
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

SystemC-AMS Simulation of Conservative Behavioral Descriptions / Vinco, Sara; Lora, Michele; Zwolinski, Mark
(LECTURE NOTES IN ELECTRICAL ENGINEERING). - In: Languages, Design Methods, and Tools for Electronic
System Design / Drechsler R., Wille R.. - STAMPA. - [s.l] : Springer International Publishing, 2016. - ISBN 978-3-319-
31722-9. - pp. 151-173 [10.1007/978-3-319-31723-6_7]

Original

SystemC-AMS Simulation of Conservative Behavioral Descriptions

Publisher:

Published
DOI:10.1007/978-3-319-31723-6_7

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2653745 since: 2020-02-26T18:01:20Z

Springer International Publishing

SystemC-AMS simulation of conservative
behavioral descriptions

Sara Vinco, Michele Lora, Mark Zwolinski

Abstract SystemC has recently been extended with the Analog and Mixed Signal
(AMS) library, with the ultimate goal of providing simulation support for analog
electronics and continuous time behavior. SystemC-AMS allows modeling of sys-
tems that are either conservative and low level or continuous time and behavioral,
which is a limited range compared to other AMS HDLs. This work addresses this
challenge by extending SystemC-AMS support to a new level of abstraction, namely
Analog Behavioral Modeling (ABM), to cover models that are both behavioral and
conservative. This leads to a methodology that uses SystemC-AMS constructs in a
novel way. Full automation of the methodology allows proof of its effectiveness both
in terms of accuracy and simulation performance, by applying the overall approach
to a complex industrial Micro Electro-Mechanical System (MEMS) case study. The
effectiveness of the proposed approach is further highlighted in the context of vir-
tual platforms for smart systems, and adopting a C++-based language for MEMS
simulation reduces the simulation time by about 2x, thus enhancing the design and
integration flow.

1 Introduction

SystemC has long been considered the reference language for electronic system-
level design, as it supports both hardware and software and the integration of multi-
ple levels of abstraction, including Register Transfer Level (RTL) and transactional
level [1]. However, the increasing presence, in embedded systems, of analog com-
ponents and Micro Electro-Mechanical Systems (MEMS) limits the generality of

Sara Vinco
Politecnico di Torino, Turin, Italy e-mail: sara.vinco@polito.it

Michele Lora
Università di Verona, Verona, Italy e-mail: michele.lora@univr.it

Mark Zwolinski
University of Southampton, Southampton, United Kingdom e-mail: mz@ecs.soton.ac.uk

1

2 Sara Vinco, Michele Lora, Mark Zwolinski

LSF
(Linear Signal Flow)

ABM
(Analog Behavioral

Modeling)
B

E
H

A
V

IO
R

A
L

E
LE

C
T

R
IC

A
L

NON CONSERVATIVE CONSERVATIVE

ELN
(Electrical Linear

Network)

SystemC-AMS

abstraction levels

Fig. 1 Design space covered by the proposed approach w.r.t. SystemC-AMS. The methodology
bridges the gap between LSF and ELN, by targeting behavioral and conservative descriptions
(ABM).

SystemC [2]. Indeed, these types of component require the support of continuous
time and conservative behaviors, which cannot be modeled with a discrete event
simulator.

In response to this, Accellera has standardized the SystemC-AMS extension [3].
SystemC-AMS provides a number of predefined levels of abstraction that reproduce
linear continuous time models with different degrees of accuracy and adherence to
physical behaviors. Unfortunately, such abstraction levels (briefly outlined in Fig-
ure 1) do not model all types of analog models. The Linear Signal Flow (LSF) level
of abstraction focuses on behavioral, continuous time systems, but it does not sup-
port the modeling of conservative systems. On the other hand, Electrical Linear
Network (ELN) is conservative, but it does not support behavioral models. Further-
more, SystemC-AMS does not yet support non-linear modeling [9] and it can not
therefore be considered a replacement for SPICE [4] or Verilog-AMS [5].

The resulting gap between ELN and LSF thus misses descriptions that are both
behavioral and conservative, and that are commonly used for the modeling of
MEMS and other analog components [6, 7]. The limited flexibility of SystemC-
AMS forces designers to adopt other AMS HDLs (e.g., Verilog-AMS) for modeling
these kinds of components, thus reducing the applicability of SystemC-AMS.

The key idea of this work is to bridge the gap between LSF and ELN, to represent
models that are both behavioral and conservative in SystemC-AMS. This new level
of abstraction, called Analog Behavioral Modeling (ABM), is demonstrated with a
methodology that exploits existing SystemC-AMS constructs. The goal is to show
that SystemC, with its AMS extensions, can be used as a general embedded system
modeling and simulation framework even in the presence of analog circuitry and
MEMS. It is important to note that this work does not define new SystemC-AMS
libraries, but it rather uses ELN primitives in an innovative way.

The main contributions of this work are:

SystemC-AMS simulation of conservative behavioral descriptions 3

• identification of the ABM level of abstraction, necessary for overall embedded
system simulation in a SystemC-based environment;

• definition of a sound methodology for modeling ABM components in SystemC-
AMS, by using existing primitives in a novel way;

• validation of the ABM level against Verilog-AMS, to show that those Verilog-
AMS descriptions that do not fall into the ELN and LSF domains can now be
correctly represented in SystemC-AMS;

• automation of the proposed methodology by automatically converting Verilog-
AMS models into ABM SystemC-AMS models. This simplifies the application
of the methodology to complex industrial case studies.

As a side effect of the proposed methodology, Verilog-AMS models can be automat-
ically converted into SystemC-AMS code for easy integration into a virtual platform
including analog models. This avoids the use of CPU intensive co-simulation frame-
works, thus noticeably speeding up the simulation of a virtual platform.

The paper is organized as follows. Section 2 provides the necessary background
on Verilog-AMS and SystemC-AMS. Sections 3 and 4 focus on the proposed
methodology. Finally, Section 5 applies the proposed approach to an industrial case
study and Section 6 draws some conclusions.

