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Administering Quality-Energy Trade-Off in IoT
Sensing Applications by Means of

Adapted Compressed Sensing
Mauro Mangia, Alex Marchioni, Fabio Pareschi, Riccardo Rovatti, Gianluca Setti

Abstract—A common scheme to let a very large number of low-
resources sensing units communicate their readings to a remote
concentrator is to deploy intermediate hubs that collect subsets
of readings by means of local communication and perform the
needed long-range transmission of a compressed version of the
data. We here propose to exploit Compressed Sensing as an
extremely lightweight lossy compression stage for which it is easy
to address the trade-off between the quality of the reconstructed
signal and the energy needed to complete acquisition. Over the
huge set of parameters characterizing the design space (such
as the number of intermediate hubs, the sensors transmission
range, etc.), we analyze such a trade-off when the placements
of the hubs is not completely random but aims at promoting
diversity between the subsets of readings considered by each hub.
With respect to the case of no intermediate data aggregation,
numerical evidence suggests that, when an appropriate design
strategy for the compressed sensing stage is adopted and diversity
is promoted, an energy savings higher than 60% with high
quality signal reconstruction can be obtained. This operative
point corresponds to 20 intermediate hubs deployed to collect
reading from 128 sensors.

Index Terms—Internet of Things, Wireless Sensor Networks,
Compressed Sensing, Signals on graphs, Smart Dust

I. INTRODUCTION

NEXT steps in the development of the Information and
Communication Technology, being known as Internet of

Things [1], [2], Industry 4.0 [3], or Big Data Analytics [4],
are all based on an increasing interaction between information
processing and the physical world. In this sense, the very same
concept of sensing is rapidly changing [5], [6], and the word
sensor is no longer regarded as a simple device converting
physical quantities into electrical signals or digital words, but
a complex and smart system.
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Fig. 1. Scenario considered in this paper, where many sensor nodes establish
a short range communication (WSN) with a local hub, capable of long range
communication (WAN) with a data collector.

The scenario considered in this paper belongs to this general
framework. In particular, we focus on a system where a large
amount of data is generated by ultra low-power, miniaturized
autonomous sensor nodes, dispatching their readings to some
remote data collector for processing purposes. Such a system
is often referred to with the terms “Smart Dust” [7], [8].

Such a paradigm finds application in a wide range of
new applications ranging from security/safety surveillance to
structural health monitoring [9]–[11], smart building [12], and
even to miniaturized biomedical implants [13]–[15].

The intuitive representation of the considered scenario is
depicted in Figure 1. A number of sensor nodes is deployed ac-
cording to the smart dust paradigm, i.e., with non-controllable
geographical locations. They feature local communication
capability and are joined into a Wireless Sensor Network
(WSN). Sensor readings are eventually collected by a central
data collector, assumed to be far away from nodes. To this
aim, local hubs are introduced in the WNS collecting readings
from the sensor nodes, pre-processing them, and delivering
intermediate results to the data collector by means of long
range transmissions in a Wide Area Network (WAN). Sensor
nodes and local hubs are considered different devices, with a
different hardware architecture and complexity. Nevertheless,
both classes of devices are battery powered so that a quality-
energy trade-off must consider the entire set of local/wide
communications.

In order to introduce data compression so to reduce the
overall energetic costs, we consider the Compressed Sensing
(CS) paradigm [16], [17], as in other approaches [18]–[23].
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The main novelties in this paper are: i- local hubs must be
deployed according to certain geographical constraints, and
their positions cannot be set a-priori (i.e., common coverage
techniques cannot be applied); ii- a new figure of merit
(i.e., hub diversity) is adopted to account for the quantity of
additional signal information introduced by each hub; iii- the
rakeness-based CS paradigm is applied to this framework to
further reduce communication costs [24], [25] with respect to
standard CS approach.

The investigated novelties, along with many framework
features (e.g., number of local hubs, sensor nodes transmis-
sion range, communication failure probability, sensors node
locations) are such that some quality-energy trade-off can be
addressed.

