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ABSTRACT 13 

The vertical load acting on a support structure is affected by the loss of self-bearing capacity of 14 

the rock inside the plastic zone. This load can then be accounted for by analytical calculation 15 

methods capable of evaluating the stresses in the tunnel support system to proceed with the 16 

tunnel design. Generally, the effect of the rock's own weight in the plastic zone is considered in a 17 

simplistic way by evaluating an additional vertical load given by the weight of the rock due to 18 

the thickness of the plastic zone. This approach leads to a significant increase in the vertical load 19 

with the risk of overdesigning the support structure. In this work, the effect of the rock's own 20 

weight in the plastic zone was considered by modifying the numerical solution of the 21 

convergence-confinement method for tunnels built in rock. In this way, through the intersection 22 
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of the characteristic curve of the tunnel and the intersection line of the support structure, it is 23 

possible to determine both the vertical loads (with the effect of the weight of the rock) and the 24 

horizontal load (without the effect of weight of the rock). The application of the method to a 25 

project in the Alps allowed to detect the magnitude of the percentage increase of the vertical load 26 

and a significant increase in the thickness of the plastic zone with the consequences that this may 27 

have on the designing of the radial bolting length in that zone. Increasing the plastic radius leads 28 

to an increase in the length of the bolts. This is interesting because in the area of the crown where 29 

the weight of the plasticized rock is considered the bolts are usually installed with a greater 30 

length. In the final part of the paper a new procedure is illustrated to define the vertical and 31 

horizontal loads acting on the support structures, starting from the convergence-confinement 32 

curves, obtained for the crown and for the lateral areas (sides). 33 

KEY WORDS: convergence-confinement method; hyperstatic reaction method; base tunnel; 34 

plastic radius; rock 35 

  36 
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ABBREVATIONS AND NOTATION LIST 37 

a exponent of the failure criterion of Hoek and Brown 38 

𝐴𝐴𝑠𝑠  area of the lining section 39 

𝐷𝐷  parameter that varies between 0 and 1, which considers the disturbance of the rock mass 40 

due to the excavation operations 41 

𝐸𝐸𝑟𝑟  elastic modulus of the rock mass in the plastic field  42 

Fn limit strength of the elastic-plastic behavior of the normal springs 43 

fr component of body forces per unit volume in the radial direction 44 

fθ  component of body forces per unit volume in the tangential directions 45 

𝐼𝐼𝑠𝑠  inertia moment along the lining section 46 

k  stiffness of the lining 47 

Kn stiffness of the normal interaction springs 48 

Ks stiffness of the shear interaction springs 49 

𝑘𝑘0  earth pressure at rest 50 

𝑀𝑀 bending moments along the support 51 

mb  strength parameter, which depend on the GSI (Geological Strength Index)  52 

mi  strength parameter that refers to intact rock and which depends on the typology of the 53 

rock 54 

𝑁𝑁 normal forces along the support 55 
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𝑝𝑝 pressure inside the tunnel 56 

pcr critical pressure 57 

𝑝𝑝0  natural lithostatic stress at the tunnel depth 58 

0r   tunnel radius 59 

Rpl plastic radius 60 

s  strength parameter, which depend on the GSI (Geological Strength Index) 61 

𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 support displacements at the crown of the tunnel 62 

𝑢𝑢𝑅𝑅 radial displacement 63 

𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 support displacements at the sides of the tunnel 64 

ϕres,app  apparent residual friction angle of the rock mass 65 

σRpl  radial stress at the plastic radius  66 

σr radial stress 67 

𝜎𝜎𝑅𝑅,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 vertical load applied at the crown of the support 68 

𝜎𝜎𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  horizontal load applied at the side of the support 69 

σr,i incremental radial stress 70 

σθ,i incremental tangential stress 71 

σθ tangential stress 72 

σ1 principal maximum stress 73 
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σ1,lim  maximum principle stress upon failure of the rock mass 74 

σ3 principal minimum stress 75 

𝜏𝜏𝑅𝑅𝑅𝑅  shear stress 76 

𝜃𝜃  angle representing the evaluation point in the circular support in the tunnel 77 

γ   weight of the rock 78 

𝜓𝜓         dilatancy expressed in radians  79 

𝜈𝜈         Poisson ratio of the rock mass 80 

CC Characteristic curve 81 

CCM Convergence-confinement method 82 

GSI  Geological Strength Index 83 

HRM Hyperstatic reaction method   84 
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INTRODUCTION 85 

Determination of the stresses and displacements around circular openings has been one of the 86 

most fundamental problems in geotechnical, petroleum, and mining engineering. Design of 87 

tunnel liners and the validation of numerical models are among the practical applications of 88 

displacement analysis around circular openings. The most common support design techniques 89 

are based on analytical approaches, such as the hyperstatic reaction method, HRM (Do et al., 90 

2014a; Oreste et al., 2018a; 2018b) and the Einstein and Schwartz (1979) method. However, 91 

these analytical methods require knowledge of the loads acting on the support structures. The 92 

loads depend on: 93 

• The dimension and depth of the tunnel; 94 

• The geomechanical characteristics of the ground;  95 

• The stiffness characteristics of the support structure itself and; 96 

• The distance from the excavation face where the structure is to be installed.  97 

Interaction between the rock mass and the support system is generally evaluated with the 98 

convergence-confinement method (CCM). CCM describes the relation between the decreasing 99 

tunnel internal pressure and the increasing tunnel radial convergence and can be constructed 100 

from elasto-plastic analysis of a circular tunnel subjected to hydrostatic far-field stress and 101 

uniform internal pressure (see Panet, 1995; Peila and Oreste, 1995; Oreste, 2009; 2014; Spagnoli 102 

et al., 2016; 2017). CCM allows to obtain an estimate of the loads acting on the supporting 103 

structures, proceeding with the intersection of the ground characteristic curve of the tunnel and 104 

the characteristic curve of the supporting structure. 105 
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In the base tunnels in rocks, the extension of the plastic zone around the tunnel may be 106 

significant, above all when the GSI value is low, the strength of the intact rock is reduced, the 107 

tunnel radius is high and the lithostatic pressure is high. The development of an adequate plastic 108 

zone is, however, necessary also to be able to contain the loads on the supporting works. Rock 109 

with plastic behavior loses a significant part of its resistance and does not generally have the 110 

ability to self-sustain itself. For this reason, it is prudent in the design phase, to consider the rock 111 

with plastic behavior in the calculation of the applied loads to the support system with its own 112 

weight. 113 

A large body of work currently exists on the stress and deformation analysis of tunnels with the 114 

consideration of different failure criteria and rock mass behaviors including the elastic-perfectly 115 

plastic, elastic-brittle-plastic and elastic-strain-softening models (e.g., Brown et al., 1983; 116 