2 Background

This Section provides the necessary background on the adopted languages for ana-
log and mixed signal modeling: Verilog-AMS (Section 2.1) and SystemC-AMS
(Section 2.1).

2.1 Verilog-AMS

Verilog-AMS is one of the most widely used languages for analog and continuous
time modeling [5]. The system solver is essentially the same as that used in SPICE
[4]. A circuit is modeled in terms of an abstract graph of nodes (that can also be used
for external connectivity) connected by branches [8]. The system state is defined in
terms of voltages (V()) and currents (I()) associated with nodes and branches. The
numerical values of potential differences and currents can be used in expressions
with the access functions V() and I(). Relationships between nodes are modeled
with differential algebraic equations (DAEs), written as simultaneous statements.
The contribution operator <+ models a simultaneous statement summing multiple
contributions to the branch current (or voltage) as a function of other branch voltages
and currents.

Conservative modeling is imposed by the requirement that the sum of currents
leaving any node must be equal to zero at any time (thus reflecting Kirchhoff’s
Current Law). This condition is managed by the internal solver of the Verilog-AMS
simulator, and thus must not be explicitly modeled by the designer.

4 Sara Vinco, Michele Lora, Mark Zwolinski

The simulator internal solver uses the simultaneous statements and conservative
conditions to build a system matrix. Numerical integration methods are used to solve
the system of DAEs. Continuous time is modeled as a sequence of discrete time
points, such that the time step is optimized to minimize errors while maximizing
efficiency.

Non-linear equations are solved iteratively at each discrete time step to determine
the system state over time. Typically, the Newton-Raphson method [10] is used for
linearization

2.2 SystemC-AMS

SystemC-AMS is the extension of the SystemC framework for modeling analog and
mixed-signal systems [3]. Its role is to provide a higher level view of mixed-signal
and analog systems, to allow early simulation and validation of the overall system.
For this reason, SystemC-AMS supports only linear and time-invariant descriptions,
and is incapable of solving non-linear functions [9].

To cover a wide variety of domains, SystemC-AMS provides three different ab-
straction levels, supporting different communication styles and representations with
respect to the physical domain:

• Timed Data-Flow (TDF) models are scheduled statically by considering their
producer-consumer dependencies in the discrete time domain;

• Linear Signal Flow (LSF) supports the modeling of continuous time through a
library of pre-defined primitive modules (e.g., integration, delay), each associated
with a linear equation;

• Electrical Linear Network (ELN) level models electrical networks through the
instantiation of predefined primitives, e.g., resistors or capacitors, where each
primitive is associated with electrical equations.

A SystemC-AMS internal solver analyses the ELN and LSF components to derive
the equations modeling system behavior, that are solved to determine the system
state at any simulation time.

The main difference between LSF and ELN is in the adherence to physical laws.
LSF is non-conservative and it expresses behaviors as directed flows of continuous-
time signals or quantities. On the other hand, ELN is conservative, i.e., the derived
set of equations is extended by the internal solver to satisfy the conservation laws
(Kirchhoff’s laws).

3 Methodology overview

The goal of the proposed approach is to prove that conservative and behavioral
descriptions can be modeled in SystemC-AMS. To this extent, the starting point
of the methodology is a Verilog-AMS behavioral description, made up of a set of

SystemC-AMS simulation of conservative behavioral descriptions 5

AMS CIRCUIT
EQUATIONS

APPLICATION OF
CONSERVATIVE LAWS

SET OF EQUATIONS SET OF EQUATIONS=
VERILOG-AMS SOLVER SYSTEMC-AMS SOLVER

STANDARD
VERILOG-A

FLOW

MAPPING TO
SYSTEMC-AMS

PROPOSED METHODOLOGY
①

DERIVATION OF ELN
EQUATIONS

④

⑤ APPLICATION OF
CONSERVATIVE LAWS

⑥

②

ELN COMPONENT
INSTANTIATION③

DIVISION INTO
CONTRIBUTIONS

NODE MANAGEMENT

Fig. 2 Overview of the proposed methodology.

simultaneous statements that assemble voltages or currents to describe the state of
the electrical circuit nodes. Due to the limitations of SystemC-AMS, the models are
strictly linear and time-invariant.

The standard Verilog-AMS simulation flow is depicted on the left-hand side of
Figure 2. The Verilog-AMS internal solver takes the simultaneous statements as the
input and derives both the user defined equations and the conservative ones. The
resulting equation set is used to build the numerical matrices that determine the
system state.

The methodology to convert the Verilog-AMS code into SystemC-AMS is based
on reproducing the final equation set in the SystemC-AMS environment, through the
flow depicted on the right-hand side of Figure 2. First of all, Verilog-AMS nodes are
mapped to SystemC-AMS nodes (1⃝), and Verilog-AMS simultaneous statements
are divided into basic contributions (2⃝). Then, each contribution is mapped to a
basic SystemC-AMS ELN element, where the equation associated with each ELN
module is the same as the original Verilog-AMS contribution (3⃝). The methodology
determines how to connect the ELN modules (i.e., in parallel or in series), so that
the bindings describe the same relationship between voltages and currents as in the
original Verilog-AMS simultaneous statement. The ELN system is then managed
by the SystemC-AMS internal solver, that builds the corresponding equations (4⃝)
and adds conservative laws (5⃝). The resulting equation system will thus reflect the
Verilog-AMS one (6⃝).

The choice of the ELN model of computation allows us to delegate the appli-
cation of conservation laws to the internal solver. This is an important feature, as

6 Sara Vinco, Michele Lora, Mark Zwolinski

adding conservative laws implies reconstructing the circuit topology from the AMS
equations, which can be far from trivial.

It is important to note that both the basis of the methodology and the correctness
of the proposed approach lie in the construction of the same equation set, that is
then solved in the same way by the Verilog-AMS and SystemC-AMS solvers.

