and AT-PP resulting paths are constrained to grid edges since their
headings are actually restricted to be along the edges of the grid graph. Consequently,
the resulting paths are longer than the shortest path on the free 2-D space. This
shortcoming led to smooth the resulting paths, by employing a post-smoothing
process leading to an increase in the run-time.

Post-Smoothing method

We take into account the A* post-smoothing algorithm (A*PS) presented in [89].
The smoothing procedure starts from the first node of the obtained path by A*. It
checks if the current node has line of sight to the successor of its successor in the
path or not. We say node u and u′ have line-of-sight (LOS) if and only if the straight
line from u to u′ neither passes through the low throughput (less than a specified
minimum network throughput) nodes nor passes between low throughput nodes that
share an edge. If so, the algorithm removes the intermediate node and connects the
current node to the successor of its successor. A*PS continues this procedure until
the current node does not have a LOS to the successor of its successor. The resulting
paths of A*PS are usually shorter than A* on grids. In this method, implemented
in our approach, the well-know line-drawing algorithm of Bresenham in computer
graphics [90] is used to check LOS between two nodes [91]. Notably, we tailored
specifically the Grid function to consider only nodes with a throughput larger than a
minimum specified value.



48 Communication-Aware UAV Path Planning

Fig. 3.2 The difference between A*IPS vs A*PS shown in an example.

Improved Post-Smoothing method

In this section, we introduce an innovative improved post-smoothing process (A*IPS).
The resulting paths of our method are shorter than A*PS in some cases. A*IPS
functions similar to A*PS, but the difference arises when the A*PS, during the graph
visit, is checking the LOS from the visiting node to the successor of its successor. At
this stage, A*IPS in parallel, is additionally checking the LOS from the successor of
its successor to the goal node. A*IPS terminates the whole process as long as the
LOS is discovered to the goal and the shortest path is achieved. In Fig. 3.2, we show
an example to be more clear about the process. If we consider the point A as the
starting point, the A*PS checks the LOS from point A, node by node, towards the
goal. Since A*PS has no LOS (observing from point A) to any node located between
point C and D, the process ends in point C and then starts over from point C to the
goal. However, A*IPS is checking the LOS from both the starting point A and its
following node to the goal simultaneously. As a result, A*IPS detects the LOS from
point B to the goal and ends the process immediately. Notice that in this work, LOS
is defined in terms of throughput values; we consider two points in LOS if all the
closest nodes in the direct path among them possess throughput values of greater or
equal to the current value.

In our algorithms, the post-smoothing process executes after finding the path in
each iteration, enabling us to calculate the real energy consumption after smoothing
(making the path shorter) and also considering the final turning angles of the path in
calculating the energy consumption.
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It will be shown in Chapter 5, Sec. 5.3, that the A*IPS resulting paths are shorter
or equal to the A*PS, with a possible reduction in computation time.



Chapter 4

Algorithm Integration into the
QGround Control (QGC) Path
Planner

In this chapter we show how our approach can be utilized in practice to plan an
optimal path for a drone in the real-world situations. First we introduce the MAVLink
which is a telecommunication protocol designed for uncrewed vehicles. Some of the
key features like efficiency, the ability to support numerous programming languages,
and reliability that have made the MAVLink protocol very popular are noticed.
Furthermore, we analyze the MAVLink messages in more details. The message
structure and fields are investigated precisely and the application of each field is
described. Then, we look into one of the most powerful open-source control stations,
called QGroundControl, and its communication with the auto pilot. We show the
high level data flow between the control station and the UAV. We investigate some
specific and important mission commands that are exploited by the control station
to communicate with the vehicles and were useful in our work. Moreover, we
demonstrate the communication sequence of uploading a mission to a vehicle in a
diagram with great detail. After that, we introduce our designed proxy in order to
monitor the data which are passing between the control station and the vehicle and
we study our proposed architecture. We explain in what way and when the proxy
acts transparently or modifies the messages. The message flow among the control
station, the proxy, and the vehicle is analyzed particularly. Finally, we validate our
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approach by showing the resulting path which is different from the original path and
passes through the original way-points and high throughput regions.