Carranza-Torres and Fairhurst, 1999; Carranza-Torres, 2004; Alonso et al., 2003; Park and Kim, 117 

2006; Lee and Pietruszczak, 2008; Park et al., 2008; Fahimifar and Hedayat, 2008; 2009; 118 

Fahimifar et al., 2010; Hedayat, 2016). CCM is also applied to rock masses, presenting a non-119 

linear rupture criterion, as described by Hoek and Brown (1980).  120 

In the present work a procedure to obtain the characteristic curve of the tunnel considering the 121 

effect of the rock weight in the plastic zone is presented. An example of a calculation, relating to 122 

a tunnel built in the Alps will allow to evaluate the weight of the rock in the plasticized zone on 123 

the loads acting on the support. The final analysis with HRM will allow to detect the importance 124 

of the additional load on the tension state that develops in the support work and, therefore, on the 125 

stability conditions of the support itself. 126 

THE CONVERGENCE-CONFINMENT METHOD CONSIDERING GRAVITY EFFECT 127 
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When the internal pressure in tunnels falls below a critical pressure, pcr, a plastic zone develops 128 

around the tunnel. The tunnel conditions typically assumed for elasto-plastic analysis include a 129 

deep circular tunnel in a continuous, homogeneous, isotropic, and initially elastic rock mass 130 

subjected to the hydrostatic far-field stress. 131 

In base tunnels with high overburden pressure, the initial stress state of the rock mass generally 132 

approaches the hydrostatic conditions (𝑘𝑘0 is approximately equal to 1). As the internal pressure 133 

decreases, the tunnel radial convergence increases. Brown et al. (1983) summarized a large 134 

number of solutions obtained for an axisymmetric tunnel problem and presented a closed-form 135 

solution for rocks with elastic-brittle plastic behavior as well as a step-wise sequence of 136 

calculations for rock with an elastic-strain-softening behavior. Wang (1996) improved the 137 

accuracy of the solution in predicting the plastic radius. Carranza-Torres (2004) proposed a 138 

rigorous, elasto-plastic solution by rewriting the generalized Hoek-Brown failure criterion in 139 

terms of transformed stress quantities.  140 

In the present work a detailed analysis method of CC for rock tunnels will be employed, based 141 

on a numerical solution to finite differences (Oreste, 2014). The rock around the tunnel is 142 

subdivided into several thin concentric rings, in which the values of apparent cohesion and of the 143 

apparent friction angle are continuously determined, linearizing the Hoek-Brown strength 144 

criterion according to the value of the radial tension reached. The dilatancy is determined for 145 

each concentric ring, as a predefined percentage of the apparent residual friction angle of the 146 

specific ring considered. The calculation is repeated for each concentric ring, varying the internal 147 

pressure acting on the perimeter of the tunnel. Provided that the inner pressure falls below a 148 

critical pressure, pcr, a plastic region of radius Rpl develops around the tunnel. Because the dead 149 

weight of the broken zone around the tunnel can significantly increase the required support 150 
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pressure at the roof, the effect of gravity must be considered in the interaction between the 151 

ground and the support system. In other words, the dead weight of the broken zone exerts higher 152 

pressures to the support system at the crown of the tunnel and needs to be considered in the 153 

elasto-plastic analysis of the tunnel. It is suggested that the readers refer to Oreste (2014) for 154 

more detailed information. Limited work has been conducted on the effect of the gravitational 155 

forces acting on the ground (Hoek and Brown, 1980; Detournay, 1984; Panet 1995; Zareifard 156 

and Fahimifar, 2012). To account for the gravity effect, Hoek and Brown (1980) and Panet 157 

(1995) suggested an increase in the required support pressure by the amount of 𝛾𝛾(𝑅𝑅𝑝𝑝𝑝𝑝 − 𝑟𝑟0), 158 

where γ  is the unit weight of the rock and 0r  is the tunnel radius. This adjustment assumes that 159 

the full weight of the broken zone at the tunnel crown will be transferred to the support system, 160 

resulting in ground response curves that are too conservative. Therefore, there is a critical need 161 

to study the true interaction between the ground and the supporting system. The weight of the 162 

broken zone around the tunnel can be so high that it may affect the tunnel stability. The most 163 

critical point is the tunnel crown and the stability assessment needs to be carried out by the 164 

construction of the ground response curve at the crown.  165 

Assuming a state of hydrostatic stress field and plane strain condition around a circular tunnel, 166 

the equilibrium equations in the radial and tangential directions taking the gravity forces into 167 

account are defined by assessing the stress state. Consider a small element ABCD shown in Fig. 168 

1, since the tunnel problem is under plane strain condition, all stress components are functions of 169 

radial and tangential directions. Hence, it is possible to use polar coordinate instead of cylindrical 170 

one. Let fr and fθ be the components of the body forces per unit volume in radial and tangential 171 

directions, respectively (see Fig. 1). 172 

Summation of forces parallel to the radial direction through the center of element yields: 173 
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�𝜎𝜎𝑟𝑟 + 𝜕𝜕𝜎𝜎𝑟𝑟
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� (𝑟𝑟 + 𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑 − 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − �𝜎𝜎𝜃𝜃 + 𝜕𝜕𝜎𝜎𝜃𝜃