4 Methodology

The following sections describe the methodology in detail. This work focuses on the
construction of the ELN system (steps 1⃝ to 3⃝ in Figure 2). The remaining steps
(i.e., the bottom box on the right-hand side of Figure 2) are automatically performed
by the SystemC-AMS internal solver. The visual representation of ELN modules
adopted in the following figures is as defined by the SystemC-AMS standard [3].

4.1 The ABM abstraction level

The ABM abstraction level comprises descriptions mixing characteristics typical of
digital behavioral models and of electrical conservative ones. ABM models are be-
havioral in that they do not directly reflect a hardware or circuit implementation, but
they are used in the design process to simulate a component’s behavior. At the same
time, ABM models are conservative as they adopt circuit elements and constructs
(e.g., voltage and current values at circuit nodes), and thus abide by conservation
laws.

These characteristics do not fit in any of the SystemC-AMS abstraction levels.
Nonetheless, they are widely supported by other AMS HDLs for the design of com-
ponents such as MEMS and analog circuitry [6, 7]. It is thus necessary to extend
SystemC-AMS, to improve its coverage and effectiveness. To avoid the burden of
implementing a new SystemC-AMS abstraction level (and thus new classes and
libraries), this work proposes a methodology that converts ABM descriptions, mod-
eled in other AMS HDLs, to SystemC-AMS ELN constructs. This guarantees the
correctness of the underlying solution techniques, and it preserves compatibility
with any SystemC-AMS description.

4.2 ELN terminology

ELN descriptions are based on the instantiation of an electrical network composed
of electrical primitives (i.e., ELN modules), connected together at electrical nodes.
Each ELN module contributes to the equation system with a particular set of equa-
tions defining the mathematical relations at each node of the network.

SystemC-AMS simulation of conservative behavioral descriptions 7

CONTROLLER
NODE SIDE

CONTROLLED
NODE SIDE

POSITIVE
TERMINAL

NEGATIVE
TERMINAL

Fig. 3 ELN terminology applied to an independent source (left) and to a controlled source (right).

The interface of an electrical primitive is composed of a set of terminals. A neg-
ative (n)terminal and a positive (p) terminal are present on the interface of basic
passive (linear) electrical components (i.e., capacitor, inductor and resistor) and of
voltage or current sources (left-hand side of Figure 3).

A particular sub-set of primitives, largely employed by the proposed methodol-
ogy, is that of controlled sources. Controlled source primitives determine a current
or voltage value on an output branch, whose generation linearly depends on the cur-
rent or voltage value of an input branch. For this reason, controlled sources present
two different interfaces, as depicted on the right-hand side of Figure 3: a control
interface and a controlled interface. Each interface represents an electrical branch,
i.e., they are composed of a negative terminal and a positive terminal (i.e., ncn and
ncp terminals for the control interface, and nn and np for the controlled interface).
Thus, the controlled sources introduce a set of relations where the value of voltage
or current on the controlled branch is proportional to the value of voltage or current
on the control branch.

4.3 Circuit node management

The first declaration added to the SystemC-AMS code is the instantiation of ground,
declared as a node of type sca_node_ref. Verilog-AMS nodes are mapped to
SystemC-AMS ELN circuit nodes (of type sca_node). Each node is then con-
nected to ground through a 1 GΩ resistor, by using the ELN sca_r primitive.
This is identical to the Gmin conductance that SPICE automatically inserts between
each node and ground, and it helps to ensure the solution of the equation system
specified by the circuit.

4.4 Division into contributions

SystemC-AMS is less expressive than Verilog-AMS, i.e., it supports a more re-
stricted range of constructs and ELN models can be composed only of instances of
the predefined primitives [7, 10]. Furthermore, SystemC-AMS does not allow this
set of predefined primitives to be extended. E.g., in SystemC-AMS a voltage value
can be controlled only by one voltage or current contribution, while Verilog-AMS

8 Sara Vinco, Michele Lora, Mark Zwolinski

allows any number of contributions. Thus, a general Verilog-AMS simultaneous
statement must be reproduced by connecting a number of ELN elements.

Given a Verilog-AMS description, our technique identifies the contributions
comprising each simultaneous statement by finding the largest sub-equation that
can be represented by a single ELN object. In linear and time-invariant descriptions
this corresponds to breaking the equation into the single addends.

4.5 Mapping to ELN components

The remainder of this section shows how a set of template equations is mapped to
ELN primitives to model their individual contributions and how such primitives are
connected.

4.5.1 Voltage sources

Voltage source Verilog-AMS equations use a number of contributions to assign a
voltage level to a circuit node. Contributions can be of three main types: indepen-
dent, voltage-controlled and current-controlled. A complete example of a voltage
source equation is shown in Figure 4.

Independent voltage sources assign a numerical voltage value, and they corre-
spond to contributions like:

V(a) <+ 8.01

(i.e., contribution 3 in Figure 4). They are implemented by using a sca_vsource
ELN module, where the voltage value is an instantiation parameter (i.e., +8.01). The
module interface has only a positive terminal, connected to the controlled node (a),
and a negative terminal, connected to ground (gnd).

A voltage controlled voltage source is a voltage source whose value depends on
the voltage between a pair of circuit nodes. An example is contribution 1:

V(a) <+ +4.02 V(b)

This is implemented by using the sca_vcvs ELN module, where the scaling factor
is an instantiation parameter (i.e., +4.02). The module interface has a controlling
node side (whose positive terminal is connected to b) and a controlled node side
(whose positive terminal is connected to a). The negative controlling terminal is
connected to ground.

A current controlled voltage source describes a voltage source whose value de-
pends on the current through a circuit branch. An example is contribution 2:

V(a) <+ -3.72 I(c).