This chapter has previously been published as: Afshin Mardani, Marcello Chi-
aberge, and Paolo Giaccone. Communication-aware uav path planning. In 2019
IEEE Access journal.

4.1 MAVLink Protocol

MAVLink (Micro Air Vehicle Link) is a binary telemetry communication protocol
which is designed for systems with limited resources, and links with constrained
bandwidth, in order to communicate with uncrewed vehicles [92]. MAVLink is devel-
oped in two versions: version 1.0 and version 2.0, while version 2.0 implementations
can parse and send version 1.0 packets.

4.1.1 MAVLink features

Some of the key features that have made the MAVLink protocol very popular to
serve as inter-operable interface between various manufacturers components, and to
be deployed in many products, are as following:

• MAVLink is highly efficient. Since it requires no redundant framing (MAVLink
v1.0 has 8 bytes of overhead and MAVLink v2.0 has 14 overhead bytes ), it is
very suitable for the applications that lack a wide communication band-width.

• MAVLink is reliable enough. MAVLink is field-proven since it has been
utilized from 2009 for communication between various vehicles and base
stations, and over various challenging communicating channels with high
latency and noise. Moreover, it has methods for packet loss and packet
authentication.

• It supports many programming languages like C, C++, Python, Java, and
operates on various operating systems such as Linux, Windows, and MacOS.
Furthermore, 255 systems (e.g. vehicles, base stations) can work simultane-
ously on the network. It also allows on-board (e.g. Auto pilot and camera) and
off-board (e.g. GCS and drone) communications.
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Fig. 4.1 Data structure of MAVLink messages.

4.1.2 MAVLink message

MUVLink messages are very lightweight and pursue a mixed publish-subscribe and
point to point design pattern. Data streams like telemetry that usually there is not a
unique recipient for them, are transmitted in a multi-cast way whereas the system
configuration data that require to be delivered assuredly, are sent point to point with
re-transmission. A large set of messages are defined by MAVLink protocol and
can be find in XML files. The message set that can be implemented by most of the
autopilots and ground control stations is defined in common.xml. All the standard
definitions by the MAVLink project exist in this file.

Message Structure

Each MAVLink packet frame has a length of 8 to 263 bytes [93], with the frame
structure shown in Fig. 4.1.

System ID (SYS) and component ID (CMP) fields are filled by the sender to
inform the receiver about its identity. Each vehicle has a unique system ID. Vehicles
usually use "1" system ID and base stations use "255". The sub-devices that are
in the same system, use the same system ID and different component ID. Message
(MSG) determines the type of the message (e.g. message ID of "HEARTBEAT" is
"0"). Payload holds the actual data to be transmitted. Payload length (LEN) indicates
the length of the payload. Packet sequence (SEQ) indicates the sequence number of
each message that will be counted by each component allowing to detect the packet
loss. Finally, packet start (STX) indicates the start of a new message.
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Fig. 4.2 QGC flight map display.

4.2 QGC Communication with Auto Pilot

4.2.1 QGroundControl Control Station

QGround Control (QGC) control station [4] is a very powerful open-source control
station for UAVs that provides full flight control and mission planning for all vehicles
which are MAVLink enabled, and vehicle setup for UAVs which are powered by
PX4 and ArduPilot autopilots. It provides a straightforward and top quality feature
support for the users. Fig. 4.2 shows the flight map display of the QGC that indicates
the vehicle position, way-points, flight path, and vehicle instruments. Some of the
QGC key features are as following:

• Providing a full configuration and setup for vehicles which are powered by
ArduPilot and PX4 Pro autopilots.

• Providing flight support for all the vehicles that are powered by MAVLink
protocol communicating autopilots, including PX4 and ArduPilot.

• Mission planning for autonomous flights.

• Flight map display.
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Fig. 4.3 High level data flow between QGC and UAV.

• Video streaming.

• Supporting multiple vehicle management.

• Supporting all major operating platforms, including Windows, OS X, Linux,
iOS, and Android.

4.2.2 Mission Commands

The MAVLink protocol provides lots of command types that are supported on each
of the vehicle types to communicate with the autopilot [93]. There are different types
of commands that we categorize them in three main types as following:

• Navigation commands which are utilized to control the movement of the
vehicle, such as takeoff and landing.