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 − 𝜎𝜎𝜃𝜃� 𝑑𝑑𝑑𝑑 sin 𝑑𝑑𝑑𝑑

2
+ �𝜏𝜏𝑟𝑟𝑟𝑟 + 𝜕𝜕𝜏𝜏𝑟𝑟𝑟𝑟

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 −174 

𝜏𝜏𝑟𝑟𝑟𝑟� 𝑑𝑑𝑑𝑑 cos 𝑑𝑑𝑑𝑑
2

+ 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0        (1) 175 

Since 𝑑𝑑𝑑𝑑 is infinitesimal, sin 𝑑𝑑𝑑𝑑
2

 and cos 𝑑𝑑𝑑𝑑
2

 can be replaced by 𝑑𝑑𝑑𝑑
2

 and unity, respectively. 176 

Neglecting the small quantities of higher order and dividing the above equation by 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, the 177 

equation of equilibrium in radial direction can be found as follows: 178 

𝜕𝜕𝜎𝜎𝑟𝑟
𝜕𝜕𝜕𝜕

+ 1
𝑟𝑟
𝜕𝜕𝜏𝜏𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕

+ 𝜎𝜎𝑟𝑟−𝜎𝜎𝜃𝜃
𝑟𝑟

+ 𝑓𝑓𝑟𝑟 = 0           (2) 179 

Similarly, summation of tangential components of forces may result in the equilibrium equation 180 

in direction. 181 

1
𝑟𝑟
𝜕𝜕𝜎𝜎𝜃𝜃
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜏𝜏𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕

+ 2𝜏𝜏𝑟𝑟𝑟𝑟
𝑟𝑟

+ 𝑓𝑓𝜃𝜃 = 0          (3) 182 

As the mentioned tunnel problem has axial symmetry, the radial and tangential stresses in the 183 

rock mass will be principal stresses (i.e. σr=σ3 and σθ=σ1 ) and consequently the radial 184 

equilibrium equations can be reduced to:  185 

𝜕𝜕𝜎𝜎𝑟𝑟
𝜕𝜕𝜕𝜕

+ 𝜎𝜎𝑟𝑟−𝜎𝜎𝜃𝜃
𝑟𝑟

+ 𝑓𝑓𝑟𝑟 = 0            (4) 186 

In above equation, 𝑓𝑓𝑟𝑟 is the component of body forces per unit volume in the radial direction. 187 

Since the construction of ground response curve at the roof of the tunnel, which is the most 188 

critical point, is of great importance, 𝛾𝛾 , unit weight of the rock mass, must be substituted for 189 

𝑓𝑓𝑟𝑟 in the equilibrium equation. In fact, at the roof of the tunnel, the gravity forces per unit volume 190 

are radially toward the tunnel center and are equal to 𝛾𝛾. Thus, the equilibrium equation within the 191 

broken zone can be rewritten as: 192 

𝜕𝜕𝜎𝜎𝑟𝑟
𝜕𝜕𝜕𝜕

+ 𝜎𝜎𝑟𝑟−𝜎𝜎𝜃𝜃
𝑟𝑟

+ 𝛾𝛾 = 0          (5) 193 
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Fig. 2a demonstrates schematically the body forces acting at the roof of the tunnel according to 194 

equation (4). Figure 2b shows the graphical representation of the theoretical ground response 195 

curve at the roof with and without consideration of the gravity effect from the plastic zone. The 196 

ABC curve represents the ground response curve without consideration of the gravity forces 197 

while curve ABMD demonstrates the ground response curve with consideration of gravity 198 

forces. The curve ABMD represents comparably larger values of convergence at a given internal 199 

pressure. The existence of a minimum M in the ground response curve shows the importance of 200 

the dead weight of the broken zone compared with the in situ stresses.  201 

Zareifard and Fahimifar (2012) developed an interesting elasto-plastic, analytical-numerical 202 

solution, which considers the curvilinear strength criterion of the previous solution of Hoek and 203 

Brown (1988). This solution applies to a strain-softening behavior of the rock and links some 204 

fundamental rock parameters in the plastic field to the actual deviatoric plastic strain and to the 205 

critical value of the deviatoric plastic strain. In order to represent the rock behavior correctly, 206 

sophisticated laboratory tests are necessary in order to define in detail the parameters required by 207 

the adopted behavior model. Taking into account that the solution of Zareifard and Fahimifar 208 

(2012) does not consider the updated generalized failure criterion (i.e. Hoek et al., 2002), 209 

equation 6 has also been used in the numerical procedure formulated by Oreste (2014), in order 210 

to obtain the description of the CC of the tunnel considering the effect of the weight of the plastic 211 

zone around the tunnel. Besides, regarding the dilatation of the rock mass (difficult to evaluate in 212 

the laboratory), this is linked in the proposed procedure to the residual friction angle of the rock 213 

mass, as a fixed percentage of the latter. 214 

THE PROPOSED NUMERICAL MODEL 215 
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The last update of the failure criterion of Hoek and Brown (Hoek et al., 2002) for rock masses 216 

has the following expression: 217 

𝜎𝜎1,𝑙𝑙𝑙𝑙𝑙𝑙 = 𝜎𝜎3 + 𝜎𝜎𝑐𝑐𝑐𝑐 ∙ �𝑚𝑚𝑏𝑏 ∙
𝜎𝜎3
𝜎𝜎𝑐𝑐𝑐𝑐

+ 𝑠𝑠�
𝑎𝑎
        (6) 218 

where: 𝜎𝜎1,𝑙𝑙𝑙𝑙𝑙𝑙 is the maximum principle stress upon failure of the rock mass; 219 

 𝜎𝜎3 is the minimum principle stress (confinement); 220 

 𝜎𝜎𝑐𝑐𝑐𝑐 is the uniaxial compression strength (UCS) of the intact rock; 221 

𝑚𝑚𝑏𝑏 and 𝑠𝑠 are the strength parameters, which depend on the GSI (Geological Strength 222 

Index) (Marinos and Hoek, 2000; Marinos et al., 2005) and on the parameter 𝐷𝐷: 223 