SystemC-AMS simulation of conservative behavioral descriptions 9

V(a) <+ +4.02 V(b) -3.72 I(c) +8.01
1 2 3

anp

np

b ncp

c ncp

nn

nn

interm_b

interm_c

1

2

3

vcvs_b = sca_vcvs(«bb», +4.02);
vcvs_b ->np(a);
vcvs_b ->nn(interm_b);
vcvs_b ->ncp(b);
vcvs_b ->ncn(gnd);

ccvs_c = sca_ccvs(«cc», -3.72);
ccvs_c ->np(interm_b);
ccvs_c ->nn(interm_c);
ccvs_c ->ncp(c);
ccvs_c ->ncn(gnd);

vcs = sca_vsource(«vcs», +8.01);
vcs ->p(interm_c);
vcs ->n(gnd);

1

2

3

Fig. 4 Example of voltage source equation (top left) with the corresponding SystemC-AMS code
(right) and ELN module connection (bottom left). Non-connected terminals are connected to
ground.

Such contributions are implemented by using the sca_ccvs ELN module, con-
nected to node a as the controlled node and to node c as the controlling node.

If a Verilog-AMS voltage source equation is made up of more than one contribu-
tion, SystemC-AMS instances are connected in series. This is achieved by creating
intermediate nodes that connect the nn terminal of a primitive with the np terminal
of the next primitive. In this way, voltage values add up and any new contribution is
added in series with the former ones. In Figure 4, this is achieved by introducing in-
termediate nodes interm_b (that connects contributions 1 and 2) and interm_c
(that connects contributions 2 and 3).

4.5.2 Current sources

Current source Verilog-AMS equations are the complement of voltage source equa-
tions, i.e., they use a number of contributions to assign an input current to a circuit
node. A complete example is shown in Figure 5.

An independent current source assigns a numerical current value and is imple-
mented by using the sca_isource ELN module (contribution 3 in Figure 5). A
voltage controlled current source defines a current source whose value depends on
the voltage level at a certain circuit node (contribution 1 in Figure 5). These kinds of
contributions are mapped to sca_vccs ELN modules. Finally, a current controlled
current source describes a current source whose value depends on the current flow-

10 Sara Vinco, Michele Lora, Mark Zwolinski

I(a) <+ +4.02 V(b) -3.72 I(c) +8.01
1 2 3

anp

np

b ncp

c ncp

nn

nn

1

2

3

vccs_b = sca_vcvs(«bb», +4.02);
vccs_b ->np(a);
vccs_b ->nn(gnd);
vccs_b ->ncp(b);
vccs_b ->ncn(gnd);

cccs_c = sca_ccvs(«cc», -3.72);
cccs_c ->np(a);
cccs_c ->nn(gnd);
cccs_c ->ncp(c);
cccs_c ->ncn(gnd);

ccs = sca_csource(«ccs», +8.01);
ccs ->p(a);
ccs ->n(gnd);

1

2

3

Fig. 5 Example of current source equation (top left) with the corresponding SystemC-AMS code
(right) and ELN module connection (bottom left). Non-connected terminals are connected to
ground.

ing through a certain circuit branch (contribution 2 in Figure 5). Such contributions
are implemented by using sca_cccs ELN modules.

If a Verilog-AMS current source equation is made up of more than one contribu-
tion, SystemC-AMS instances are connected in parallel. The ncp terminal of each
module is connected to the controlling node (b and c) and the np (or p) terminal is
connected to the controlled node (a). In this way, the voltage is the same across all
involved circuit branches and the current is summed at the controlled node a.

4.5.3 Differential constructs

Differential contributions are more complex than voltage or current ones, as they
model a derivative (or integrative) relationship between the current or voltage of two
separate circuit nodes. SystemC-AMS, however, restricts differential behaviors to
dependencies on single network nodes, through the adoption of capacitors (sca_c
ELN primitive) or inductors (sca_l ELN primitive). To overcome this limitation, it
is necessary to introduce an intermediate node that has no physical correspondence
in the circuit, but that is used for describing the differential dependence.

All the differential contributions are mapped using the generic topological pattern
depicted in Figure 6, where colors depict the physical quantities involved: light blue
for current and red for voltage, while yellow portions are dependent on the type of
contribution to reproduce.

SystemC-AMS simulation of conservative behavioral descriptions 11

COMPONENT 2

COMPONENT 3

in

out

INTERMEDIATE

NODE

COMPONENT 1

Fig. 6 Generic topological pattern used to implement differential contributions. All disconnected
terminals are connected to ground.

Component 1 is a controlled current-source, as indicated by the controlled side in
Figure 6 (in blue). The control side (in yellow) depends on the modeled contribution:
if the argument of the derivative construct is a voltage, component 1 is a voltage
controlled current source; else, if the argument is a current, component 1 is a current
controlled current source.

Component 3 is a voltage-controlled source, as indicated by the control side in
Figure 6 (in red). The controlled side (in yellow) reflects the target of the Verilog-
AMS contribution statement: if the target is a voltage, component 3 is a voltage
controlled voltage source; else if the target is a current, component 3 is a voltage
controlled current source.

Component 2 (in yellow in Figure 6) is used to create the differential relation be-
tween the current value controlled by component 1 and the voltage value controlling
Component 3. The component is an inductor whenever the differential contribution
is derivative, and it is a capacitor in the case of an integrative contribution. Given
Inp,nn the current flowing through terminals np and nn of Component 1, and Vncp,ncn
the voltage on the branch between the terminals ncp and ncn of Component 3, the
relationship described by Component 2 is thus:

Vncp,ncn =
∫

Inp,nndt

in the case of a derivative contribution (i.e., Component 2 is a capacitor), and

Vncp,ncn =
dInp,nn

dt

in the case of an integrative contribution (i.e., Component 2 is an inductor).

12 Sara Vinco, Michele Lora, Mark Zwolinski

Table 1 Summary of the components employed to map differential contributions.