The paper is organized as follows. In Section II we introduce
the motivation of the work. We also present a survey on
related CS-based works. Section III introduces the details of
the considered system and recall some prior results used in this
paper. Section IV is used to highlight what are the degrees of
freedom and how we can tune them in order to optimize the
system. In Section V we describe the simulation setting and
the proposed energy-quality trade-off as well as the obtained
results. Finally, we draw the conclusion.

II. MOTIVATION AND RELATED WORKS

The introduction of the two-layer structure of Figure 1 is
justified by two considerations.

First, the energy required by transmission increases more
than linearly with the distance. In other words, there is a
very large difference between the energy involved in the
local communication process (WSN) and in the wide-area
(WAN) communication process. Indicating with α the ratio
between the local and the wide-area transmission ranges, the
ratio between the energies involved in the two communication
processes, assuming that both have antennas with no particular
directivity, is α2. Assuming α at least in the order of 102, we
expect a ratio between entailed communication powers in the
order of 104.

Then, it is worth noticing that the number of sensor nodes
may be relevant. Due to this, it is fundamental to administer
data processing and communication at different levels, with
the aim of reducing the use of system resources. In such a
situation, introducing in the WSN either a certain amount of
processing or a certain level of data aggregation, or both, may
improve the energy-quality trade-off, with beneficial effects in
terms of reduction of the energy to complete acquisition.

This is more than enough to introduce local readings col-
lection and pre-processing before a long-range transmission is
attempted. Yet, the problem of data aggregation in WSN has
been widely investigated in the literature [26]. An important
result is given in [27], where the authors consider a sensor
network where the data collector is located far from the
sensor nodes and propose a dynamic and adaptive low-energy
clustering approach known as LEACH. However, in [27], any
sensor is capable of promoting itself to the role of local hub,
and this is not allowed according to the smart dust paradigm
where hubs and sensors are different devices.

In order to improve performance in terms of energy required
for transferring data to the collector, many works introduce
CS in this framework. Since hubs are battery power devices,
energy saving is fundamental. This is why data aggregation
based on CS has been proposed: its computational cost is
smaller with respect to standard algorithms and the achieved
compression yields a comparable number of long range trans-
missions. Hence, hubs collect readings from sensor nodes, and
provide to the collector only a small number of linear combina-
tions of them. According to existing literature [25], [28]–[31],
the additional energy-cost due to this kind of processing is in
general negligible, and dominated by communication cost.

Among the works introducing CS in this scenario, [20]
proposes CS-based compression and considers the number of
clusters to reduce the total amount of local communications
needed to first collect readings and then transmit intermediate
results to a main collector. However, the main collector is
assumed to be at the center or immediately outside the sensing
area, but not far from it thus avoiding any trade-off between
local and long-range communications. The authors of [21]
propose, on the basis of the LEACH scheme, an adaptive
and energy-balanced data gathering and aggregating approach.
Similarly to previously considered cases, the collector is
assumed to be inside the sensing area. The authors of [19] pro-
pose an aggregation technique, and investigate how the number
of clusters is subjected to the overall power consumption. Yet,
similarly to previous works, the collector is located at the edge
of the sensing area. In [23] data aggregation before attempting
long-range communication is investigated; however, hubs are
selected among the sensor nodes in the WSN as in [27], while
in the scenario considered here sensor nodes and hubs are
different devices.

With respect to the aforementioned literature, the main
innovative aspects of this paper can be summarized as follows.
• We assume that the deployment of the hubs follows rules

that are similar to that used in the deployment of sensors,
i.e. hubs cannot be placed at will, since their positions
cannot be set. To cope with this, we model the hubs
positions as random variables. Note that the immediate
consequence is that common coverage techniques cannot
be applied [32], [33].

• The hub diversity is introduced as a figure of merit to
indicate how different is the coverage of two randomly
deployed hubs. A low diversity value indicates a situation
where two hubs communicates with almost the same
set of sensor nodes, and so they provide a very similar
information to the data collector. Based on this, it is
possible to discard hub networks that do not ensure a
minimum hub diversity.

• Each local hub compresses the sensors readings by CS
paradigm. Compression is increased by adapting the
rakeness-based CS to this framework [24], [25].

