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Adapting Thurstone’s Law of Comparative Judgment to fuse 
preference orderings in manufacturing applications 

F. Franceschini and D. Maisano  
Dept. of Management and Production Engineering (DIGEP), Politecnico di Torino,  

Corso Duca degli Abruzzi 24, Turin, 10129, Italy 

Abstract 

A rather common problem in the manufacturing field includes: (i) a collection of objects to be compared 

on the basis of the degree of some attribute, (ii) a set of judges that individually express their subjective 

judgments on these objects, and (iii) a single collective judgment, which is obtained by fusing the 

previous subjective judgments.  

The goal of this contribution is to develop a new technique that combines the Thurstone’s Law of 

Comparative Judgment (LCJ) with an ad hoc response mode based on preference orderings. Apart from 

being relatively practical and user-friendly, this technique allows to express the collective judgment of 

objects on a ratio scale and is applicable to a variety of practical contexts in the field of manufacturing. 

The description of the proposed technique is integrated with the application to a practical case study. 

Keywords: Manufacturing; Quality engineering/management; Decision making; Preference ordering; 

Paired comparison; Law of comparative judgment; Scaling; Ratio scale. 

1.   Introduction 

Subjective measures of product/process attributes (e.g., early estimation of product manufacturability, 

evaluation of qualitative product features, evaluation of customer satisfaction and perceptions, 

assessment of operator skills and knowledge, etc.) are crucial in several practical contexts such as 

manufacturing, quality engineering/management, product design, marketing, etc. [Krynicki, 2006;  Maier 

et al., 2016; Tao et al., 2016; Zheng et al. 2016; Lin et al. 2017].  

A common problem is that in which a set of judges express their individual (subjective) judgments on a 

specific attribute of some objects and these judgments have to be fused into a collective one [Keeney 

and Raiffa, 1993]. Focusing on the manufacturing and quality engineering/management fields, possible 

examples concern: (i) the fusion of customer expectations on a set of product requirements, (ii) the 

fusion of judgments by reliability and maintenance engineers on the severity of a set of potential process 

failures, and (iii) the fusion of the opinions of designers and marketing experts on the brand image of 

several competing products. Addressing these issues correctly is crucial to guide development strategies 
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and improvement actions of companies/organizations [Den Ouden et al., 2006; Franceschini et al., 2019; 

Lin et al. 2017]. 

Returning to the problem of interest, it can be structured as follows (see Fig. 1): 

  A set of objects should be compared on the basis of the degree of some attribute. By attribute, we 

mean a specific feature of the objects, which is relevant for their comparison. It is assumed that the 

attribute of interest was previously determined through appropriate methods [Van Kleef et al., 2005]. 

  A set of judges individually express their subjective judgments (i.e., problem input) on these objects.  

 Subjective judgments should be fused into a single collective judgment (i.e., problem output), usually 

expressed in the form of a scaling, i.e., assignment of numbers to the objects, according to a 

conventional rule/method. 

The scientific literature encompasses a plurality of fusion techniques, which differ from each other for 

(at least) three features [ DeVellis, 2016]: 

1.  the response mode for collecting the (input) judgments, e.g., expressed in the form of preference 

orderings, paired-comparison relationships, ratings, rankings, etc.; 

2.  the underlying rationale of the fusion technique, e.g., heuristic, mathematical/statistical, or fuzzy 

models [Çakır, 2018]; 

3.  the type of (output) collective judgment, e.g., expressed in the form of rankings or 

ordinal/interval/ratio scale values. 

O1 
O2 

O3 

J1 

J2 

J3 

J4 

(i) Objects of interest (O1 to O3), 
 with a certain attribute  

(e.g., surface gloss) 

(ii) Subjective judgements by 
several judges (J1 to J4) 

 (e.g., visual inspectors) 

(iii) Collective judgement of the objects  

(e.g., scaling) 

O1
O2 
O3 

O1
O2 
O3 

O1
O2 
O3 

O1
O2 
 

O2 O1 O3 

degree of the attribute 

fusion 
technique 

response 
mode 

 

Fig. 1. Representation scheme of the problem of interest. 
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The simplest technique is probably that in which judges evaluate the objects using an ordinal response 

scale with a predetermined number of levels – e.g., five: very low, low, intermediate, high, and very high 

degree of the attribute. Then, for each object, the resulting scale levels are converted into conventional 

scores (e.g., 1, 2, 3, 4, 5 or -2, -1, 0, 1, 2, for five-level scales) and aggregated through central-tendency 

indicators.  

In the field of voting theory, we recall the Borda’s Count [Fishburn, 1973], in which each judge ranks 

the objects and then their (Borda’s) scores are calculated by summing the relevant rank positions. A 

collective ranking of the objects is finally constructed using these scores. 

In the field of multicriteria decision making, we recall the Analytic Hierarchy Process (AHP) [Saaty, 

2008; Hosseini and Al Khaled, 2016], in which judgments are expressed in the form of paired-

comparison (ratio) relationships (e.g., “Oi = 3ꞏOi”, which means that object Oi is three times more 

preferred than object Oj, regarding the attribute of interest) and, through a procedure based on the 

calculation of eigenvalues and eigenvectors, these judgments are aggregated into a vector of weights, 

associated with objects. Zeshui [2012] discusses other popular techniques concerned with qualitative 

criteria and linguistic variables. 

For a thorough discussion of the more relevant existing techniques in the various scientific fields, we 

refer the reader to the vast literature and extensive reviews [DeVellis, 2016]. 

Regardless of the peculiarities of the individual fusion techniques, a key element for their success is the 

simplicity of the response mode. Generally speaking, response modes that are relatively simple and easy 

to understand are more likely to be accepted and the relevant data collection process is more likely to be 

accurate and reliable [Franceschini et al., 2019]. For example, various studies show that comparative 

judgments of objects (e.g., “Oi is more preferred than Oj”) are generally easier than judgments in 

absolute terms (e.g., “the degree of the attribute of Oi is low/high”) [Alwin and Krosnick, 1985; Harzing 

et al., 2009]. This requirement applies to any decision-making problem, including those in the 

manufacturing field, in which judges (e.g., engineers, technicians, potential customers, etc.) are 

generally not familiar with questionnaires characterized by sophisticated response modes. 

As to the typology of collective judgments, we note that they are often treated as if they were defined on 

a ratio scale, even when they actually are not; e.g., rankings or ordinal-scale values of the objects are 

improperly “promoted” to ratio-scale values, in the moment in which they are combined with other 

indicators through weighted sums, geometric averages, or – more generally – statistics permissible to 
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ratio-scale values [Stevens, 1946; Roberts, 1979]. These promotions are potentially dangerous, as they 

can lead to significant distortions [Franceschini et al., 2019]. 