𝑚𝑚𝑏𝑏 = 𝑚𝑚𝑖𝑖 ∙ 𝑒𝑒
�𝐺𝐺𝐺𝐺𝐺𝐺−10028−14∙𝐷𝐷� ;  𝑠𝑠 = 𝑒𝑒�

𝐺𝐺𝐺𝐺𝐺𝐺−100
9−3∙𝐷𝐷 � 224 

𝐷𝐷 is a parameter that varies between 0 and 1, which considers the disturbance of the rock 225 

mass due to the excavation operations (𝐷𝐷=0 for non-disturbed mass; 𝐷𝐷=1 for intensely 226 

disturbed mass); 227 

𝑚𝑚𝑖𝑖 is a strength parameter that refers to intact rock and which depends on the typology of 228 

the rock; 229 

 𝑎𝑎 is the exponent that is present in eq. 6:  𝑎𝑎 = 0.5 + 1
6
∙ �𝑒𝑒−

𝐺𝐺𝐺𝐺𝐺𝐺
15 − 𝑒𝑒−

20
3 � . 230 

For the good and medium-quality rock masses exhibiting a fragile elasto-plastic behavior it is 231 

necessary to describe two failure criteria, one for the peak conditions and another for the residual 232 

conditions. The former governs the stress state in the rock mass at the elastic limit, the latter the 233 

stress state in the plastic zone. The resistance parameters are duplicated for the two-different 234 

peak and residual criteria: mbp, sp, ap, mbres, sres, ares. Peak parameters can be determined by using 235 
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the GSI referring to the initial conditions of the rock mass, whilst the residual ones to a suitably 236 

reduced GSI (GSIres) (Oreste, 2014). 237 

In order to deal with the study of the conditions of the rock mass in the plastic zone, the criterion 238 

of residual failure of Hoek and Brown can be locally linearized by deriving it from the minimum 239 

principle stress σ3, which is the radial stress σr: 240 

𝑑𝑑𝜎𝜎1,𝑙𝑙𝑙𝑙𝑙𝑙
𝑑𝑑𝑑𝑑3

= 1 + 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∙ �𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∙
𝜎𝜎3
𝜎𝜎𝑐𝑐𝑐𝑐

+ 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟�
𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟−1

      (7) 241 

This derivative allows to directly obtain the apparent residual friction angle ϕres,app of the rock 242 

mass, according to the existing minimum stress σ3: 243 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟∙𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∙�𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∙

𝜎𝜎3
𝜎𝜎𝑐𝑐𝑐𝑐

+𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟�
𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟−1

𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟∙𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∙�𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∙
𝜎𝜎3
𝜎𝜎𝑐𝑐𝑐𝑐

+𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟�
𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟−1

+2
       (8) 244 

The numerical procedure for defining the characteristic curve of the tunnel occurs is as follows 245 

(Oreste, 2014): 246 

1. Calculation of the radial stress at the plastic radius (σRpl): if this value is less than 0, no 247 

plastic zone is created around the tunnel; if it is greater than zero, a plastic zone is created for 248 

pressures inside the tunnel (𝑝𝑝) lower than σRpl; the evaluation of σRpl occurs by solving the 249 

following equation numerically: 250 

𝑝𝑝0 − 𝜎𝜎𝑅𝑅𝑅𝑅𝑅𝑅 = 𝜎𝜎𝑐𝑐𝑐𝑐
2
∙ �𝑚𝑚𝑏𝑏𝑏𝑏 ∙

𝜎𝜎𝑅𝑅𝑅𝑅𝑅𝑅
𝜎𝜎𝑐𝑐𝑐𝑐

+ 𝑠𝑠𝑝𝑝�
𝑎𝑎𝑝𝑝

       (9) 251 

2. In the presence of a plastic zone, we proceed with a finite difference method dividing the 252 

rock at the outline of the tunnel in concentric rings. Starting from the tunnel outline, where 253 

the radial stress is equal to the applied internal pressure (𝑝𝑝), the stress is increased radially by 254 

a small amount of ∆σr value at each ring, until the σRpl value is reached. At each value of σr,i, 255 



14 
 

the corresponding value of σθ,i is used, employing the residual failure criterion of Hoek and 256 

Brown; 257 

3. By replacing in Equation 6 the term (σθ-σr) derived from the criterion of residual failure of 258 

Hoek and Brown: 259 

𝜎𝜎𝜃𝜃 − 𝜎𝜎𝑟𝑟 = 𝜎𝜎1 − 𝜎𝜎3 = 𝜎𝜎𝑐𝑐𝑐𝑐 ∙ �𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∙
𝜎𝜎3
𝜎𝜎𝑐𝑐𝑐𝑐

+ 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟�
𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟

      (10) 260 

and transforming the equation obtained in incremental terms, the following expression is 261 

obtained: 262 

𝜎𝜎𝑟𝑟,𝑖𝑖+1−𝜎𝜎𝑟𝑟,𝑖𝑖
𝑟𝑟𝑖𝑖+1−𝑟𝑟𝑖𝑖

=
𝜎𝜎𝑐𝑐𝑐𝑐∙�𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∙

�𝜎𝜎𝑟𝑟,𝑖𝑖+1+𝜎𝜎𝑟𝑟,𝑖𝑖� 2⁄

𝜎𝜎𝑐𝑐𝑐𝑐
+𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟�

𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟

(𝑟𝑟𝑖𝑖+1+𝑟𝑟𝑖𝑖) 2⁄
− 𝛾𝛾      (11) 263 

which allows to obtain all the values of 𝑟𝑟𝑖𝑖+1 useful for determining the distances of the lateral 264 

surfaces of the concentric rings, comprised between the outline of the tunnel and the plastic 265 

radius Rpl; this procedure also allows to obtain the value of the plastic radius Rpl ; 266 

4. Starting then from the plastic radius backwards towards the tunnel contour, the deformation 267 

problem is solved. Knowing the stress state in all the concentric rings, the value of the radial 268 

displacement 𝑢𝑢 is obtained on each surface of the concentric rings on the basis of the 269 

following differential equation valid for the plastic field under axisymmetric conditions: 270 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �1−𝜈𝜈2�
𝐸𝐸𝑟𝑟