• Do commands that do not affect the movement of the vehicle and are utilized
for auxiliary functions, such as camera settings.

• Condition commands that delay Do command until a condition is met, such as
reaching a specific altitude.

During a mission, only one "Navigation" command can be run with one of the
other two types of commands in the same time.
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4.2.3 Message Flow

Fig. 4.3 is showing the high level data flow between the QGC and drone [93]. As
long as the connection is established between the QGC and drone, they both send a
"HEARTBEAT" message at 1 Hz to each other. In this way, they are informing each
other that they are alive and respond. The QGC requests the data it needs by sending
messages of type "REQUEST_DATA_STREAM" or "COMMAND_LONG" to the
drone. The drone, depending on the type of request, answers to the requests of QGC
by sending the requested data or an acknowledgement. We list a set of important
messages that we used in our work below [92]:

• HEARTBEAT: This is the most important message between QGC and drone.
They both keep sending this message to each other to make sure both are in
sync and respond.

• REQUEST_DATA_STREAM: This message is sent when the target requests
for data stream. This message includes the ID of the requested data stream
and the requested message rate.

• COMMAND_LONG: This command is used by the QGC and it sends a
command with up to seven parameters to the target vehicle. It includes the
target system ID and the ID of the requested command that specifies the type
of command such as arm/disarm.

• MISSION_REQUEST_LIST: This message is to request for the list of all
mission items by the vehicle to initiate mission download.

• MISSION_COUNT: This message is to report the vehicle about the number
of mission items. This is used to initiate mission upload, or in the response of
the requested list when downloading a mission.

• MISSION_REQUEST: This message is to request for the mission items by
the vehicle from the QGC. It asks for each item with the sequence number and
the answer to this message is a MISSION_ITEM.

• MISSION_ITEM: This message encodes a mission item. It contains the
positional information x,y, and z in float parameters and emitted in the response
of mission request message.
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Fig. 4.4 The communication sequence of QGC and UAV when uploading a mission to the
UAV.

Now in the following diagram, we can show the communication sequence to
upload a mission to a vehicle (assuming that all the operations are successful). First
of all, the QGC sends the MISSION_COUNT to the vehicle that includes the number
of mission items. The vehicle receives the message and prepares to upload the
items. Next, the vehicle responds to the QGC by sending the MISSION_REQUEST
message, asking for the first mission item with seq = 1. After that, the QGC responds
to the vehicle by sending the first mission item. This cycle repeats until all the mission
items are uploaded. When the last mission item received by the vehicle, it responds to
the QGC by sending a MISSION_ACK message and the operation is accomplished.
It is notable that the QGC sets a timeout after each message and re-send the message
if it receives no response from the vehicle. Moreover, the vehicle repeats its request
if the sequences are mismatched.

4.3 Setting a Proxy Between QGC and Auto Pilot

In section 4.4, it will be shown that how we integrate our algorithm in QGC path
planner. Earlier in this section, we explain the architecture and performance of the
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Fig. 4.5 The architecture of the designed proxy.

designed proxy. Furthermore, we show the message flow of the new architecture and
describe it in details.

4.3.1 Architecture

For the purpose of integrating our algorithms in the path planner, we need the
permission to modify the mission way-points which are planned by the QGC and
then upload the new way-points to the vehicle. Towards that end, firstly we require to
monitor the data which are passing between the QGC and the vehicle. Therefore, we
designed a transparent proxy that sits between the QGC and the vehicle, and redirects
the MAVLink messages without any modification. Fig. 4.5 shows the architecture
of the designed proxy. This proxy is transparent and acts as intermediary without
modifying any data.

In order to implement the proxy, we used the DroneKit-Python [94]. The
DroneKit API helps the developers to create powerful applications that commu-
nicate with vehicles over MAVLink protocol. The DroneKit-Python is the python
language implementation of the DroneKit. It provides the users accessing to the
vehicle’s telemetry, parameter information, and vehicle’s state. It enables mission
management and direct control of vehicle operations and movements. DroneKit-
Python can be used on an on-board companion computer and communicate with the
autopilot using a low latency link, or can be used for ground station applications
(like QGC) communicating with the vehicle using a higher latency RF-link.