This article focuses on the Thurstone’s Law of Comparative Judgment (LCJ) [Thurstone, 1927], i.e., a 

consolidated and scientifically rigorous model that, starting from judgments expressed in the form of 

paired-comparison (ordinal) relationships of a set of objects, allows to construct an interval scaling of 

these objects. The LCJ is a milestone of psychometry and has stimulated the construction of numerous 

other models, such as that by Rasch [Andrich, 1978; De Battisti, Nicolini and Salini, 2010]. Despite its 

elegance and computational simplicity, the LCJ is not very popular in the field of manufacturing and 

quality engineering/management, probably because of two major limitations: 

1.  The response mode based on paired comparisons is inevitably tedious, especially when the number of 

objects tends to be high; 

2.  The output is defined on an interval scale, which is not as powerful as a ratio scale. 

The goal of this contribution is to develop a new fusion technique, which can be easily applied to typical 

problems in the field of manufacturing and quality engineering/management. The proposed technique 

will be based on the combination of the canonical LCJ model with an ad hoc response mode based on 

preference orderings. Apart from the regular objects (O1, O2, …, On), these orderings will also include 

two anchor objects, to univocally identify the zero point and a conventional unit of the output scale. In 

this way, the output scale will (reasonably) be considered as a ratio one. 

The remainder of this article is organized into six sections. Sect. 2 introduces a case study (concerning 

the design of an automatic pallet stretch-wrapping machine) which will accompany the theoretical 

description of the new fusion technique. Sect. 3 recalls the basic principles of the LCJ. Sects. 4 

illustrates the response mode based on preference orderings and the procedure (ZM-technique) to obtain 

a ratio scaling of the objects; the description is integrated with a practical application to the afore-

introduced case study. Sect. 5 deals with a possible extension of the proposed technique for problems in 

which (i) preference orderings may include omissions and/or incomparabilities between some objects, 

and (ii) judges are not necessarily equally important. Sect. 6 summarizes the original contributions of 

this paper and its practical implications, limitations and suggestions for future research. Further 

information is contained in the appendix. 
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2.   Introduction of the case study 

The conceptual description of the new fusion technique will be accompanied by a practical application 

to a real-life case study, which is illustrated below. Suppose a company designs and manufactures 

automatic machines for stretch-wrapping pallets (see Fig. 2).  

 

 

Fig. 2. Example of automatic machine for stretch-wrapping pallets. 

 
Four design concepts (O1 to O4, i.e., objects) of automatic machines have been generated by a team of 

designers during the conceptual design phase (see also the short description in Fig. 3): 

(O1) conveyorized turntable; 

(O2) non-conveyorized turntable; 

(O3) rotary ring; 

(O4) conveyorized rotary arm. 
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(O1) Conveyorized turntable (O2) Non-conveyorized turntable (O3) Rotary ring (O4) Conveyorized rotary arm 

Unlike traditional turntables or 
rotary arms, these machines rotate 
only the carriage itself. Featuring a 
compact design, these machines 
allow to reduce film costs 
dramatically, since they can start 
and stop the cycle anywhere on the 
load. 

Operators just have to place the 
pallet on the stretch wrapper and 
press the button to begin the 
automatic cycle. These machines 
eliminate the need for operators to 
get off the forklift to stretch wrap 
pallets and are available for both 
“low profile” and “high profile” 
wrapping operations. 

These machines eliminate the need 
to rotate the pallet being stretch 
wrapped. Heavy or unstable loads 
can quickly and efficiently be 
wrapped with these machines. 
These machines are most 
commonly used in-line with the rest 
of the packaging line. 

These machines offer a relatively 
flexible and economical stretch-
wrapping solution (i.e., relatively 
high load rate and reasonable 
weight capacity). Featuring a 
compact design, these machines 
are generally best when faced with 
tight fitting applications. 

 

Fig. 3. Schematic representation and short description of four design concepts of automatic stretch-wrapping machines. 

 
The objective is to evaluate the aforementioned design concepts in terms of user friendliness, i.e., a 

measure of the ease of use of a machine, which generally implies a certain level of automation and a 

good user interface. In addition, this attribute is very important to reduce training time and operator 

errors [Önüt et al., 2008]. Some of the factors that can positively influence user friendliness are: (i) the 

ability of a machine to adapt to loads with different mass, stability or “profile”, (ii) the ability to be 

integrated within various production lines, or (iii) the reduced set-up operations for the operator. 

A collective judgment should be obtained by merging the individual (subjective) evaluations of five 

process engineers (J1 to J5, i.e., judges). The case study will be analysed after the description of the 

proposed fusion technique. 

3.   Thurstone’s LCJ 

This section recalls the LCJ, with special attention to the so-called case V, i.e., the most popular variant 

of this model. Thurstone (1927) postulated the existence of a psychological continuum, that is to say an 

abstract and unknown unidimensional scale, in which objects are positioned depending on the degree of 

a certain attribute – i.e., a specific feature of the objects, which evokes a subjective response in each 

judge. The position of one object is directly proportional to the degree of the attribute, i.e., increasing to 

the right and decreasing to the left of the scale. For example, considering the case study introduced in 

Sect. 2, Fig. 4 depicts the (supposed) positioning of the four design concepts of stretch-wrapping 

machines. 
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According to Thurstone, the position of a generic i-th object (Oi), will be distributed normally: 

Oi ~ N(i, i
2), where i and i

2 are the unknown mean value and variance of that object’s attribute. This 

distribution has been postulated to reflect the intrinsic variation between judges in positioning 

(indirectly, as further explained) the objects in the continuum. In other words, different realizations of 

the same distribution reflect judgments by different judges.  

 2
333 ,~ NO

3

 2
111 ,~ NO

1

 2
222 ,N~O

2

 2
444 ,N~O

4Z=0 M=100 

maximum-imaginable degree of the attribute absence of the attribute 

(x) psychological 
continuum 

decreasing degree of the attribute increasing degree of the attribute 

 

Fig. 4. Representation of the psychological continuum and the (unknown) positioning of four fictitious objects (O1 to O4), 

depending on the degree of the attribute of interest. For simplicity, the psychological continuum is assumed to be single-

ended, i.e., the objects’ attribute progresses in one direction only and is included in the range [Z, M]. 