∙ �(𝜎𝜎𝑟𝑟 − 𝑝𝑝0) ∙ �1 −𝑁𝑁𝜓𝜓 ∙
𝜈𝜈

1−𝜈𝜈
�+ (𝜎𝜎𝜃𝜃 − 𝑝𝑝0) ∙ �𝑁𝑁𝜓𝜓 −

𝜈𝜈
1−𝜈𝜈

�� − 𝑁𝑁𝜓𝜓 ∙
𝑢𝑢
𝑟𝑟
  (12) 271 

where: 𝑁𝑁𝜓𝜓 = 1+𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
1−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 272 

 𝜓𝜓 is the dilatancy expressed in radians (dilatancy is an angle that can vary between 273 

0 and the residual friction angle of the material); 274 

 𝜈𝜈 is the Poisson ratio of the rock mass; 275 
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 𝐸𝐸𝑟𝑟 is the elastic modulus of the rock mass in the plastic field (it can be evaluated 276 

referring to the value of GSIres). 277 

5. This differential equation is also transformed into incremental terms in order to be able to use 278 

it in the adopted finite difference method; 279 

6. The dilation angle 𝜓𝜓 is changed at each concentric ring, determining it as a percentage value 280 

of ϕres,app evaluated through equation 9, where for 𝜎𝜎3 the mean radial stress at the specific ith-281 

ring is considered: 282 

𝜎𝜎3 = �𝜎𝜎𝑟𝑟,𝑖𝑖+1+𝜎𝜎𝑟𝑟,𝑖𝑖�
2

          (13) 283 

Once the outline of the tunnel is reached, it is possible, therefore, to obtain the radial 284 

displacement 𝑢𝑢𝑅𝑅 to be associated with the acting internal pressure 𝑝𝑝. The pairs of values 𝑝𝑝 − 𝑢𝑢𝑅𝑅 285 

allow to trace the characteristic curve of the tunnel, considering the weight of the rock material 286 

present in the plastic zone. A simplified sketch of the plastic zone for the case considered in this 287 

paper is shown in Fig. 3. 288 

RESULTS AND DISCUSSION 289 

The proposed solution was adopted in relation to a tunnel built in the Alps in metamorphic rocks 290 

such as calcareous schists with a GSI of 35 (GSIres = 35). The general geology of the area 291 

comprises zones of contact between units of the continental crust and units preserving the 292 

characters of oceanic crust. The unit where the tunnel is designed consists of a crystalline 293 

basement and limited-strength permo-mesozoic metasediments mainly micascists and calcareous 294 

schists. The initial section consists of calcareous schists then a gneiss with massive-to-foliated 295 

structure is encountered.  296 
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This tunnel was assumed to be circular with an equivalent radius of 5m. The average overburden 297 

was assumed as 170m (p0 = 5MPa). The parameters of the rock mass are assumed as following:  298 

• σci of the intact rock is 60MPa; 299 

• mi = 12;  300 

• disturbance factor D = 1; 301 

• angle of dilatancy ψ equal to the angle of residual friction (associated flow rule assumption); 302 

• Poisson ratio, 𝜈𝜈, equal to 0.3.  303 

On the basis of these data, the following parameters have been estimated: 304 

• elastic module E = 1635 MPa; 305 

• parameter of resistance mb equal to 0.115;  306 

• parameter of resistance s equal to 2x10-5;  307 

• parameter of resistance a = 0.519; 308 

• the unit weight γ of the rock was evaluated at 30 kN/m3. 309 

Fig. 4 shows the CCs of the tunnel, in the radial displacement range between 0.05 and 0.25m. 310 

The curves referring to three cases are shown: 311 

1. Case 1: Without considering the weight of the rock in the plastic zone (black continues 312 

line); 313 

2.  Case 2: Considering the weight of the rock in the plastic zone according to the 314 

calculation procedure illustrated in this article (grey dashed line); 315 

3.  Case 3: Considering the additional load due to the weight of the plasticized rock, 316 

according to the conservative approach of Hoek and Brown (1980) and Panet (1995) 317 

(black dotted line). 318 



17 
 

In the same figure, the reaction line of the lining is shown in black, consisting of a 25cm thick 319 

fiber-reinforced sprayed concrete lining. Assuming an average elastic modulus during the setting 320 

time equal to 10000MPa, a stiffness, k, of the lining is obtained equal to 105MPa/m, which 321 

provides the slope to the reaction line. The load on the lining is obtained from the intersection of 322 

the reaction line with the characteristic curve: 323 

1. Case 1: 1.57MPa 324 

2. Case 2: 1.62MPa 325 

3. Case 3: 1.87MPa 326 

It can be noted that the solution proposed in this article leads to an increase in load on the linings 327 

of 3.2% due to the weight of the rock in the plasticized zone, while the simplified solution 328 

considers an additional load equal to the weight of the rock multiplied by the thickness of the 329 

plastic zone (case 3) leading to a considerable increase of 19.1% of the original load (case 1). 330 

Figure 5 shows the trend of the plastic zones for case 1 (absence of weigh of the rock) and case 2 331 

(proposed solution). In case 3, the trend coincides with case 1. It can be seen that the proposed 332 

solution leads to a noticeable increase of the plastic radius until reaching a value of 29.4m for 333 

internal pressure 𝑝𝑝 equal to 0, compared to 19.4m of the case 1.  334 

The proposed solution of the convergence-confinement method, therefore, provides vertical 335 

loads slightly higher than the original ones, however with a significant increase in the thickness 336 

of the plastic zone with respect to the case a) (without considering the weight of the rock inside 337 

the plastic zone). 338 

Three different load conditions on the lining have been studied from the three cases examined in 339 

Fig. 4: 340 
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• condition a) refers to the presence of the same load in the crown and on the sides of the 341 

tunnel, without considering the effect of the rock's own weight in the plastic zone (case 1); 342 