III. SCENARIO DESCRIPTION

A. Input signal and node network configuration

According to what is commonly assumed by the smart
dust paradigm, the input signal is a physical quantity that is
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Fig. 2. Example of sensor node network with n = 50 and dth = 0.2. A
connection between nodes indicates that they are related to the each other,
i.e., their distance is smaller than dth.

TABLE I
FEATURES OF THE CONSIDERED SCENARIO.

Input signal and node network configuration
description values

N dimensionality of the signal 128

κ
number of non-zero components of x
along D {6, 12}

D
sparsity basis of x, Fourier of the
connectivity graph with dth = 0.15

F [C]

X correlation matrix of x E[xx>]

ISNR intrinsic SNR of x 60 dB

Hubs network configuration
description values

M number of hubs {14, 16, 18, 20, 22, 24}

rTX
maximum connection distance between
a hub and nodes in its neighborhood {0.2, 0.25, 0.3}

Nk
set of sensors sending their reading to
the k-th hub

Reading processing strategy
description values

ETX
energy required by a sensor for a
reading transmission

ERX
energy required by a hub for a sensor
reading reception

EWAN
energy required by a hub to transmit a
digital word

m number of compressed value
transmitted to the main data collector

{4, 5, . . . , 128}

pf
probability that a hub fails in receiving
a single value from a sensor {0, 0.05, . . . , 0.8}

acquired through N sensor nodes that are distributed, without
any direct control, in the area (or over/inside the structure)
to be monitored. For the sake of simplicity, we propose the
following simplified model.

Let us number all sensor nodes from 0 to N−1, and assume
that we are monitoring the input signal inside the 2-D unit
square. Indicating with νk ∈ [0, 1]×[0, 1] the coordinates of the
k-th sensor node, we model the νk as random variables with an
uniform distribution inside the unit square. We define the input
signal x as the column vector x = (x0, . . . , xN−1)>, where
xk is the reading from the k-th sensor, and where ·> stands
for vector transposition. We also consider a disturbance vector
η = (η0, . . . , ηN−1)> modeled with a Gaussian distribution so
that the Intrinsic Signal-to-Noise Ratio (ISNR) is ‖x‖2/‖η‖2.

In order to simplify the mathematical notation, in the
following we assume that the expected value of the input signal
is E[x] = 0. We also make the two additional and realistic
assumptions that x is sparse and localized.

The first assumption is the formalization of the fact that x
exhibits redundancy and thus is compressible. Given a proper
orthonormal basis D ∈ RN×N such that the input signal is
expressed as x = Dξ, x is sparse if the coefficient vector
ξ ∈ RN has only a few non-negligible components, that are
indeed the only ones required to reconstruct x. We also say
that, if one knows that not more than κ components of ξ are
non-null, then x is a κ-sparse signal.

The intuition behind sparsity is that the number of degrees
of freedom of x is smaller than N , i.e., readings are not
independent of, but related to the each other. We consider
that the readings from two nodes j and k are related if the
distance ‖νj−νk‖ is no larger than a threshold value dth. This
definition allows us to create an undirected graph associated
to the network: each sensor node is a graph vertex, and an
edge between vertices j and k exists if ‖νj − νk‖ ≤ dth. We
also limit ourselves to consider connected graphs. An example
of sensor node network for N = 50 along with its associated
graph obtained with dth = 0.2 is depicted in Figure 2.

The advantage of creating a graph representation of the
sensor network is that some authors [18], [34]–[37] have
recently suggested a relation between sparsity and connected
graph, in particular with the adjacency matrix C associated
to the graph and defined as Cj,k = 1 if an edge between
vertices j and k exists, and 0 otherwise. Assuming that C can
be diagonalized as C = DΛD−1, with D the non-singular
eigenvectors matrix and Λ the diagonal matrix containing the
eigenvalues, [34] and [35] observe that D is the generalization
of the Fourier basis for discrete time periodic signals. As it
happens for time domain signals, graph-supported signals are
often sparse in their Fourier representation. In the following,
we will refer to this by saying that D = F [C].