 

Let us now make a short digression that will help to grasp the rationale of the proposed technique (in 

Sect. 4). The fact that the object positioning is proportional to the degree of the attribute implies that this 

scale has an (unknown) absolute-zero point (Z), that is, a point corresponding to the absence of the 

attribute; similarly, it can be assumed that the scale has another (unknown) point, corresponding to the 

maximum-imaginable degree (M) of the attributea. Z and M would therefore delimit the range [Z, M] that 

includes the objects to be evaluatedb (see Fig. 4). Assigning conventional numerical values, such as 

Z = 0 and M = 100, one could obtain a ratio scale (y) with an absolute-zero point (Z) and a conventional 

unit (M – Z)/100. Of course, the scale is actually unknown, since the positions of Z and M in the 

psychological continuum are unknown too. 

Returning to the LCJ, Thurstone and other authors assert that envisaging the psychological continuum 

and assigning the position of the objects directly/reliably would be very difficult for judges [Thurstone, 
                                                           
a  For simplicity, we consider single-ended psychological continua, in which the objects’ attribute progresses in one direction 

only, starting from the absolute-zero point; this is reasonable when the attribute has a positive connotation exclusively (e.g., 

the importance of a set of product requirements) [ Torgerson, 1958]. 
b This assumption is quite common for psychometric studies on subjective perceptions [Torgerson, 1958; Lim, 2011]. 
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1927; Harzing et al., 2009]; on the other hand, judges would certainly find it easier to formulate 

comparative judgments of the objects. Let us consider an example that clarifies this concept: although a 

judge may find it difficult to guess the surface gloss of an object, based on him/her subjective physical 

perceptions, he/she will probably not encounter problems in comparing the surface glosses of two 

objects and formulate an ordinal relationship like “Oi is brighter/duller than Oj”. 

The LCJ (case V) includes the following additional postulates/assumptions [Thurstone, 1927; Edwards, 

1957]: (i) the objects’ variances, which reflect the judge-to-judge variability, are all equal (i
2 = j

2 = … 

= 2), and (ii) the intercorrelations (in the form of Pearson coefficients ij) between pairs of objects (Oi, 

Oj) are all equal too ( j,i,ij    ). 

 The application of the LCJ is based on five steps: 

1.  A set of (m) judges (J1, J2, …, Jm) express their preferencesc for each object (Oi) versus every other 

object (Oj), considering all possible nC2 = n·(n–1)/2 pairs, n being the total number of objects.  

Preferences are expressed through relations of strict preference (e.g., “O1 > O2” or “O1 < O2”) or 

indifference (e.g., “O1 ~ O2”) [Fishburn, 1973]. Results may then be aggregated into a frequency 

matrix (F), whose general element fij represents the number of times that Oi was preferred to Oj 

(i.e., absolute frequency of the preference “Oi > Oj”). Precisely, for each judge who prefers Oi to Oj, 

the indicator fij[0, m] is incremented by one unit (m being the total number of judges); if two 

objects are considered indifferent (i.e., “Oi ~ Oj”), fij and fji are both conventionally incremented by 

0.5. In mathematical terms: 

 B.Afij  50 , (1) 

where “|  |” is the cardinality operator that corresponds to the number of elements of a set, and the 

sets A {Jk: “Oi > Oj”} and B {Jk: “Oi ~ Oj”}. The complementarity relationship fij = m – fji 

holds. 

2.  Next, the fij values are transformed into pij values, through the relationship: 

                                                           
c  According to the terminology introduced in [Franceschini et al., 2007], the term “preference” – defined as subjective and 

non-empirical (i.e., which does not necessarily stem from a direct observation of reality) assignment of numbers/symbols to 

properties of objects – should be replaced with the term “evaluation” – defined as subjective and empirical (i.e., which 

stems from a direct observation of reality) assignment. Despite this, for the sake of simplicity the term “preference” will be 

hereafter used. 
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m

f
p ij

ij  , (2) 

where pij represents the observed proportion of times that Oi was chosen over Oj. The pij values are 

aggregated into a proportion matrix (P); the relationship of complementarity pij = 1 – pji holds. 

3.  Next, pij values are transformed into zij values, through the relationship: 

 zij = -1(1 – pij), (3) 

 being the cumulative distribution function of the standard normal distribution. The element zij 

represents a unit normal deviate, which will be positive for all values of (1 – pij) over 0.50 and 

negative for all values of (1 – pij) under 0.50. 

In general, objects are judged differently by judges. However, if all judges express the same 

preference for each outcome, the model is no more viable (pij values of 1.00 and 0.00 would 

correspond to zij values of  ). A simplified approach for tackling this problem is to associate 

values of pij ≤ 0.023 with zij = -1(1 – 0.023) = 1.995 and values of pij ≥ 0.977 with zij = -1(1 –

 0.977) = -1.995. More sophisticated solutions to deal with this issue have been proposed [Edwards, 

1957]. 

4.  Next, the zij values related to the possible paired comparisons are reported into a matrix Z. The 

element zij is reported in the i-th row and j-th column. The relationship zji = -zij holds, being unit 

normal deviates related to complementary cumulative probabilities, i.e., pji = (1 – pij). 

5.  Next, the scaling can be performed by (i) summing the values into each column of the matrix Z and 

(ii) dividing these sums by n. It can be demonstrated that the result obtained for each column 

corresponds to the unknown average value (j) of the object’s attribute, up to a positive scale factor 

and an additive constant [Franceschini and Maisano, 2015; Thurstone and Jones, 1957; Edwards, 

1957]. In other words, the LCJ results into an interval scaling, i.e., objects are defined on a scale 

with arbitrary zero point and meaningful unit [Stevens, 1946; Roberts, 1979]. A practical 

application of the LCJ will be presented later on in Sect. 4.3. 

A limitation of the LCJ is that, due to the arbitrary zero point and unit, the resulting (interval) scale is 

not “anchored” with respect to the (unknown) psychological continuum, in which objects are positioned. 

This limitation makes the results of different scaling processes incomparable. For the purpose of 

example, Fig. 5 shows an (apparently) paradoxical situation in which two considerably different 
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displacements of four objects, in a (presumably known) psychological continuum, result in analogous 

scaling processes, up to a scale factor. 

O2 O2’ 

maximum-imaginable degree of the attributeabsolute zero (absence of the attribute) 

Z M

O2 O4 O3 

(i) Objects on the (presumably known) psychological continuum: 

(ii) Thurstone’s (interval) scaling: 

O2’ O1’ O4’ 

new (arbitrary) zero 
0 

1st set of objects 2nd set of objects
O1 O3’ 

O1 O1’ O3 O3’ O4 O4’ 

 

Fig. 5. Example of analogous Thurstone-scaling processes (up to a certain scale factor), obtained for two different sets of 

objects (O1, to O4). Regarding the first set, objects are spread over a (presumably known) psychological continuum, denoting 

wide variations in the degree of the attribute, while regarding the second set, objects are concentrated into a small portion of 

the psychological continuum, with generally large degrees of the attribute. 