We managed to forward the MAVLink messages coming from the UAV through
the DroneKit-Python to QGC using TCP connections in both sides. We used the
<MAVConnection.pipe()> method to execute the forwarding function. The code is
already present in DroneKit [95] (look into mavlink.py file). The code starts a listener
on TCP port 5762 to the vehicle and establish a connection on TCP port 5760 to the
QGC. The link configuration of QGC in order to connect with the proxy running
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Fig. 4.6 The QGC connection configuration.

DroneKit is shown in Fig. 4.6. Comm Links allows us to create communication links
manually and connect to them.

Message Modification

Up to now, the proxy simply forwards the messages coming from each side to the
other side. As we described before, we need to modify the path between each two
user-defined way-points in QGC by adding a number of new way-points. The new
modified path which is planned by our algorithms and is different from the original
straight line between each two way-points, experiences a higher average or minimum
throughput with respect to the straight line that is planned by the QGC. Therefore,
we modified the callback functions which are used to forward the messages from the
vehicle to the target (QGC) and from the target to the vehicle. The callback functions
are inside the pipe function (see mavlink.py file) [95]. After the modification, all the
messages pass through the proxy unchanged except the "MISSION_ITEM"s. The
proxy blocks all the mission items coming from the QGC and sends them to our
algorithms for modification. Then, the proxy forwards the new modified way-points
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Fig. 4.7 The communication sequence of QGC and UAV in presence of the proxy when
uploading a mission to the UAV.

(including the previous original way-points) which are planned by our algorithm, to
the vehicle to carry out the mission. In case of mission upload, the proxy acts no
more transparently.

4.3.2 Message Flow

In the diagram in Fig. 4.7, we show the detailed communication sequence to upload
a mission to a vehicle while the proxy is set between the QGC and the vehicle
(assuming that all the operations are successful). First of all, the QGC sends the
MISSION_COUNT (includes the number of mission items) to the vehicle. Since the
messages are related to the mission way-points, the proxy acts as a UAV and instead
of forwarding the message to the UAV, it receives the message and responds to the
QGC with a MISSION_REQUEST message, asking for the first mission item with
seq = 1. After that, the QGC responds to the fake vehicle (the proxy) by sending
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the first mission item. This cycle repeats until all the mission items are uploaded
to the proxy. When the last mission item received by the proxy, it responds to the
QGC by sending a MISSION_ACK message and the operation is accomplished.
At this moment, the proxy sends the original MISSION_ITEMs, that are defined
by the user from the QGC side, to our algorithms and waits for the new planned
way-points from the algorithms. As long as the path computation is terminated, the
new way-points are ready to be sent to the vehicle. Now, the proxy changes its role
and sends a MISSION_COUNT message to the vehicle acting as QGC. The real
vehicle responds to the fake QGC (the proxy) by sending a MESSAGE_REQUEST
message, asking for the first mission item. This cycle repeats until all the mission
items are uploaded to the vehicle and the vehicle terminates the process by sending a
MISSION_ACK to the proxy. Accordingly, the new uploaded path experiences a
better network coverage in terms of average or minimum throughput with respect to
the shortest path.

4.4 Algorithm Integration into the QGroundControl
Path Planner

Our approach can be utilized in practice to plan an optimal path for a drone in the
real-world situations. As validation, we integrated our algorithms in a popular, open-
source, offline path planner like QGroundControl (QGC) station [4]. To achieve a
seamless integration, we designed a proxy between the QGC and the autopilot. All
the data sending from the QGC towards the drone and sending from the drone to the
QGC, are passing through the proxy. From the point of view of QGC, the proxy acts
as a standard drone; from the point of view of the drone, the proxy acts as QGC. This
allows to achieve a transparent behavior, which does not require any modification in
QGC and the drone (except for proper configuration settings).

The proxy acts as a server, creating a TCP connection with the QGC, and as a
client, creating another TCP connection with the drone. TCP connection is employed
to provide reliable transport of drone configuration. Fig. 4.8 demonstrates the adopted
architecture.