Contribution Component 1 Component 2 Component 3

I(out)<+ k ddt(I(in1))
Current Controlled Current Source Inductor Voltage Controlled Current Source

sca_cccs sca_l sca_vccs

I(out)<+ k ddt(V(in1))
Voltage Controlled Current Source Inductor Voltage Controlled Current Source

sca_vccs sca_l sca_vccs

V(out)<+ k ddt(I(in1))
Current Controlled Current Source Inductor Voltage Controlled Voltage Source

sca_cccs sca_l sca_vcvs

V(out)<+ k ddt(V(in1))
Voltage Controlled Current Source Inductor Voltage Controlled Vurrent Source

sca_vccs sca_l sca_vcvs

I(out)<+ k idt(I(in1))
Current Controlled Current Source Capacitor Voltage Controlled Current Source

sca_cccs sca_c sca_vccs

I(out)<+ k idt(V(in1))
Voltage Controlled Current Source Capacitor Voltage Controlled Current Source

sca_vccs sca_c sca_vccs

V(out)<+ k idt(I(in1))
Current Controlled Current Source Capacitor Voltage Controlled Voltage Source

sca_cccs sca_c sca_vcvs

V(out)<+ k idt(V(in1))
Voltage Controlled Current Source Capacitor Voltage Controlled Current Source

sca_vccs sca_c sca_vcvs

Considering the derivative and the integrative operators of Verilog-AMS, we can
restrict all possible configurations of the topological pattern to the eight cases sum-
marized in Table 1. For each case, the table shows the SystemC-AMS primitives
used to instantiate Components 1, 2 and 3. The remainder of this section shows the
application to two example cases, i.e., a derivative contribution of type I(out) <
+kddt(V (in1)) and an integrative contribution of type I(out) < +kidt(V (in1)), re-
spectively.

Derivative contributions

Consider a derivative contribution of the form of the second entry of Table 1:

I(a) <+ ddt(+4.02 V(b))

as exemplified in Figure 7. Given the derivative nature of the contribution, the circuit
requires a new node (interm), that is connected to an inductor (i.e., an instance of
a sca_l ELN module). This adds the following equation (equation 2 in Figure 7):

V(interm) = ddt(I(interm))

Then, two equations are necessary to bind the values in a and b to the current and
voltage values in the new node interm. In Figure 7, node a is modeled as a current
source dependent on the voltage in interm (the dependency is implemented as an
instance of sca_vccs). This adds equation 3:

I(a) = +4.02 V (interm)

SystemC-AMS simulation of conservative behavioral descriptions 13

I(a) <+ ddt(+4.02 V(b))
1 I(a) = +4.02 V(interm)
2 V(interm) = ddt(I(interm))
3 I(interm) = V(b)

vccs_c = sca_ vccs(«cc», +4.02);
vccs_c ->np(a);
vccs_c ->nn(gnd);
vccs_c ->ncp(interm);
vccs_c ->ncn(gnd);

ll = sca_l(«ll», +1.00);
ll ->p(interm);
ll ->n(gnd);

vccs_b = sca_vccs(«bb», +1.00);
vccs_b ->np(interm);
vccs_b ->nn(gnd);
vccs_b ->ncp(b);
vccs_b ->ncn(gnd);

1

2

3a

b ncp

n

nn

3

p

ncp

np

np

2

1

interm

Fig. 7 Example of derivative equation with corresponding individual contributions and equations
(top left), SystemC-AMS code (bottom left) and ELN module connection (right).

The current through interm is controlled by the voltage at b (the dependency is
implemented as an instance of sca_vccs). This adds equation 1:

I(interm)= V(b)

The resulting system of equations will thus reconstruct the original dependency be-
tween nodes:

I(a) = +4.02V(interm)= +4.02ddt(I(interm))

= +4.02ddt(V(b))

This reflects the mapping defined in Table 1. The resulting SystemC-AMS sub-
system is depicted on the left-hand side of Figure 7. The sub-system can be further
connected to other ELN models if it is included in more complex simultaneous
statements, by adopting either parallel or series compositions.

Integrative contributions

An integrative contribution illustrates the sixth case of Table 1:

I(a) <+ idt(+4.02 V(b))

14 Sara Vinco, Michele Lora, Mark Zwolinski

vccs_c = sca_ vccs(«cc», +4.02);
vccs_c ->np(a);
vccs_c ->nn(gnd);
vccs_c ->ncp(interm);
vccs_c ->ncn(gnd);

cc = sca_c(«cc», +1.00);
cc ->p(interm);
cc ->n(gnd);

vccs_b= sca_vccs(«bb», +1.00);
vccs_b ->np(interm);
vccs_b ->nn(gnd);
vccs_b ->ncp(b);
vccs_b ->ncn(gnd);

1

2

3a

b ncp

n

nn

3

p

ncp

np

np

2

1

interm

I(a) <+ idt(+4.02 V(b))
1 I(a) = +4.02 V(interm)
2 V(interm) = idt(I(interm))
3 I(interm) = V(b)

Fig. 8 Example of integrative equation with corresponding individual contributions and equations
(top left), SystemC-AMS code (bottom left) and ELN module connection (right).

as shown in Figure 8. The circuit is extended with a new node (interm), used to
represent the integrative dependency as a capacitor (an instance of the sca_c ELN
module). This adds to the system equation 2:

V(interm) = idt(I(interm))

Then, two equations are necessary to bind the values in a and b to the current
and voltage values in the new node interm, similarly to the solution proposed for
derivative contributions:

I(a) = +4.02 V(interm)

I(interm) = V(b)

The resulting set of equations will thus reproduce the original dependency between
nodes:

I(a) = +4.02V(interm)= +4.02idt(I(interm))

= +4.02idt(V(b))

The resulting SystemC-AMS sub-system is depicted on the left-hand side of Figure
8. The sub-system can be further connected to other ELN models if it is included in
more complex simultaneous statements, by adopting either parallel or series com-
positions.

SystemC-AMS simulation of conservative behavioral descriptions 15

5 Experimental results

This section demonstrates the effectiveness of the proposed approach in terms of
accuracy and simulation time. All experiments were evaluated on an i7 3.2GHz
processor with 16GB RAM, running Ubuntu 14.04. Verilog-AMS descriptions have
been simulated using Mentor’s Questa 13.1 simulator [11].