 
Another significant limitation of the LCJ is that the response mode can be laborious and tedious for 

judges, especially when the number of objects is large. These limitations will be (at least partly) 

overcome by the technique illustrated in the next section. 

4.   Description of the new technique 

4.1.   Introduction of preference orderings 

A significant drawback of the response mode based on paired-comparison (ordinal) judgments is that it 

can be tedious and complex to manage, since much repetitious information is required from judges. E.g., 

since the number of objects in the case study is four, each judge would be required to make 64
2 C  

judgments. Although this quantity of judgments may seem practically sustainable, it tends to “explode” 

when increasing the number of objects. 

Paired-comparison judgments can be obtained indirectly, through more practical response modes 

[Vasquez-Espinosa and Conners, 1982; Franceschini and Maisano, 2015]. For example, judges can 

directly formulate preference orderings that are then turned into paired-comparison data (see the 

example in Fig. 6).  
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(a) Preference ordering

(O3 ~ O4) > O1 > O2 

O3, O4 

O1 

O2 

(b) Paired-comparison 
relationships 

 O1 O2 O3 O4

O1 - > < < 

O2  - < < 

O3   - ~ 

O4    - 

 

 

Fig. 6. Example of (indirect) determination of paired-comparison relationships from judgments expressed using a preference 

ordering.  

A practical way to do this is asking each judge to position some tags (even immaterial ones, through 

some software interface [Tarricone and Newhouse, 2016]) in order of preference. The more preferred 

ones should be positioned in the top positions while the less preferred ones in the lower ones; those 

positioned at the same hierarchical level are considered indifferent (see the example Fig. 7). 

 

O1

O2

O3 O4 1st hierarchical level 

2nd hierarchical level 

3rd hierarchical level 

(O3 ~ O4) > O1 > O2 

Resulting (linear) preference ordering:

Tags related to the 
individual objects 

 

Fig. 7. Practical technique for supporting the construction of preference orderings, using tags.  

 

In this way, each judge can construct a linear preference ordering, i.e., a hierarchical sequence of the 

objects of interest, linked by arrows depicting the strict preference (“>”) relationship. Two or more 

objects in the same hierarchical levels are linked by the indifference (“~”) relationship. It can be seen 

than two generic objects are always comparable, since there exist a path from the first to the second one 

(or vice versa) that is directed downwards. The resulting number of hierarchical levels may change 

depending on the number of objects and their mutual relationships [ Nederpelt and Kamareddine, 2004]. 

We also note that this response mode forces judges to be transitive (e.g., if “O1 > O2” and “O2 > O3”, 

then “O1 > O3”). 
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Even though the direct formulation of preference orderings may sometimes be less practical then the use 

of ordinal response scales (e.g., in the case of telephone or street interviews) [Alwin and Krosnick, 

1985], the fact remains that it is less prone to the following problems: 

  Ordinal scales tend to be used subjectively, as there is no absolute reference shared by all judges. For 

example, let us consider the five-level ordinal scale: very low, low, intermediate, high, and very high 

degree of the attribute; “indulgent” judges will tend to assign higher levels of preference whereas 

“severe” judges will tend to assign lower ones. For this reason, it would be questionable to aggregate 

judgments by different judges through indicators of central tendency. 

  The number of categories in the ordinal scale may conflict with the real discriminatory power of 

judges; e.g., the resolution of a five-level scale may represent a limitation for judges able to 

distinguish among a greater number of hierarchical levels, or it can be over-detailed for judges unable 

to distinguish among more than a few hierarchical levels. 

4.2.   Anchoring the Thurstone’s Scaling : the ZM-technique 

The scientific literature includes several techniques to anchor the LCJ’s output scale, even though they 

inevitably complicate the response mode. For example, the technique proposed by Torgerson (1958) 

requires that each judge directly assigns the scale values of the objects, in a range included between two 

anchor points: (i) a (presumed) absolute-zero point (set to 0), corresponding to the absence of the 

attribute, and (ii) a point corresponding to the maximum-imaginable degree of the attribute, 

conventionally set to 5. While aware of the difficulty and potential unreliability of this direct-assignment 

process, Torgerson suggests to use it just for the purpose of anchoring the LCJ scale [Edwards, 1957]. 

An application example of this technique is reported in Sect. A.1 (in the appendix). 

We have developed a new anchoring technique, denominated “ZM-technique”, that is more consistent 

with the response mode based on preference orderings (in Sect. 4.1). Our proposal is to apply the LCJ 

including two dummy or anchor objects among the regular ones: 

(Z)  a dummy/anchor object corresponding to the absence of the attribute of interest (“Z” stands for 

“zero”); 

(M) a dummy/anchor object corresponding to the maximum-imaginable degree of the attribute (“M” 

stands for “maximum-imaginable”), consistently with the current technological and socio-economic 

development. 
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Likewise the regular objects, Z and M are assumed to project a normal distribution on the psychological 

continuum, with unknown mean value and unknown variance, which is equal to that of the other objects 

(see Sect. 3). The collection of judgments is then modified by considering the regular objects (O1, O2, 

etc.) and the dummy/anchor objects (Z and M). Each judge has to formulate a preference ordering of 

these objects, with two important requirements (Sect. A.2, in the appendix, reports a possible 

questionnaire with user guidance): 

1.  Z should be positioned at the bottom of the preference ordering, i.e, there should not be any other 

object with preference lower than Z. In the case the attribute of another object is judged to be absent, 

that object will be considered indifferent to Z and positioned at the same hierarchical level. 

2.  M should be positioned at the top of the preference orderings, i.e., there should not be any other 

object with preference higher than M. In the case the attribute of another object is judged to be the 

maximum-imaginable, that object will be considered indifferent to M and positioned at the same 

hierarchical level. 

Next, the Thurstone’s scaling is performed and the resulting (interval) scale is transformed into a new 

one, defined in the conventional range [0, 100], through the following linear transformation: 

 
ZM

Z

ZM

Z

xx

xx
y

xx

xxy












100
0100

0
, (4) 

where  

xZ and xM are the scale values of Z and M, resulting from the LCJ;  

x is the scale value of a generic object, resulting from the LCJ; 

y is the relevant transformed scale value in the conventional range [0, 100]. 