In a standard situation (when the proxy is not present), once the user is defining
a mission on the QGC, the way-points are transferred to the drone by uploading the
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Fig. 4.8 Proof of concept for the path planner.

mission and the UAV starts the mission as long as a command is received from the
QGC side by the user. In this case, the drone flies between each two way-points
using the shortest path (a direct path). Now, by considering the proxy between the
QGC and the autopilot, all the data sending and receiving from both sides are passing
through the proxy. The proxy relays transparently all the data through, except if the
data type is MISSION_ITEM. Each MISSION_ITEM contains the GPS coordinates
of a way-point and all the other information (e.g., system ID) that are needed by the
drone. These data are packed based on the MAVLINK telemetry protocol. Therefore,
in the case that data are not way-points or not related to the start or end of way-point
transmission, the proxy acts transparently and passes the data equivalent to a pipe.
But, if the data are involved in defining way-points, the proxy acts double-faced.
Whenever QGC is sending way-points, the proxy acts as the drone. In this case, it
sends requests to the QGC for the way-points and receives them one by one and
sends the acknowledgment to the QGC when all of the way-points are received.
Then, the proxy feeds the original way-points to our algorithms and a new path is
planned between each two original way-points. The new path is typically different
from the default path (shortest path) and is designed according to our proposed
network coverage aware approach.
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Fig. 4.9 The GUI of QGroundControl integrated with our approach. The orange path is the
original path, whereas the red one is the one computed by MT-PP and uploaded to the drone.

As shown in Fig. 4.8, the coverage map is fed to the proxy. In the event that
the proxy requires to send the new way-points to the drone, it acts as QGC. In this
case, the proxy asks for sending the new way-points and answers to the requests
of the drone for the way-points. When the transmission is finished, it receives the
acknowledgement from the drone. Now, the drone receives a path which is passing by
all the defined way-points and the throughput of the path is maximized considering
the on-board energy budget and the effect of wind. Fig. 4.9 demonstrates the resulting
path which is planned by MT-PP algorithm. The orange path is the default path that
the drone passes through, in the usual direct connection (i.e., absence of the proxy)
with the QGC. The red path is the one which designed by MT-PP and passes through
the original way-points and high throughput regions. Depending on the algorithm
(MT-PP or AT-PP), the red path may be different.



Chapter 5

Performance Evaluation

In this chapter, first we introduce the coverage maps, called cone map and valleys
map, that we performed our experiments on them. Then we define the scenarios
which are the selection of various source-destination pairs with the coverage map,
and we considered them to evaluate our algorithms based on them. After that, the
numerical result are presented. We present different comparisons of our results
from our algorithms performing in different scenarios. We compare the average
and minimum throughput obtained by our algorithms in all the defined scenarios in
presence and absence of wind. Moreover, the path length and computation time of our
algorithms are compared with the-state-of-the-art algorithms in all scenarios. Finally,
a comparison in energy consumption of our algorithms with the-state-of-the-art
algorithms is performed.

5.1 Scenarios

Fig. 5.1 reports the two coverage maps on a 4 km×4 km area that we tested our
algorithms on them. In the first map denoted as “cone” (left side of Fig. 5.1),
maximum throughput shows in the center, then linearly it decreases to a minimum
value, and finally it remains constant in the whole border with a higher value than
the minimum. The performance of greedy approaches may be impaired by such
discontinuity in the coverage (as the one considered in our work). Therefore, we can
consider the cone map as a simple worst-case coverage scenario. In the second map
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Fig. 5.1 The valleys map (right), and the cone map (left).

Fig. 5.2 Scenario A, B (left) and scenario C (right). “S” stands for source position. “D”
stands for destination position.

denoted as “valleys” (right side of Fig. 5.1), the coverage is continuous with four
low throughput valleys.

The UAV mission starts from a starting point to an ending point. We tried to
combine the selection of various source-destination pairs with the coverage map,
defining the following scenarios:

• Scenario A (Fig. 5.2): A symmetric case on the cone map. The source is
positioned in (-1000,-1000) m and the destination in (1000,1000) m.