• condition b) with the vertical load obtained from the proposed calculation procedure 343 

(modified by Oreste, 2014) (case 2) considering the weight of the rock in the plastic zone and 344 

the horizontal load without considering the weight of the rock in this zone (case 1);  345 

• condition c) considering the simplified method of Hoek and Brown (1980) to determine the 346 

effect of the weight of the rock in the plastic zone at the crown (case 3, simplified method) 347 

and the horizontal load without considering the weight of the rock (case 1).  348 

Figure 6 shows the trend of the bending moments along the development of half of the support 349 

(starting from the center of the inverted arch up to the center of the crown) by applying the loads 350 

as described above:  351 

• Condition a): 1.57MPa in the vertical direction (case 1) and 1.57MPa in the horizontal one 352 

(case 1); 353 

• Condition b): 1.62MPa in the vertical direction (case 2) and 1.57MPa in the horizontal one 354 

(case 1); 355 

• Condition c): 1.87MPa in the vertical direction (case 3) and 1.57MPa in the horizontal one 356 

(case 1); 357 

These results were obtained using the hyperstatic reaction method (see Oreste, 2007; Do et al. 358 

2014a; 2014b; Oreste et al., 2018a and 2018b for more details). This method provides for the 359 

subdivision of the support into one-dimensional elements placed in succession, so as to represent 360 

its entire development. The connection points between the elements are called nodes and on 361 

them the springs simulating the interaction of the support with the rock face, both in the normal 362 

direction and in the shear direction, are anchored. The loads acting on the support are represented 363 
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with nodal forces and the solution of the problem consists in obtaining the displacements of the 364 

nodes of a support structure subjected to vertical and horizontal loads. Once the nodal 365 

displacements have been obtained along the structure it is then possible to obtain the trend of the 366 

bending moments and of the normal forces, useful for verifying the static conditions of the 367 

support. The following data were used in the calculation: 368 

• Stiffness of the normal interaction springs Kn: 490.5MN/m; 369 

• Stiffness of the shear interaction springs Ks: 245.2MN/m; 370 

• Limit strength of the elastic-plastic behavior of the normal springs Fn: 0.26 MN; 371 

• Cohesion of the support-rock interface: 0.2MPa; 372 

• Friction angle at the support-rock interface: 25°. 373 

Because of the non-symmetry of the applied load, bending moments appear along the lining, 374 

which reaches maximum values in the center of the invert, in the center of the crown and in the 375 

middle of the side wall of the tunnel. These maximum bending moments, together with the 376 

values of the normal force (Fig. 7) in correspondence with the same points at maximum moment, 377 

allow to derive the internal stresses developing in the sprayed concrete linings. By comparing the 378 

maximum internal stresses acting in the sprayed concrete with the strength of the sprayed 379 

concrete, it will be possible to verify whether the hypotheses on the thickness of the lining and 380 

on the quality of the sprayed concrete are compatible with the stability of the tunnel. 381 

The analysis of the results shown in Fig. 6 allows to verify how the load condition c), which is 382 

based on the evaluation of the vertical load in a simplified way, would lead to an overestimation 383 

of the maximum bending moments of 600% with respect to the load condition b), for which the 384 

evaluation of the vertical load was performed using the proposed calculation method. In the load 385 

condition a), the bending moments are zero, thanks to the symmetry of load in the two directions 386 
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(vertical and horizontal). With regard to the normal forces (figure 7), a constant value is detected 387 

along the support in the load condition a); in the load condition of b) the maximum normal force 388 

is 3.2% higher than the value of the load condition a); finally, in the condition of load c) the 389 

maximum normal force is about 19% higher than that found in the load condition a) and about 390 

15% with respect to that obtained under load condition b). It can be noted that the simplified 391 

methods, proposed for the determination of vertical load due to the weight of the plastic rock 392 

band, lead to a sensible overestimation of the maximum bending moments in the support and a 393 

minor overvaluation even of the maximum normal forces. 394 

ANALYSIS OF THE LINING-TUNNEL INTERACTION USING THE OBTAINED 395 

CONVERGENCE-CONFINEMENT CURVES OF A BASE TUNNEL  396 

Considering the two convergence-confinement curves at the crown and for the sides of the tunnel 397 

that can be obtained from the indicated procedure (Fig. 8A), there is a link load-displacement 398 

characterizing the perimeter of the tunnel in the crown point and at the sides, based on the 399 

behavior of the rock mass present at the boundary of the tunnel. It is also possible to determine 400 

the behavior of a supporting structure in a simplified manner on the basis of its axial and flexural 401 

stiffness, referring to the studies by Einstein and Schwartz (1979). By combining the two 402 

behaviors (of the tunnel and of the supporting lining) it is possible to reach the exact 403 

determination of the actual loads acting in the crown and at the sides of the tunnel, the 404 

displacements shown by the lining and finally the bending moments and the normal forces that 405 

they develop along the support structure. In this way it is possible to make an initial hypothesis 406 

about the type and size of the support structure and then verify whether it is able to resist the 407 

bending moments and the normal forces induced inside it. More specifically, referring to the 408 

work of Einstein and Schwartz (1979), it is possible for the absence of sliding between the 409 
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support and the rock wall (no-slip case) to obtain the following equations of the support 410 

displacements at the crown (𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) and at the sides (𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) of the tunnel: 411 

𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �𝑑𝑑∙𝜎𝜎𝑅𝑅,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑒𝑒∙𝜎𝜎𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�
2∙(𝑑𝑑2−𝑒𝑒2)∙𝐸𝐸

∙ 𝑅𝑅 ∙ (1 + 𝜈𝜈) ∙ �𝑎𝑎0∗ ∙ �1 + 1
𝑑𝑑
∙ � 𝜎𝜎𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∙�𝑑𝑑2−𝑒𝑒2�

�𝑑𝑑∙𝜎𝜎𝑅𝑅,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑒𝑒∙𝜎𝜎𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�
− 𝑒𝑒�� −412 