It can be seen that the introduction of Z and M allows to anchor the LCJ scale into a new scale (y) with a 

conventional unit and a zero point (which corresponds to the absence of the attribute); it is therefore not 

unreasonable to consider y as a ratio scale. We remark that setting the value of M to 100 is a sort of 

normalization to make the scale unit comparable with those obtained from other LCJ processes. The 

adjective “comparable” means that the resulting scales have a common unit; e.g., let us assume that the 

LCJ is used to evaluate the courtesy of some call-center operators, according to the judgments of a 

sample of customers, and this evaluation is repeated annually: without proper normalization, the results 

obtained over several years would not be comparable. 
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4.3.   Application to the case study 

Returning to the case study in Sect. 2, five process engineers (J1 to J5, i.e., judges) have to compare four 

design concepts (O1 to O4, i.e., objects) of automatic pallet stretch-wrapping machines, from the 

perspective of user friendliness (i.e., attribute).  

Each judge formulates a preference ordering including the four (regular) objects and the two 

dummy/anchor objects: Z, i.e., a fictitious machine that is absolutely user-unfriendly (e.g., due to the 

difficult use by operators and high risk of error) and M, i.e., a fictitious machine that guarantees the 

maximum-imaginable user friendliness, in line with the current technological development. The 

resulting orderings are represented in Fig. 8. 

It can be noticed that J4 has positioned Z and O2 at the bottom of the preference ordering (absence of the 

attribute). On the other hand, J2 and J3 have positioned M and other objects at the top of their orderings 

(maximum-imaginable degree of the attribute).  

Given that the introduction of Z and M increases the information content of preference orderings, it may 

also cause some variation in the results. For example, the information that the degree of an attribute is 

zero or the maximum-imaginable one is richer than the information that it is just lower or higher than 

the remaining ones. 

 

O3 

O2 Z 

O1 O4 

M 

O1 O2

O3

MO4

ZO2 

O1 

O3 O4 

M 

Z 

O3

O2

O4

M

O1

Z

M

Z

O3 O4

O2

O1

J1 

Pref. orderings (analytic form): M>(O3~O4)>O1>O2>Z (O3~O4~M)>O1>O2>Z (O4~M)>O3>(O1~O2)>Z M>O3>(O1~O4)>(O2~Z) M>O3>O4>O2>O1>Z

J2 J3 J4 J5

Pref. orderings (graphic form): 

 

Fig. 8. Example of preference orderings formulated by five judges (i.e., J1 to J5), including four regular objects (O1 to O4) and 

two dummy/anchor objects (Z and M). 
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The price to pay for this information enrichment is the increased effort of judges, who should formulate 

slightly more complicated judgments: apart from considering the regular objects, they should also 

envisage the two dummy/anchor objects and their “absolute” meaning. We are aware that the concepts 

of zero (regarding Z) or maximum-imaginable degree of an attribute (regarding M) are inevitably 

blurred, as they may depend on the judges’ experience, expectations and techno-economic context; for 

example, several engineers (judges) may have different expectations on the degree of user friendliness 

(attribute) guaranteed by “exemplary” machines (objects). This problem is common to many scale-

anchoring techniques [Torgerson, 1958;  Paruolo et al., 2013]. 

The preference orderings are then translated into paired-comparison relationships and the LCJ is applied 

(see Fig. 9(a)). We have verified that the new anchoring technique provides results in line with those 

obtained from other existing techniques. For example, it can be seen that the results in Fig. 9 are 

strongly correlated with those obtained through the Torgerson’s technique (see Sect. A.1, in the 

appendix). Additionally, it was empirically observed that this correlation tends to increase for problems 

with a larger number of objects and/or judges. 
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Paired 
comparison J1 J2 J3 J4 J5 

 
fij pij zij 

(O1, O2) > > ~ > <  3.5 0.70 -0.524
(O1, O3) < < < < <  0 0.00* 1.995
(O1, O4) < < < ~ <  0.5 0.10 1.282
(O2, O3) < < < < <  0 0.00* 1.995
(O2, O4) < < < < <  0 0.00* 1.995
(O3, O4) ~ ~ < > >  3 0.60 -0.253
(O1, Z) > > > > >  5 1.00* -1.995
(O2, Z) > > > ~ >  4.5 0.90 -1.282
(O3, Z) > > > > >  5 1.00* -1.995
(O4, Z) > > > > >  5 1.00* -1.995
(O1, M) < < < < <  0 0.00* 1.995
(O2, M) < < < < <  0 0.00* 1.995
(O3, M) < ~ < < <  0.5 0.10 1.282
(O4, M) < ~ ~ < <  1 1.00* -1.995

(a) Judgements, paired-comparison relationships and fij, pij, zij indicators 

 O1 O2 O3 O4 Z M 
O1 2.5 3.5 0.0 0.5 5.0 0.0 

O2 1.5 2.5 0.0 0.0 4.5 0.0 

O3 5.0 5.0 2.5 3.0 5.0 0.5 

O4 4.5 5.0 2.0 2.5 5.0 1.0 

Z 0.0 0.5 0.0 0.0 2.5 0.0 

M 5 5 4.5 4 5 2.5 

(b) matrix F (c) matrix P (d) matrix Z 

fij denotes the number of times that Oi is preferred to Oj; 
pij denotes the proportion of times that Oi is preferred to Oj; 

zij = -1(1 – pij); 

Notes: 

 O1 O2 O3 O4 Z M 
O1 0.50 0.70 0.00* 0.10 1.00* 0.00*

O2 0.30 0.50 0.00* 0.00* 0.90 0.00*

O3 1.00* 1.00* 0.50 0.60 1.00* 0.10 

O4 0.90 1.00* 0.40 0.50 1.00* 0.20 

Z 0.00* 0.10 0.00* 0.00* 0.50 0.00*

M 1.00* 1.00* 0.90 0.80 1.00* 0.50 

 O1 O2 O3 O4 Z M 
 O1 0.00 -0.52 2.00 1.28 -2.00 2.00 

 O2 0.52 0.00 2.00 2.00 -1.28 2.00 

 O3 -2.00 -2.00 0.00 -0.25 -2.00 1.28 

 O4 -1.28 -2.00 0.25 0.00 -2.00 0.84 

 Z 2.00 1.28 2.00 2.00 0.00 2.00 

 M -2.00 -2.00 -1.28 -0.84 -2.00 0.00 
       

     j -2.75 -5.23 4.96 4.18 -9.26 8.11 

j’ j / n -0.46 -0.87 0.83 0.70 -1.54 1.35 

j’’ [0,100] 37.5 23.2 81.9 77.4 0 100 
 

Z is a dummy/anchor object denoting the zero preference level; 

M is a dummy/anchor object denoting the maximum-imaginable preference level; 
n=6 is the total number of objects, including Z and M; 
(*)values of pij ≤ 0.023 and ≥ 0.977 have been conventionally associated with zij = 1.995 and -1.995 respectively; 

j’ is the (interval) scale value of the j-th object, resulting from the LCJ; 

j’’ is the j’ value transformed in the conventional range [0, 100] (transformation in Eq. 4).  