• Scenario B (Fig. 5.2): An asymmetric case on the cone map. The source is
positioned in (-1000,-1000) m and the destination in (2000,2000) m.

• Scenario C (Fig. 5.2): We positioned the source and the destination at θ degrees
from the peak of throughput on the cone map. It allows us to investigate how a
path is deviated from its direction through the high throughput region.

• Scenario D (Fig. 5.3): The source is positioned in (-1000,-1500) m and the
destination in (1000,1300) m, on the valleys map. Regarding the two low
throughput regions between the source and destination on the direct path, this



5.2 Methodology 65

Fig. 5.3 Resulting paths obtained by MT-PP and SP under scenario D.

case enables us to demonstrate the deviation of the resulting path from the low
throughput regions.

In this work, wind is called “head wind” when it is in the opposite direction of
the direct path from source to destination, and is called “tail wind” when it is in the
same direction.

5.2 Methodology

In this work, we compare the behavior of our algorithms with the Shortest Path (SP)
algorithm, both in dealing with the wind presence and the on-board energy limit. SP
is selected since it represents all the cited state-of-the-art algorithms in Chapter 3,
Sec. 3.1, that compute the direct path from source to destination and are oblivious of
the coverage map.

In the simulations of this work, as depicted in Fig. 3.1, 8-degree graph on
a 101× 101 grid with a distance of minimum 40 meters between two nodes is
considered. Notably, the graph can simply be modified to represent the presence of
obstacles by removing the corresponding nodes and edges. Thus, our algorithms can
consider the presence of obstacles. However, we did not consider any obstacle in
this work for the sake of simplicity.
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Fig. 5.4 β optimization under scenario C.

We implemented our algorithms in MATLAB and executed them on a 2.67 GHz
Core i7 PC with 8 GByte of RAM running Windows 10. We used tic and tac
MATLAB commands to evaluate the running times.

5.3 Numerical evaluation

Firstly the choice of coefficient β which is employed in the cost function of our
algorithms is optimized. Towards this end, under scenario C, we selected four
destinations in θ = 45,90,135, and 180 degrees. In Fig. 5.4, throughput in function
of β is plotted. In order to obtain a high throughput value in most of the cases, it is
set to β = 1500 (shown with dashed line in Fig. 5.4).

Table 5.1 compares the obtained average throughput and Table 5.2 compares the
obtained minimum throughput along the resulting paths of our algorithms with SP,
for all the defined scenarios, in presence and absence of wind. We employed the IPS
method to smooth the resulting paths of both the MT-PP and AT-PP algorithms.

Consider for now the performance without wind. Fig. 5.3 is verifying the ex-
pected performance of MT-PP under scenario D. In this figure, the obtained paths by
MT-PP and SP are depicted. Considering the Table 5.1 and 5.2, MT-PP and AT-PP
both achieved a greater average throughput comparing with SP (50% greater for
MT-PP) whereas the achieved minimum throughput is much greater than SP (9 times
greater for MT-PP.)
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Table 5.1 Average throughput comparison.

Scenario Algorithm
Average Throughput [Mbit/s]

no head wind tail wind
wind 2 m/s 2 m/s

D
MT-PP + IPS 3.3 2.6 3.5
AT-PP + IPS 2.7 2.3 2.8

SP 2.2 2.2 2.2

C
AT-PP + IPS 2.8 1.5 2.8
MT-PP + IPS 1.5 1.5 1.5

θ = 135◦ SP 1.5 1.5 1.5

A
MT-PP + IPS 2.0 2.0 2.0
AT-PP + IPS 2.5 2.5 2.5

SP 2.5 2.5 2.5

B
MT-PP + IPS 2.0 2.0 2.0
AT-PP + IPS 2.3 2.3 2.3

SP 2.3 2.3 2.3

Table 5.2 Minimum throughput comparison.