�1 − 1
𝑑𝑑
∙ � 𝜎𝜎𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∙�𝑑𝑑2−𝑒𝑒2�

�𝑑𝑑∙𝜎𝜎𝑅𝑅,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑒𝑒∙𝜎𝜎𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�
− 𝑒𝑒�� ∙ ℎ�       413 

 (14) 414 

𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 = �𝑑𝑑∙𝜎𝜎𝑅𝑅,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑒𝑒∙𝜎𝜎𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�
2∙(𝑑𝑑2−𝑒𝑒2)∙𝐸𝐸

∙ 𝑅𝑅 ∙ (1 + 𝜈𝜈) ∙ �𝑎𝑎0∗ ∙ �1 + 1
𝑑𝑑
∙ � 𝜎𝜎𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∙�𝑑𝑑2−𝑒𝑒2�

�𝑑𝑑∙𝜎𝜎𝑅𝑅,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑒𝑒∙𝜎𝜎𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�
− 𝑒𝑒�� +415 

�1 − 1
𝑑𝑑
∙ � 𝜎𝜎𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∙�𝑑𝑑2−𝑒𝑒2�

�𝑑𝑑∙𝜎𝜎𝑅𝑅,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑒𝑒∙𝜎𝜎𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�
− 𝑒𝑒�� ∙ ℎ�       416 

 (15) 417 

where:  𝜎𝜎𝑅𝑅,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the vertical load applied on the support at the crown; 418 

𝜎𝜎𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the horizontal load applied on the support at the sides; 419 

𝑅𝑅 is the tunnel radius; 420 

𝐸𝐸 and 𝜈𝜈 are respectively elastic modulus and Poisson modulus of the rock mass; 421 

𝑒𝑒 = 1
2
∙ (1 − 𝑎𝑎0∗) − (1 − 6 ∙ 𝑎𝑎2∗ + 4 ∙ 𝑏𝑏2∗); 422 

 𝑑𝑑 = 1
2
∙ (1 − 𝑎𝑎0∗) + (1 − 6 ∙ 𝑎𝑎2∗ + 4 ∙ 𝑏𝑏2∗); 423 

 ℎ = 4 ∙ (1 − 𝜈𝜈) ∙ 𝑏𝑏2∗ − 2 ∙ 𝑎𝑎2∗ ; 424 

 𝑓𝑓 = 1
𝑑𝑑
∙ � 𝜎𝜎𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∙�𝑑𝑑2−𝑒𝑒2�
�𝑑𝑑∙𝜎𝜎𝑅𝑅,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑒𝑒∙𝜎𝜎𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�

− e�; 425 

 𝑎𝑎2∗ = 𝛽𝛽 ∙ 𝑏𝑏2∗; 426 
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 𝛽𝛽 = (6+𝐹𝐹∗)∙𝐶𝐶∗∙(1−𝜈𝜈)+2∙𝐹𝐹∗∙𝜈𝜈
3∙𝐹𝐹∗+3∙𝐶𝐶∗+2∙𝐶𝐶∗∙𝐹𝐹∗∙(1−𝜈𝜈); 427 

 𝑏𝑏2∗ = 𝐶𝐶∗∙(1−𝜈𝜈)
2∙[𝐶𝐶∗∙(1−𝜈𝜈)+4∙𝜈𝜈−6∙𝛽𝛽−3∙𝛽𝛽∙𝐶𝐶∗∙(1−𝜈𝜈)]; 428 

 𝑎𝑎0∗ = 𝐶𝐶∗∙𝐹𝐹∗∙(1−𝜈𝜈)
𝐶𝐶∗+𝐹𝐹∗+𝐶𝐶∗∙𝐹𝐹∗∙(1−𝜈𝜈); 429 

 𝐶𝐶∗ = 𝐸𝐸∙𝑅𝑅∙�1−𝜈𝜈𝑠𝑠2�
𝐸𝐸𝑠𝑠∙𝐴𝐴𝑠𝑠∙(1−𝜈𝜈2) (where 𝐴𝐴𝑠𝑠 is the area of the lining section); 430 

 𝐹𝐹∗ = 𝐸𝐸∙𝑅𝑅3∙�1−𝜈𝜈𝑠𝑠2�
𝐸𝐸𝑠𝑠∙𝐼𝐼𝑠𝑠∙(1−𝜈𝜈2) (where 𝐼𝐼𝑠𝑠 is the inertia moment of the lining section). 431 

Considering the convergence-confinement curve referred to the conditions at the crown (CCC 432 

crown, obtained with the presence of the weight of the rock in the plastic zone), for each point 433 

belonging to the CCC, the values of 𝜎𝜎𝑅𝑅,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are determined and are inserted in 434 

equation 14. From this equation 𝜎𝜎𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is obtained and inserted in equation 15. Then, from this 435 

𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is obtained. 436 

We proceed moving on the convergence-confinement curve referred to the crown conditions, 437 

until the pair of values 𝜎𝜎𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 obtained from equations 14 and 15 are compatible with 438 

the convergence-confinement curve referred to the conditions at the sides (CCC sides, obtained 439 

without considering the weight in the plastic zone). 440 

When compatibility is found, i.e. the correspondence between the behavior of the rock to the 441 

tunnel contour and the behavior of the support, the procedure stops and the values of the loads 442 

assessed on the crown 𝜎𝜎𝑅𝑅,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and on the sides of the tunnel 𝜎𝜎𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are used to determine 443 

bending moments (𝑀𝑀) and normal forces along the support (𝑁𝑁), by changing the angle 𝜃𝜃 which 444 

is the evaluation point in the circular support in the tunnel (see Fig. 8B): 445 
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𝑀𝑀 = �𝑑𝑑∙𝜎𝜎𝑅𝑅,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑒𝑒∙𝜎𝜎𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�∙𝑅𝑅2

4∙(𝑑𝑑2−𝑒𝑒2) ∙ (1 − 𝑓𝑓) ∙ (1 − 2 ∙ 𝑎𝑎2∗ + 2 ∙ 𝑏𝑏2∗) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜃𝜃 )   (16) 446 