Fig. 9. Example of LCJ application to the preference orderings in Fig. 8: (a) paired-comparison relationships, (b) matrix F, 

(c) matrix P, (d) matrix Z and resulting scaling. 

4.4.   Comparison with other techniques 

To reveal the advantages of the proposed technique, it has been compared with two other techniques: 

namely the Borda’s Count and the Method of Single Stimuli. 

Borda’s Count consists of two basic steps [Fishburn, 1973]: (i) each (i-th) object in the preference 

ordering of each (j-th judge) is associated with a score (kij) that corresponds to its rank position, and (ii) 

the scores obtained by each object are synthesized into the so-called Borda’s score (Bi):  

 



m

j
iji kB

1

, (5) 
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m being the total number of judges. Of course, the more important objects are those with lower Bi 

values. The application of the Borda’s Count to the scores in Fig. 8 leads to the results in Tab. 1. 

Object Rank position in the preference orderings Bi Resulting 
rank position J1 J2 J3 J4 J5

O1 4 4 4 5 3 20 4th 
O2 5 5 4 4 5 23 5th 
O3 2 1 3 2 2 10 2nd 
O4 2 1 1 3 3 10 2nd 
Z 6 6 6 6 5 29 6th 
M 1 1 1 1 1 5 1st 

Tab. 1. Application of the Borda’s Count to the preference orderings in Fig. 8. The resulting rank position of objects is 

obtained by ordering the objects decreasingly with respect to their Bi values. 

 
The Method of Single Stimuli requires that each judge directly assigns the objects’ scale values, with 

respect to two anchors: (1) a (presumed) absolute zero (Z=0), corresponding to the absence of the 

attribute, and (2) the maximum-imaginable degree of the attribute, conventionally set to 5 (M=5) 

[Torgerson, 1958]. Subsequently, judge assignments are aggregated – object by object – through a 

central tendency indicator, such as the mean value (gj). For more information on this method, see Sect. 

A.1 (in the Appendix). 

In this specific case, the five judges are also asked to make the scale-value assignments for the six 

objects of interest (i.e., the four “regular” objects plus the two dummy ones). Tab. A.1 (in the Appendix) 

shows these assignments and the results of the aggregation. 

Tab. 2 contains the results of the comparison of the three techniques in terms of rank positions of the 

objects of interest.  

Object (a) Proposed technique (b) Borda’s Count (c) Method of Single Stimuli 
 j'' Rank posit. Bj Rank posit. gj Rank posit. 

O1 37.5 4th 20 4th 2.2 4th 
O2 23.2 5th 23 5th 1.2 5th 
O3 81.9 2nd 10 2nd 4 2nd 
O4 77.4 3rd 10 2nd 3.8 3rd 
Z 0 6th 29 6th 0 6th 
M 100 1st 5 1st 5 1st 

For each (j-th) object,  
j'' is the resulting ratio-scale value, according to the proposed technique; 
Bj is the so-called Borda’s score;  
gj is the average value of the (direct) assignments by judges. 

Tab. 2. Results of the comparison of the proposed techniques with two other techniques (i.e., Borda’s Count and Method of 

Single Stimuli). For each (j-th) object, j'' is the resulting ratio-scale value, according to the proposed technique, Bj is the so-

called Borda’s score, while gj is the average value of direct assignments by judges. 
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Comparing the results of the three techniques, we notice that they are very close to each other, in many 

cases even coincident. This empirical example shows that the proposed technique is relatively robust, 

consistently with the notion of convergent validity [Trochim et al., 2016]. Unfortunately, the absence of 

a “gold standard” – i.e. a “true” reference result related to a specific problem – does not allow to 

establish the superiority of one technique over the others. Nevertheless, we believe that the proposed 

technique has two conceptual advantages: 

  The response mode of the proposed technique (i.e., preference orderings) is certainly simpler than 

that of the Method of Single Stimuli, which requires the direct assignment of the objects on a 

(presumed) ratio scale. This means that input data are likely to be more accurate and reliable 

[Torgerson, 1958; Franceschini et al., 2019]. 

  The proposed technique results into a ratio scaling, without any undue scale “promotion” of input 

data (i.e., preference orderings, which exclusively contemplate relations of indifference and strict 

preference among objects). Borda’s Count only provides a rank ordering of the set of objects, without 

any interval or ratio scaling. 

5.   Generalizing the response mode 

To fit a relatively large amount of practical contexts, the previously proposed response mode can be 

adapted to more general cases, in which (i) preference orderings may include omissions and/or 

incomparabilities between some objects, and/or (ii) judges are not necessarily equi-important. These 

two cases will be treated separately in the following two sub-sections. 

5.1.   Partial orderings 

Let us assume that the response mode admits orderings in which some objects are omitted and/or 

incomparable with each other. According to the Mathematics’ order theory, this kind of ordering is 

classified as partial [Nederpelt and Kamareddine, 2004] and can be diagrammed as a graph with 

branches, which determine different possible paths from the element(s) at the top to that one(s) at the 

bottom (see the example in Fig. 10). If two objects are not comparable, there exists no direct path from 

the first to the second one (or vice versa); e.g., in Fig. 10(b), O1 and O5 are incomparable since they lie 

along two different paths. 
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Partial Type of preference ordering 

Incomparable alternatives O1 with O5 

O2 

O3 

O1 

(graphic form) 

O5 

O2 > O3 > (O1 || O5) Ordering (analytic form) 

Omitted alternative O4 

Alternatives of interest {O1, O2, O3, O5} 

 O1 O2 O3 O4 O5 
O1 - < < || || 

O2  - > || > 

O3   - || > 

O4    - || 

O5     - 

 

Paired-comparison relationships 

 

Fig. 10. Example of partial preference ordering and transformation into paired-comparison relationships. Symbols “>”, “~” 

and “||” respectively mean “strictly preferred to”, “indifferent to” and “incomparable to”. 

 

From an operational point of view, the procedure described in Sect. 4 would require a few adjustments: 

  Each preference ordering is translated into paired-comparison relationships of strict preference “>”, 

indifference “~”, and incomparability “||”. The latter relationship is applied in the case of paired 

comparisons of objects included in the ordering but on different paths, or paired comparisons where 

at least one of the objects is omitted from partial ordering. 