Scenario Algorithm
Minimum Throughput [Mbit/s]

no head wind tail wind
wind 2 m/s 2 m/s

D
MT-PP + IPS 3.0 1.0 3.1
AT-PP + IPS 1.8 1.0 2.2

SP 0.3 0.3 0.3

C
AT-PP + IPS 0.1 0.1 0.1
MT-PP + IPS 0.1 0.1 0.1

θ = 135◦ SP 0.1 0.1 0.1

A,B
MT-PP + IPS 2.0 2.0 2.0
AT-PP + IPS 0.1 0.1 0.1

SP 0.1 0.1 0.1

Fig. 5.5 shows the path found by AT-PP under scenario C (θ = 135◦), verifying
the algorithm behavior. Specifically the resulting path tends to pass the close proxim-
ity of the cone vertex with maximum throughput. This path is optimal, considering
that the average throughput is maximized. Thus, the average throughput of the path
is ameliorated up to 1.3 Mbit/s comparing with SP.
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Fig. 5.5 Resulting paths obtained by AT-PP and SP under scenario C (θ = 135◦).

Fig. 5.6 Resulting paths obtained by MT-PP and SP under scenario A.

In addition, in scenarios A in Fig. 5.6, and in scenario B in Fig. 5.7, MT-PP
achieves a minimum throughput that outperforms the SP by about 20 times.

Consider for now the performance without wind. Fig. 5.3 is verifying the ex-
pected performance of MT-PP under scenario D. In this figure, the obtained paths by
MT-PP and SP are depicted. Considering the Table 5.1 and 5.2, MT-PP and AT-PP
both achieved a greater average throughput comparing with SP (50% greater for
MT-PP) whereas the achieved minimum throughput is much greater than SP (9 times
greater for MT-PP.)

Fig. 5.5 shows the path found by AT-PP under scenario C (θ = 135◦), verifying
the algorithm behavior. Specifically the resulting path tends to pass the close proxim-
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Fig. 5.7 Resulting paths obtained by MT-PP and SP under scenario B.

ity of the cone vertex with maximum throughput. This path is optimal, considering
that the average throughput is maximized. Thus, the average throughput of the path
is ameliorated up to 1.3 Mbit/s comparing with SP.

In addition, in scenarios A in Fig. 5.6, and in scenario B in Fig. 5.7, MT-PP
achieves a minimum throughput that outperforms the SP by about 20 times.

Now, we consider the wind effect. MT-PP and AT-PP gain less in the presence
of head wind, comparing with either the tail wind or the wind absence. The reason
behind is the restricted amount of on-board energy that prevents the drone from
flying into the high throughput regions and compensating for the wind concurrently.
The throughput of the path in scenario A and B is not influenced by the wind in either
case, since MT-PP has a tendency to keep away from the low throughput regions so
far as energy is provided. The resulting paths of AT-PP and MT-PP in scenario C
and D, in presence of head wind, are approaching to SP leaving more energy behind
for the wind compensation. As a consequence, the throughput of resulting paths are
lower than the tail wind or no wind cases.

In the considered offline path-planning scenario, the wind can be taken into
account just based on some forecast weather model. For an area of few km squares
(or at most tens of them) where the UAV will fly, we expect to know in advance only
an average wind value for each tile.

Nevertheless, the algorithm is compatible, without any modification, with vari-
able winds, i.e. wind intensity different for each point of the grid map. In Fig 5.8,
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Fig. 5.8 Comparing the performance of MT-PP in presence of variable wind (solid line), and
absence of wind (dashed line).

we considered variable wind in the field. In this scenario, the MT-PP algorithm
planned a longer path comparing with the dashed line path which is the shorter path
in the absence of wind. The resulting path of MT-PP in presence of variable wind is
longer, but the energy consumption of the drone is lower, compared to the no wind
case, because of the presence of tail wind during the path. Moreover, the energy
consumption of the dashed line path in presence of variable wind is higher because
of the presence of cross wind in half of the path.

In Table 5.3, the effect of path smoothing methods is investigated. In this table,
the path length and the corresponding computation time for the resulting paths of
MT-PP algorithm alone (i.e., without any post-smoothing), MT-PP with standard
post-smoothing, and MT-PP with our improved post-smoothing method under all the
defined scenarios are compared. By construction, the least computation time belongs
to MT-PP with no post-smoothing applied, while applying standard PS increases
the computation time by 3.4%, in scenario B (as the worst case). Alternatively,
applying IPS to MT-PP in scenario B adds up to 1.0% additional time. Regarding
the path length, PS and IPS equally shorten the path lengths by 5.1% in scenario A,
whereas they shorten the length of paths by 5.4% and 6.3% respectively, in scenario
B. Therefore, IPS has always priority over PS in terms of both path length and
computation time.