5.1 Methodology automation

Manual application of the proposed methodology is a tedious error-prone process,
and application to industrial case studies could be extremely difficult. For this rea-
son, we implemented an automatic tool ABACuS (Analogue BehAvioural Conserva-
tive Systemc-ams). ABACuS leverages the academic license version of HIFSuite to
ease the conversion process [12]. Verilog-AMS descriptions are analyzed and trans-
lated into the HIFSuite internal format (HIF). The code generated at this point is
a tree-structured XML-like representation of the original code. ABACuS applies a
number of processing steps to the HIF description to automate the methodology, in-
cluding contribution identification and construction of the ELN system. This leads
to a new HIF description, containing the instantiation and connection of the corre-
sponding ELN primitives. The HIF description is then converted to SystemC-AMS
by means of the HIFSuite hif2sc back-end tool.

5.2 Methodology validation

The first step to validate the propose methodology is to evaluate the accuracy of
mapping single types of contribution, as detailed in Section 4. The accuracy is eval-
uated with 12 case studies, each targeting a single type of contribution. The case
studies were implemented in Verilog-AMS and then converted to SystemC-AMS
via ABACuS. The main characteristics of each case study are reported in Table 2, in
terms of target contribution type and simulation time. Case studies are fed with sinu-
soidal inputs with 1KHz frequency, so that the outputs can be easily controlled and
compared w.r.t. the expected theoretical results. In particular, the system of equa-
tions described using Verilog-AMS has been computed symbolically and solved for
every time instant where a sample is collected by the SystemC-AMS execution. The
SystemC-AMS simulation is run with an integration and sampling period of 10ns.

Simulation times in Table 2 refer to the amount of time needed to perform 1
second of transient simulation of the circuit implementing the given basic contribu-
tion. For all the cases depicted in Table 2 , the time needed for simulating the initial
Verilog-AMS code matches that needed for the SystemC-AMS simulation. This is
due to the fact that both the solvers (i.e., SystemC-AMS and Questa) are solving the
same set of equations, as described in Section 3.

16 Sara Vinco, Michele Lora, Mark Zwolinski

Table 2 Validation of the mapping of each type of contribution to ELN constructs.

Case Target Simulation Normalized
study contribution time (s) RMSE

1 V(out)<+ k1V(in1)+...+knV(inn)+c 69.05 4.441e-7
2 V(out)<+ k1I(in1)+...+knI(inn)+c 70.59 4.441e-7
3 I(out)<+ k1V(in1)+...+knV(inn)+c 69.11 4.441e-7
4 I(out)<+ k1I(in1)+...+knI(inn)+c 69.01 4.441e-7
5 I(out)<+ k ddt(I(in1)) 51.15 4.733e-6
6 I(out)<+ k ddt(V(in1)) 52.08 4.733e-6
7 V(out)<+ k ddt(I(in1)) 51.64 4.733e-6
8 V(out)<+ k ddt(V(in1)) 51.88 4.733e-6
9 I(out)<+ k idt(I(in1)) 49.01 3.936e-9
10 I(out)<+ k idt(V(in1)) 48.70 3.936e-9
11 V(out)<+ k idt(I(in1)) 48.89 3.936e-9
12 V(out)<+ k idt(V(in1)) 49.16 3.936e-9

Table 2 reports also the level of accuracy w.r.t. the expected theoretical results.
The error is given in terms of the Room Mean Square Error, i.e., by normalizing
the error to the mean of the measured values. Thus, it represents the Coefficient of
Variation between the set of samples gathered during the simulation and the ex-
pected theoretical behavior. This proves that the error w.r.t. the theoretical results is
extremely low, since the Coefficient of Variation between the theoretical reference
and the simulation result is always less than 2e−05, and in some cases it is as good
as 4e−09. This error is due to the precision issues of the numerical algorithms used
by the simulator to perform continuous time simulation.

The similar simulation times imply that the proposed translation to SystemC-
AMS does not provide any simulation speed up, as both the simulators solve the
same set of equations with similar strategies. However, Sections 5.4 and 5.5 will
highlight the effectiveness when handling more complex designs, including mixed
analog and discrete descriptions.

5.3 Methodology scalability

In order to show the scalability of the proposed methodology another set of experi-
ments was performed. Two circuits with a single contribution statement were simu-
lated. One circuit has a single non-differential contribution (i.e., V(out)<+ k1V(in1)+...+knV(inn)+c),
while the second has a differential statement (i.e., I(out)<+ k1ddt(V(in1))).
Table 3 shows the results of this set of experiments focusing on the two particular
kinds of contribution, but similar results apply also to the other case studies. The
simulation time refers to the execution of 1 second of simulated time, while the ac-
curacy is given in terms of the Normalized Root Mean Square Error used also for
the experiments presented in Table 2.

The SystemC-AMS code is stimulated with three different sinusoidal inputs, with
increasing maximum input frequencies. For each input, we simulated the code with

SystemC-AMS simulation of conservative behavioral descriptions 17

Table 3 Scalability of the proposed methodology w.r.t. the simulation timestep.

Non-differential Differential
Input Adopted Normalized Simulation Normalized Simulation

frequency timestep RMSE time (s) RMSE time (s)

10 Hz
10 ns 4.53e-09 70.35 2.37e-09 51.23

100 ns 4.53e-08 6.99 5.09e-10 5.09
1 us 4.53e-07 0.78 1.71e-09 0.52

100 Hz
10 ns 4.44e-08 70.66 2.42e-09 50.98

100 ns 4.44e-07 7.07 1.24e-09 5.12
1 us 4.44e-06 0.73 1.66e-07 0.52

1 KHz
10 ns 4.44e-07 70.38 3.94e-09 50.64

100 ns 4.44e-06 7.07 1.66e-07 5.47
1 ns 4.44e-05 0.74 1.66e-05 0.52

different time steps, ranging from 10ns up to 1us. The simulation time decreases
linearly with the length of the time step, with a speedup of approximately 100×
between a timestep of 10ns and a timestep of 1us. At the same time, accuracy
is preserved, as the Coefficient of Variation between the theoretical reference and
the simulation result is always less than 2e− 05. It is important to note that the
error depends both on the adopted timestep, and also on the frequency of the si-
nusoidal inputs, especially in the non-differential case, where the highest accuracy
(i.e., 4.53e-09) is reached with the 10Hz input and the timestep of 10ns. On the
other hand, the combination with the smallest frequency and the largest sample pe-
riod performs worse than the others, with errors of 4.44e− 05 and 1.66e− 05 for
the non-differential and the differential cases, respectively. This is due to the fact
that the adopted time step is too coarse for the input frequency. Considering the dif-
ferential contribution, it worths noticing that once a certain precision is reached, it
does not scale linearly as in the non-differential case. However, this happens when
an extremely high precision is reached. These considerations highlight the impor-
tance of choosing a suitable timestep for the simulation, but also that the generated
SystemC-AMS code allows us to determine accuracy/simulation speed trade offs.