  The indicator fij – which takes into account the strict-preference and indifference relationships 

between Oi and Oj – is associated with a new indicator mij, which counts the “usable” paired-

comparison relationships, i.e., those in which the alternatives of interest are not incomparable. 

  The pij indicator would therefore be calculated as: 

 
ij

ij
ij m

f
p  . (6) 

Eq. 2, in which judges formulate orderings with all usable paired-comparison relationships between Oi 

and Oj, represents a particular case of the more general case in Eq. 6. The pij values are then aggregated 

in the P matrix. If this matrix is complete – i.e., all the elements can be determined – the canonical LCJ 

is applied. If the matrix is incomplete – i.e., for some paired comparisons mij = 0 and therefore fij, pij and 

zij cannot be determined – the procedure is a bit more complicated. Scientific literature contains several 

techniques for applying the LCJ to incomplete F, and therefore P and Z, matrices; the most consolidated 
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one is that proposed by Morrissey [Morrissey, 1955] and later refined by Gulliksen [Gulliksen, 1956; 

Westland et al., 2014]. 

Although the problem is technically solvable even in these cases of “incompleteness”, the fact remains 

that the presence of many incomparabilities denotes the difficulty of judges in comparing several 

objects. This indication should not be ignored by questionnaire administrators. 

5.2.   Non equally important judges 

In the canonical LCJ, judges are implicitly assumed to be equi-important, i.e., they contribute to the 

collective judgment equally. In the presence of an importance hierarchy of judges, expressed through a 

set of weights (w1, w2, …, wm) [ Vora et al., 2014, Ngan et al., 2016], this hypothesis could be relaxed 

and the procedure described in Sect. 4 would be changed as follows: 

  Preference orderings are translated into paired-comparison relationships. Then, the fij indicators 

(previously defined in Eq. 1) are reformulated as: 

 



Bk

k
Ak

kij wwf 5.0 , (7) 

 being A {k: “Oi > Oj”, for Jk} and B {k: “Oi ~ Oj”, for Jk}. 

  The pij indicators (previously defined in Eq. 2) are reformulated as: 
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This is equivalent to adopting a weighted voting system in which judges do not necessarily have the 

same amount of influence. The pij value would therefore represent the portion of weighed votes for 

which Oi is preferred to Oj. The rest of the procedure would remain unchanged. 

For the purpose of example, let us consider a variant of the case study in Sect. 2, in which judges (i.e., 

the five process engineers) are weighted proportionally to their “professional experience” (e.g., number 

of years of activity), as this feature is supposed to influence the accuracy of the response significantly 

while being relatively easy to evaluate. 

With further adjustments, the proposed procedure could also be adapted to problems in which the 

importance hierarchy of judges is expressed through a preference ordering (e.g., J1 > J2 > (J3 ~ J4) > …) 

and not through a set of weights, as formalized in [Franceschini et al., 2016]. 
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6.   Conclusions 

This paper proposed a new technique to fuse multiple subjective judgments into a collective judgment 

that combines the canonical LCJ model with an ad hoc response mode based on preference orderings. 

Apart from the regular objects, these orderings will also include two dummy/anchor objects, to 

univocally identify the zero and the maximum-possible value of the LCJ scale. This allows to represent 

the objects on a conventional ratio scale, included between 0 to 100, without any conceptually-

prohibited promotion. In addition, the response mode based on preference orderings is relatively 

practical and user-friendly, and could help diffuse the LCJ even in contexts where it is not commonly 

used, such as manufacturing and quality engineering/management. 

The technique is largely automatable and, with a few adjustments, can be applied to problems in which 

(i) preference orderings may include omissions and/or incomparabilities between some objects, and (ii) 

judges are not necessarily equally important. 

The proposed technique has some limitations: 

  The problem was addressed by considering a single-ended psychological continuum, where the 

attribute’s degree grows from an absolute-zero point to a point with maximum-imaginable degree. 

With some changes, the technique could be adapted to double-ended continua. 

  The introduction of the two anchor objects (Z and M) into the preference orderings requires an 

additional effort of imagination for judges. 

Regarding the future, we plan to apply the proposed technique to more structured real-life problems in 

the field of manufacturing and quality engineering/management (e.g. within the context of Quality 

Function Deployment [Chen et al., 2017] and/or that of Failure Mode, Effects and Criticality Analysis 

[Qazi et al., 2017]). Besides, we plan to further simplify the response mode, assuming that judges do not 

have to formulate complete orderings but just (partial) orderings that include the more/less preferred 

objects (e.g. the top-three or bottom-three ones). In fact, it has been observed that judges tend to focus 

on the more/less preferred objects, providing more reliable judgments about them, to the detriment of 

the remaining objects [Harzing et al., 2009; Franceschini and Maisano, 2018]. Finally, we plan to 

develop a statistically-sound procedure to estimate the uncertainty related to the solution (i.e., the 

scaling of objects).  
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Appendix 

A.1 Torgerson’s anchoring 

This section exemplifies the anchoring technique by Torgerson (1958, page 196), applying it to the LCJ 

scaling in Fig. A.1. Focussing on this scaling process, it can be seen that the (input) paired-comparison 

relationships are identical to those in the example in Fig. 8, except that those with at least one of the 

dummy/anchor objects are not present. The resulting (non-anchored) scale is reported in Fig. A.1(d). 

The rationale of the Torgerson’s anchoring is that results of the LCJ are (at least roughly) correlated 

with those resulting from the so-called Method of Single Stimuli, in which each judge directly assigns 

the objects’ scale values, with respect to two anchors: (1) a (presumed) absolute zero, corresponding to 

the absence of the attribute, and (2) the maximum-imaginable degree of the attribute, conventionally set 

to 5. While aware of the difficulty and potential roughness of these direct assignments, Torgerson (1958, 

page 196) suggests their use just for the purpose of anchoring the LCJ scale. 
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Paired 
comparison J1 J2 J3 J4 J5 

 
fij pij zij 

(O1, O2) > > ~ > <  3.5 0.70 -0.524 
(O1, O3) < < < < <  0 0.00* 1.995 
(O1, O4) < < < ~ <  0.5 0.10 1.282 
(O2, O3) < < < < <  0 0.00* 1.995 
(O2, O4) < < < < <  0 0.00* 1.995 
(O3, O4) ~ ~ < > >  3 0.60 -0.253 

 O1 O2 O3 O4 

O1 2.5 3.5 0 0.5 

O2 1.5 2.5 0 0 

O3 5 5 2.5 3 

O4 4.5 5 2 2.5 

 O1 O2 O3 O4 

O1 0.50 0.70 0.00* 0.10

O2 0.30 0.50 0.00* 0.00*

O3 1.00* 1.00* 0.50 0.60

O4 0.90 1.00* 0.40 0.50

(a) Judgements, paired-comparison relationships and fij, pij, zij values 

(b) matrix F (c) matrix P (d) matrix Z 

pij denotes the proportion of times that Oi is preferred to Oj; 

fij denotes the number of times that Oi is preferred to Oj; 

zij = -1(1 – pij); 

Notes: 

(*) for pij ≤ 0.023, zij is conventionally set to 1.995, while for pij ≥ 99.977, it is set to -1.995; 

 O1 O2 O3 O4 

     O1 0.000 -0.524 1.995 1.282

     O2 0.524 0.000 1.995 1.995

     O3 -1.995 -1.995 0.000 -0.253

     O4 -1.282 -1.995 0.253 0.000

  
     j -2.753 -4.515 4.244 3.024

j’ j / n -0.688 -1.129 1.061 0.756
 

j’ is the (interval) scale value of the j-th object, resulting from the LCJ.  