The effect of energy budget is investigated in Table 5.4. We compared the energy
consumption of the MT-PP resulting paths of each iteration in scenario D with the
SP, in one part of table, and the output paths of AT-PP in case of setting an energy
bound for scenario C (θ = 135◦). In scenario D, MT-PP finds the path 1 in the first
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Table 5.3 Path length and computation time comparison.

Algorithm Scenario Run time [s] Path length [m]

MT-PP

A 1.18 3507
B 2.91 4922

C (θ = 135◦) 0.05 1535
D 1.52 4715

MT-PP + PS

A 1.21 3325
B 3.01 4655

C (θ = 135◦) 0.07 1418
D 1.55 4450

MT-PP + IPS

A 1.21 3325
B 2.94 4610

C (θ = 135◦) 0.05 1418
D 1.57 4435

Fig. 5.9 The effect of energy budget on the AT-PP (left), and MT-PP (right).

iteration. The energy consumption limit is set to 91 kJ in this experiment. Since the
energy consumption is not reached the limit, it continues to increase the threshold up
to the path 4 which exceeds the energy limit. Then the threshold is decreased and
the final MT-PP path is found. The path of each iteration is shown in Fig. 5.9 (right).
In Scenario C, each resulting path is the output of AT-PP with a specified energy
limit. It is obvious in Fig. 5.9 (left) that as long as we set a greater energy limit, the
path will be longer and closer to the high throughput region. It is notable to mention
from Table 5.4 that the energy consumption of MT-PP and AT-PP paths are clearly
more than the SP, but they meet the energy budget constraint. In this experiment,
the angular rotation speed (ωturn) is considered 2.1rad/s, and the power consumed
during the rotations (Pturn) is considered 225W . Power consumption of the drone (P)
in all the experiments in this work is considered 200W [46].
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Table 5.4 Comparison of energy consumption.

Algorithm & Scenario Path Energy Consumption [kJ]

MT-PP + IPS

1 74.5

Scenario D

2 85.8
3 88.5
4 93.6

MT-PP 90.5
SP 64.6

AT-PP + IPS
1 31.0

Scenario C
2 34.2

(θ = 135◦)
AT-PP 36.7

SP 29.4



Chapter 6

Conclusions

This chapter gives an overview and summarizes the work accomplished in this thesis,
covering the whole contributions.

Inspired by providing cellular connectivity for UAVs, in order to guarantee the
requirements of QoS in the communication for video streaming, we investigated
the path optimization problem for an autonomous drone. In the study, the cellular
coverage map, the drone budget of energy, and the possible presence of wind is con-
sidered. Two algorithms are presented to maximize either the worst-case throughput
(MT-PP) or the average throughput (AT-PP) along the path. In addition, a novel
path smoothing method outperforming the classical one in both terms of path length
and computation time is proposed. It is shown, through a numerical evaluation of
various scenarios, that our communication-aware approach leads to ameliorate the
throughput of the path comparing with the classical approaches that are absolutely
oblivious of the cellular coverage maps, with a profitable impact on video streaming
applications. We evaluated the performance of the MT-PP and AT-PP algorithms,
in presence and absence of the wind. We showed that, in absence of the wind or
in presence of the tail-wind, our algorithms in most of the cases outperform the
shortest path significantly. Besides, in presence of the head-wind, MT-PP and AT-PP,
due to the restricted energy budget, gain less than the tail-wind or when the wind
is absent. We investigated the effect of the energy budget on the resulting paths of
MT-PP and AT-PP. We showed that the energy budget may prevent our algorithms
from achieving the throughput-optimal path. Finally, we validated experimentally
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our approach by integrating our algorithms in a popular offline path planner (QGC).
We proved that our algorithms can be practically utilized in real-world path planners.
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