5.4 The MEMS accelerometer

In order to prove the effectiveness of the overall methodology on more complex de-
signs, we applied the technique to a complex industrial case study, developed in the
context of an industrially-funded project. The case study is a 2-dimensional MEMS
accelerometer modeled in Verilog-AMS by means of the MEMS design platform
MEMS+. This supports automatic Verilog-AMS code generation [6], starting from
3-dimensional physical models such as that depicted in Figure 10. The choice of
a MEMS design was guided by the consideration that MEMS behavioral model-
ing is based on differential and algebraic equations [7], thus following the Verilog-
AMS structure assumed in this work. Table 4 reports the main characteristics of the

18 Sara Vinco, Michele Lora, Mark Zwolinski

Table 4 Characteristics of the original Verilog-AMS MEMS design.

Lines of code 89

Equations Voltage sources 10
Current sources 15

Node declarations Interface 14
Internal 14

Contributions

Independent 4
Voltage 59
Current 0

Derivative 12
Integrative 0

MEMS design, both in terms of simultaneous statements and of types of contribu-
tions.

Fig. 9 3-dimensional model of the accelerometer in the MEMS+ design simulator.

Table 5 shows the results of the application of ABACuS to the MEMS design.
The table shows the number of lines of code of the resulting SystemC-AMS im-
plementation, the number of added nodes and of instances of SystemC-AMS prim-
itives. The number of lines of codes is increased tenfold (precisely, 11.12×x), as
the SystemC-AMS generated by the methodology is more verbose than Verilog-
AMS. Each contribution requires the instantiation of the ELN primitive, plus the
corresponding explicit port binding. Furthermore, the number of ELN primitives is
higher than the number of Verilog-AMS contributions. This is due to the presence
of 12 derivative contributions in the original Verilog-AMS code. Each such contri-
bution determines the instantiation of three ELN primitives (as explained in Section
4.5.3). As a result, of the 188 resulting SystemC-AMS ELN instances:

SystemC-AMS simulation of conservative behavioral descriptions 19

Table 5 Characteristics of the generated SystemC-AMS MEMS design.

Lines of code 1,474
Added node declarations 12

sca_r 93
sca_vsource 4
sca_vcvs 32

SystemC-AMS sca_ccvs 0
primitive sca_csource 0

instantiations sca_vccs 48
sca_cccs 0
sca_l 12
sca_c 0

Table 6 Characteristics of the execution of ABACuS on the MEMS design.

Overall 17.48s
HIFSuite Conversion to HIF 1.86s

tools Conversion to SystemC-AMS 7.81s

ABACuS
Node management 0.94s

Division into contributions 0.29s
ELN component instantiations 6.58s

• 93 correspond to resistors added to connect each SystemC-AMS node to ground;
• 59 correspond to voltage source contributions;
• 36 are generated by the 12 derivative constructs, that also require 12 additional

internal nodes.

The numbers highlight that ABACuS strictly follows the presented methodology, in
particular:

• one resistor is added for each circuit node;
• each non-derivative contribution determines the addition of one ELN primitive

instance;
• each derivative contribution generates three ELN primitive instances.

Fast code generation is a major advantage of the proposed approach. Table 6
highlights that code generation is almost instantaneous (17.48s overall), and that
most of the effort in spent in the HIFSuite conversions (55%). The most costly step
of ABACuS execution lies in the mapping from Verilog-AMS contributions to ELN
primitives and in their instantiation (37%). On the other hand, node management
and the separation of Verilog-AMS equations into single contributions is almost
immediate.

The generated code was validated by comparing its execution w.r.t. the original
Verilog-AMS code. SystemC-AMS simulation was run by adopting the same input
stimula as the Verilog-AMS implementation, and with a 1us timestep. SystemC-
AMS simulation proved to be slightly faster than the Verilog-AMS execution
(28.02s and 33.72s, respectively). At the same time, the average error in the com-
putation of the MEMS outputs is 0.02%. This confirms the visual accuracy evident

20 Sara Vinco, Michele Lora, Mark Zwolinski

Fig. 10 Evolution of the MEMS outputs for Verilog-AMS (solid) and SystemC-AMS (dashed).

from Figure 10, where the Verilog-AMS and SystemC-AMS curves are almost to-
tally coincident. The small error is due to the different management of time in the
two simulators: SystemC-AMS adopts a fixed timestep, while Verilog-AMS can
adapt the length of the timestep over time, thus reaching a higher accuracy. The
low error rate highlights the effectiveness of the generated code, both in terms of
accuracy and of simulation speed.

5.5 Effectiveness of the proposed approach

The most important advantage of modeling ABM models in SystemC-AMS lies
in the ease of integration in more complex platforms and in the enhanced support
for virtual platforms and system-level design, rather than in the pure accuracy or
simulation speed.

SystemC-AMS simulation of conservative behavioral descriptions 21

Memory MIPS CPU

Software
application

Bus interface
Peripheral Bus

UART

Bus interface

Accelerometer
(Verilog-AMS)

Analog/Digital
Converter

Network
Interface

Bus interface

Network

Fig. 11 Overview of the virtual platform containing the MEMS (i.e., the Accelerometer) com-
ponent. Digital components, implemented using SystemC, are colored in light blue. The MEMS
(colored in red) is originally implemented in Verilog-AMS.