Fig. A.1. Example of application of the LCJ, considering the paired-comparison relationships by five judges (J1 to J5) on four 

objects (O1 to O4). These relationships are identical to those in the example in Fig. 9, except that those with at least one of the 

dummy/anchor objects are not present. 

 

Subsequently, judge assignments are aggregated – object by object – through a central tendency 

indicator, such as the mean or median value (g), and plot against the scale values (x) computed from the 

LCJ. Then, a straight line to the points is fitted and the intercept on the horizontal axis (g=0) is taken as 

estimate of the position of the absolute-zero point (Z) and that on the horizontal line (g=5) as estimate of 

the position of the point with maximum-imaginable degree (M) of the attribute. 

Considering the example in Fig. A.1, we hypothesize that the five judges directly assign the objects’ 

scale values on a rating scale from 0 to 5, with unitary resolution; the zero point corresponds to the 

absence while the maximum value (i.e., 5) corresponds to the maximum-imaginable degree of the 

attribute. Tab. A.1 collects these assignments. 
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Object Rank position in the preference orderings gj 
(mean) 

Resulting 
rank position J1 J2 J3 J4 J5

O1 2 4 2 2 1 2.2 4th 
O2 1 1 2 0 2 1.2 5th 
O3 4 5 3 4 4 4 2nd 
O4 4 5 5 2 3 3.8 3rd 
Z 0 0 0 0 0 0 6th 
M 5 5 5 5 5 5 1st 

Tab. A.1. Direct assignments of the scale values for six objects (i.e., O1 to O4, Z and M), by five judges (J1 to J5). The rating 

scale in use is included between 0 (absence of the attribute) and 5 (maximum-imaginable degree) and has a unitary 

resolution. 

 

Assignments are then aggregated using the arithmetic mean. The graph in Fig. A.2 plots the resulting 

mean values (g) against the scale values (x) obtained through the LCJ (see Fig. A.1). Then, a straight 

tendency line is fitted (through a linear least-squares regression) and the intersection of this line with the 

horizontal axis (g=0) determines an estimates of the absolute-zero point (Z, i.e., first anchor), while that 

with the horizontal line g=5 determines an estimate of the point (M, i.e., second anchor) of the 

maximum-imaginable degree of the attribute on the Thurstone’s scale. Next, the LCJ scale values are 

normalized in the conventional range [0, 100], through the linear transformation in Eq. 4. This scale can 

reasonably be considered as a ratio one (see Tab. A.2). 

We have verified that the new anchoring technique (presented in Sect. 4.2) provides results in line with 

those obtained from the Torgerson’s technique. E.g., Fig. A.3 shows that these two anchoring 

techniques, when applied to the same scaling problem, are strongly correlated. Also, we have 

empirically observed that the correlation tends to increase for problems with a larger number of objects 

and/or judges. 
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Fig. A.2. Comparison of the scale values resulting from the Thurstone’s LCJ and those resulting from a direct scale-value 

assignment (Method of Single Stimuli) for four objects (O1 to O4). 

 

 O1 O2 O3 O4 Z M 
Results of the LCJ -0.688 -1.129 1.061 0.756   
Anchor values     -2.271 1.784 
Scale values transformed into [0, 100] 39.0 28.2 82.2 74.6 0 100 

Tab. A.2. Anchoring of the LCJ scale (in Fig. A.1(d)), applying the technique by Torgerson. 
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Fig. A.3. Comparison between two anchoring techniques (i.e., that by Torgerson, exemplified in Tab. A.2, and the proposed 

technique, exemplified in Fig. 9), with reference to the same LCJ-scaling problem. 
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A.2 Questionnaire 

Fig. A.4 reports an example of questionnaire to guide the construction of preference orderings. 

Questionnaire 

Instructions for Judges 

 A preference ordering is an ordered sequence of objects (O1, O2, …), depending on the degree of preference of a certain attribute.  

 The judge has to position the objects, depending on the degree of preference of their attributes: most preferred objects at the top and least 

preferred at the bottom of the sequence. 

 Two are the possible relationships between each pair of objects: 

1. strict preference, e.g., “O1 is preferred to O2”, then O1 is positioned at a higher hierarchical level than O2;  

2. indifference, e.g., “O1 has the same preference level of O2”, then the two objects are positioned at the same hierarchical level. 

 The number of hierarchical levels is not fixed in advance, since it may depend on the number of objects and their mutual relationships. 

 Apart from the regular objects (O1, O2, …), the judge has to include two dummy objects in his/her preference ordering: 

Z  object with a zero degree of preference of the attribute; 

M,  object with a maximum-possible degree of preference of the attribute. 

Regular objects with zero-preference degree should be positioned at the same hierarchical level of Z (indifference relationship) but never 

below, while objects with maximum-possible preference degree should be positioned at the same hierarchical level of M, but never 

above. 

Example 

Two judges (J1, J2) construct their preference orderings on the aesthetics (i.e, the attribute of interest) of four car models (i.e, the objects of 

interest, O1, O2, O3 and O4).  

As regards J1, O4 is preferred to O3 and, in turn, to O1 and to O2; since O4 reaches the maximum-possible degree of preference, it is 

considered indifferent to M. 

As regards J2, O3 is preferred to O1 and O4 (tied), which are, in turn, preferred to O2; since O2 has a zero preference degree, it is considered 

indifferent to Z. 

increasing 
preference 

Pref. ordering of J1 
 

O3

O2 Z

O1 O4

M

O2 

O1 

O3 

O4 M 

Z 

Pref. ordering of J2 

hierarchical levels 

decreasing 
preference  

Fig. A.4. Example of questionnaire with guidance for the formulation of preference orderings.  

 

 