𝑁𝑁 = �𝑑𝑑∙𝜎𝜎𝑅𝑅,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑒𝑒∙𝜎𝜎𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�∙𝑅𝑅
2∙(𝑑𝑑2−𝑒𝑒2) ∙ [(1 + 𝑓𝑓) ∙ (1 − 𝑎𝑎0∗) + (1 − 𝑓𝑓) ∙ (1 + 2 ∙ 𝑎𝑎2∗) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜃𝜃 )] (17) 447 

CONCLUSIONS 448 

During design of the supporting structures it is often necessary to evaluate the load applied by 449 

the rock mass to the outline of the tunnel, above all when using analytical methods of wide 450 

application such as the hyperstatic reaction methods. Generally, load estimation is performed 451 

using the convergence-confinement method, where the characteristic curve of the tunnel 452 

intersects with the support reaction line. 453 

In the vertical direction, due to the loss of self-bearing of the rock present in the plastic zone, it is 454 

necessary to consider the weight of the rock in the study of the evolution of stress and 455 

deformations. In this work the methodology in which this aspect can be taken into consideration 456 

has been presented. The numerical solution of the convergence-confinement method introduced 457 

by Oreste (2014) has been modified to take into account the weight of the rock within the plastic 458 

zone. In this way it is possible to obtain the modified characteristic curve in order to reach the 459 

correct evaluation of the vertical load acting on the supporting work. As for the horizontal load, 460 

however, it is possible to still refer to the original convergence-confinement curve, without 461 

taking into account the weight of the plasticized rock. 462 

The proposed solution was then applied to a case of a tunnel built in the Alps. Based on the 463 

available data, the convergence-confinement curves of the tunnel were drawn and the loads 464 

acting on the linings were evaluated. These loads were then used in the hyperstatic reaction 465 
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method in order to obtain the trend of the bending moments and of the normal forces along the 466 

development of the lining. 467 

From the study developed, it was possible to detect how the proposed solution allows to evaluate 468 

vertical loads greater than a few percentage units compared to the case of weightlessness of the 469 

plastic zone. The simplified solution considering an additional vertical load equal to the weight 470 

of the rock by the thickness of the plastic zone, on the other hand, involves significant increases 471 

of about 20%, which are not justifiable in practical terms. Moreover, from the example of 472 

calculation carried out, it has been possible to identify a non-negligible increase in the value of 473 

the plastic radius when considering the weight of the plastic zone. This increase in the plastic 474 

radius can be of great interest due to the repercussions it may have in defining the length of the 475 

radial bolting in the crown area. 476 

Finally, a specific and quick procedure for the evaluation of the mechanical behavior of the 477 

support of a base tunnel has been illustrated, referring to the convergence-confinement method 478 

and to the method of analysis of a circular support by Einstein and Schwartz (1979). This 479 

procedure starts from determining the two convergence-confinement curves of the tunnel 480 

(relative to the crown zone, considering the weight of the plastic zone, and to the lateral areas, 481 

without considering the weight of the plastic rock). More specifically, for each point of the 482 

convergence-confinement curves of the crown zone (CCC crown) the values of the horizontal 483 

load and of the horizontal displacement of the support at the sides of the tunnel are evaluated, 484 

compatible with the mechanical behavior of the support. The procedure continues until this pair 485 

of values is compatible with the convergence-confinement curves of the lateral zone of the 486 

tunnel, i.e. until the stress and deformation analysis of the rock mass is compatible with the stress 487 

and deformation analysis of the supporting structure. At that point it is possible to obtain the 488 
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actual loads (vertical and horizontal) acting on the supporting lining and, therefore, the trend of 489 

the bending moments and of the normal forces along the development of the supporting 490 

structure. 491 
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FIGURE CAPTION 579 

Fig 1. Stresses on element ABCD in polar coordinate. 580 

Fig. 2. (a) Schematic representation of the body forces at the tunnel roof. b) Graphical 581 

demonstration of the ground response. 582 

Fig. 3. Schematic representation of the tunnel with radius, R, of 5m with an overburden 583 

pressure, p0, of 5MPa excavated in a rock with GSIpeak of 35 and UCS, 𝜎𝜎𝑐𝑐𝑐𝑐, of 60MPa 584 

showing a plastic radius Rpl of 7.3m without considering the weight effect (not to scale). 585 

Fig. 4. Convergence-confinement curves of the tunnel analyzed in the three considered 586 

cases 587 

Fig. 5. Trend of the plastic radius of the tunnel as the internal pressure changes for case 1 588 

(weightlessness of the rock in the plastic area) and case 2 (proposed solution). 589 

Fig. 6. Trend of the bending moments along half of the support obtained with the 590 

hyperstatic reaction method, applying the vertical and horizontal loads derived from the 591 

analysis with the method of the characteristic curves and the solution proposed in this 592 

work. 593 

Fig. 7. Trend of normal forces along half the support obtained by the hyperstatic reaction 594 

method, applying the vertical and horizontal loads derived from the analysis with the 595 

method of the characteristic curves and the solution proposed in this work. 596 

Fig. 8. A). Procedure for the determination of the load values on the support (𝝈𝝈𝑹𝑹,𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 and 597 

𝒖𝒖𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) from the convergence-confinement curve referred at the condition at crown (CCC 598 

crown) and from that referred at the condition at sides (CCC sides). Key: 𝒑𝒑 is the internal 599 
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pressure in the tunnel; 𝒖𝒖 is the radial displacement of the tunnel wall; 𝒑𝒑𝟎𝟎 is the natural 600 

lithostatic load at the tunnel depth; 𝒑𝒑𝒄𝒄𝒄𝒄 is the internal pressure below which a plastic region 601 

at the tunnel contour is formed; 𝝈𝝈𝑹𝑹,𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 and 𝝈𝝈𝑹𝑹,𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 vertical load acting on the support 602 

respectively at the crown and at sides; 𝒖𝒖𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏 and 𝒖𝒖𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 are the displacement support 603 

respectively at the zone of crown and sides; B) Contact stresses at lining-rocks interface. 604 