The SystemC-AMS scheduler is an extension of the discrete-event SystemC
scheduler, and it thus allows simultaneous simulation of components belonging to
heterogeneous domains. Furthermore, integration with a C++ system level descrip-
tion is eased, thus further removing computationally expensive interfaces and thus
speeding up the simulation of mixed-signal systems. For these reasons, SystemC-
based languages are a winning solution for the construction and validation of virtual
platforms, and they are adopted by most of the currently available virtual platform
environments [13–16]. Translating ABM models to SystemC-AMS thus allows their
early validation, together with the interaction with other system components.

The MEMS accelerometer has been integrated into a virtual platform for smart
systems. The structure of the platform is depicted in Figure 11. It includes (1) a 32-
bit RISC processor (the MIPS CPU) executing (2) a Software Application elaborat-
ing data sensed by the accelerometer and stored in (3) a Memory. External commu-
nication is managed by (4) a Universal Asynchronous Receiver/ Transmitter (UART)
and by (5) a Network Interface, used to send and receive data to and from other smart
sensors. All system components, except the MEMS, are modeled in SystemC, and
integrated in a virtual platform. Validating the integration of the original MEMS
component in the overall system would thus require the construction of a simulation
framework.

The first alternative to validate the integration of the MEMS component in the
platform is to preserve the language heterogeneity, but within a single simulator.
Thus, we adopted Questa [11], which handles both discrete-time and analog de-
scriptions, and that natively provides SPICE-based constructs to connect analog and
digital designs.

The second alternative is to adopt the methodology proposed in this work to
convert the MEMS design to SystemC-AMS, integrate it in the virtual platform and
to run the overall system with the SystemC simulator.

22 Sara Vinco, Michele Lora, Mark Zwolinski

Table 7 Simulation time of the virtual platform by preserving the language heterogeneity and
moving to SystemC-AMS.

Languages Simulator Simulation time (s)
SystemC and Questa 215.47Verilog-AMS
SystemC and SystemC-AMS 97.59SystemC-AMS kernel

Table 7 reports the time needed to simulate 100ms of real system execution, and
it shows how the SystemC based simulation outperforms Questa (by 2.21×). This
is mainly due to the heavy communication overhead induced by Questa to allow
communication and synchronization between the discrete event and the Spice-base
simulators used by Questa respectively for the SystemC and Verilog-AMS parts
of the model. At the same time, SystemC-AMS provides a good level of accuracy
(0.02%), thus constituting a valid alternative for early validation of the overall sys-
tem and of the analog-digital communications.

6 Conclusions

The work described here proposes a methodology for representing models that are
both conservative and behavioural in SystemC-AMS. We achieve this goal by adopt-
ing existing SystemC-AMS ELN primitives in a novel way. As a result, SystemC
effectiveness is enhanced in the context of embedded system design, as it can cover a
wider range of descriptions and components. Experimental results highlight the cor-
rectness of the proposed approach both on synthetic case studies, focusing on the
single methodology steps, and on a complex industrial MEMS case study. Future
work will focus on the identification of abstraction strategies to target the SystemC-
AMS Timed Data Flow (TDF) level for improved simulation performance.

Acknowledgements This work has been partially supported by the European project SMAC FP7-
ICT-2011-7-288827.

References

1. IEEE, “1666-2011 - IEEE Standard for Standard SystemC,” 2011,
standards.ieee.org/findstds/standard/1666-2011.html.

2. R. Zafalon, “Smart system design: Industrial challenges and perspectives,” in Proc. of IEEE
MDM, 2013, p. 3.

3. Accellera Systems Initiative, “SystemC-AMS and Design of Embedded Mixed-Signal Sys-
tems,” 2013, accellera.org/activities/working-groups/systemc-ams.

4. L. W. Nagel and D. O. Pederson, SPICE: Simulation program with integrated circuit emphasis.
Electronics Research Laboratory, College of Engineering, University of California, 1973.

SystemC-AMS simulation of conservative behavioral descriptions 23

5. Accellera Systems Initiative, “Verilog-AMS,” 2014, accellera.org/downloads/standards/v-
ams.

6. Coventor, Inc., “MEMS+: MEMS Simulation Software,”
www.coventor.com/mems-solutions/products/mems.

7. P. Schneider, C. Bayer, K. Einwich, and A. Kohler, “System level simulation - A core method
for efficient design of MEMS and mechatronic systems,” in Proc. of IEEE SSD, 2012, pp. 1–6.

8. S. Mijalkovic, “Advanced circuit and device modeling with Verilog-A,” in Proc. of IEEE
MIEL, 2006, pp. 439–442.

9. P. Hartmann, P. Reinkemeier, A. Rettberg, and W. Nebel, “Modelling control systems in
SystemC-AMS – Benefits and limitations,” in Proc.of IEEE SOCC, 2009, pp. 263–266.

10. R. Narayanan, N. Abbasi, M. Zaki, G. A. Sammane, and S. Tahar, “On the simulation perfor-
mance of contemporary AMS hardware description languages,” in Proc. of IEEE ICM, 2008,
pp. 361–364.

11. Mentor Graphics, “Questa Advanced Simulator,” www.mentor.com/products/fv/questa.
12. N. Bombieri, G. Di Guglielmo, M. Ferrari, F. Fummi, G. Pravadelli, F. Stefanni, and A. Ven-

turelli, “Hifsuite: tools for hdl code conversion and manipulation,” EURASIP Journal on Em-
bedded Systems, vol. 2010, pp. 4:1–4:20, Jan. 2010.

13. Synopsys, “Platform architect,”
www.synopsys.com/Prototyping/ArchitectureDesign.

14. Cadence, “Virtual System Platform,”
www.cadence.com/products/sd/virtual_system.

15. Imperas Software, “OVP - Open Virtual Platforms,” www.ovpworld.org.
16. Mentor Graphics, “Vista Virtual Prototyping for SystemC/TLM 2.0 and QEMU ,”

www.mentor.com/esl/vista/virtual-prototyping.