The other prior on x, i.e., localization, is the hypothesis
that its energy is not uniformly distributed along its com-
ponents [24]. This property is well described by using the
second order statistics of x, i.e., by its N × N correlation
matrix X = E[xx>]. Signals with independent components
feature a trivial diagonal correlation matrix made of indi-
vidual variances Xk,k = E[x2k] and products of the means
Xj,k = E[xj ]E[xk] = 0 for j 6= k.
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It is worth noticing that real-world quantities usually fea-
ture some form of both redundancy and correlation between
components. Even if the computation of both D and X may
result non-trivial, these assumptions can be used as a prior to
optimize the acquisition of x.

B. Hub network configuration

To allow long-range communication to the data collector,
a number M of hubs are spread into the unit square, at
coordinates θk, k = 0, . . . ,M − 1. The k-th hub is able to
communicate with its neighborhood Nk, defined as the set of
the node indexes j such that ‖θk − νj‖ ≤ rTX, being rTX

the transmission range of sensor nodes. Each hub collects all
readings from its neighborhood, pre-processes them, and sends
intermediate results to the collector thanks to a long range
communication capability.

In many situations it is useful to deploy hubs with a
regular pattern [32], [33]. Instead, we here assume that the
physical constraints imposing to sensor nodes to be deployed
in non-controllable geographical positions regulate also the
deployment of the hubs. In other words, and assuming to
have no information on the underlying sensor network and
on possible geographical constraints, we model also θk as
random variables in the unit square. Note that, depending on
the position of nodes and hubs, a node could be in one or more
than one neighborhood, but it is also possible that a node is
not included in any neighborhood, as more clearly detailed in
Subsection IV-B.

This is actually not an issue. The sparsity property implies
that input signal has redundancy, so that it may be correctly
reconstructed even if some readings are not available. On the
contrary, reducing the hub network coverage may represent a
way to reduce system power consumption. As an example, [25]
introduces puncturing as a technique based on the intentional
skipping of some samples producing an effective reduction in
the energy required to acquire a sparse signal.

C. Readings processing strategy

Each of the N sensor nodes broadcasts its readings, and all
hubs in range (i.e., with distance smaller than rTX) can read
the transmitted value. We assume that all N transmissions are
not superimposed in some domain and do not interfere with
each other.

We indicate with ETX the energy required by a sensor node
to broadcast its reading. We also indicate with ERX the energy
required by a hub to receive a sensor reading and assume that
hubs are smart enough to spend energy only on sensors that
are within their neighborhood.

Furthermore, in order to take into account external interfer-
ence, we model the communication process in a stochastic
way: there is a non-null probability pf that a hub fails in
correctly receiving a measurement. Both ETX and ERX are
spent by the node and by the hub, respectively, independently
of the fact that the transmission is successful or not.

Each hub can send readings to a central collector with an
energy EWAN for each single piece of data, with EWAN �
ETX. In order to reduce long range transmission costs, reading

from the sensors are pre-processed, and only a limited number
of linear combinations of them is sent.

In more detail, we apply Compressed Sensing (CS), a
technique known to reduce the number of samples required
to correctly reconstruct a sparse signal at a negligible cost in
terms of energy requirements. Each hub computes and sends
the same number m/M of linear combinations, so that the
whole long range system rely on m transmissions. The amount
of energy required for processing is considered negligible with
respect to communication-related energy

If m is not an integer multiple of M , some hubs compute
and send bm/Mc combinations, while some others bm/Mc+
1, with b·c the largest integer less than or equal to its argument.

D. Compressed sensing and signal reconstruction

Compressed sensing is a technique [16], [17] leveraging the
sparsity prior to reduce the amount of quantities required to
reconstruct a signal with respect to a Nyquist rate sampling.

Given a signal x ∈ RN , instead of considering the N
values xk for k = 0, . . . , N − 1, the fundamental idea is
to compute a certain number of their linear combinations
yj =

∑N−1
k=0 Aj,k (xk + ηk) for j = 0, . . . ,m − 1 and with

m < N , called measurements. By arranging measurement and
the disturbance terms in the vectors y and η, respectively, and
the linear combination coefficients in the matrix A, then CS
is described by the relationship y = A (x+ η).

The pre-processing mechanism introduced in the hubs be-
longs to the CS framework, and we can base signal reconstruc-
tion on the many techniques proposed to get x̂ as a correct
estimation of the actual input signal x. The main issue in
signal reconstruction is that, since m < N , x̂ cannot be in
principle computed starting from the knowledge of y only.
Yet, a number of theoretical developments guarantees that, if
x is sparse with respect to D, x̂ = Dξ̂ can be obtained by the
optimization problem [16]

ξ̂ = arg min
ξ
‖ξ‖1 s.t. ‖ADξ − y‖2 < ση (1)

i.e., by looking at the sparsest ξ̂ among all ξ for which ADξ ≈
y. In (1), ‖ · ‖1 and ‖ · ‖2 are the standard `1 and `2 norms1,
and ση bounds the effects of η. Such an approach is called
basis pursuit with denoising (BPDN).

Most of the practical interest in CS comes from the fact that
actual estimation algorithms largely outperform the theoretical
bounds allowing an effective recovery of x from a small
number of measurements, i.e., usually m � N [38]. This
makes CS a quite good and computationally light compression
algorithm.

Furthermore, the conditions on A that allow correct re-
construction are simply achieved by using random matrices
and, even if the formal results depend on specific matrix
distributions [39], in practical cases a wide class of random
matrices allows for effective signal recovery [40]–[43].

1It is a common practice to promote sparsity by means of the `1 norm
instead of the computationally intractable count of non-zero components given
by `0 pseudo-norm.
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H0

H1
dN = 1/2

Fig. 3. Example of neighborhood diversity for a case with only two hubs:
the neighborhood N1 of hub H1, with respect to the neighborhood N0 of
hub H0 is such that |N1 \ N0| / |N1| = 1/2, so dN = 1/2.

Recently, some optimization techniques have been proposed
capable of substantially improving CS performance with a
proper adaptation of the sensing matrix A to some input signal
features [24], [44], [45]. In the following, we will focus on
the approach proposed in [24] that bases the design of A on
the second-order statistics X of the input signal.

IV. SYSTEM DESIGN

The system described in previous section is defined by a
large number of parameters. Some of them are constraints,
while others are degrees of freedom that can be tuned to
optimize some system performance. In this section we high-
light which are the constraints and which are the degrees of
freedom, and how the latter can be properly tuned.

A. System constraints

All input signal related parameters are to be considered
constraints. The number of sensor nodes N , the sparsity
property identified by the sparsity level κ and by the adjacency
matrix C (or equivalently by the sparsity basis D = F [C]),
and the correlation matrix X . Also the probability of a failure
in a reading reception pf is considered a constraint, since it is
due to external interference.

B. Hub network design

The design of the hub network is a degree of freedom, and
one can decide both the number of hubs M , and their deploy-
ment strategy. We suggest here two different strategies, both
based on a random hubs deployment with some consistency
checking. The first one checks for non-zero neighborhood
cardinality only, and the second one for a minimum amount
of neighborhood diversity. Both strategies will be used in the
next sections and are detailed as follows.
• Coordinates of the hubs are randomly drawn in the

unit square according to a uniform distribution. Every
new hub must have at least one sensor node in its
neighborhood, otherwise it is discarded and a new one is
drawn. In this way, the cardinality of all neighborhoods
is |Nk| ≥ 1, ∀k. We indicate this strategy as rnd-H.

• Coordinates of the hubs are randomly drawn in the unit
square according to a uniform distribution. Every new

Algorithm 1 Adaptive positioning of M hubs
1: procedure DIVH(M , rTX , dN )
2: Θ← ∅
3: N ← ∅
4: do M times
5: cond← True
6: while cond do
7: θk ← random position in [0, 1]2

8: Nk ← sensors subset with distance ≤ rTX
9: cond← False

10: for all Nj ∈ N do
11: if |Nk \ Nj | < dN |Nk| then
12: cond← True
13: end if
14: end for
15: end while
16: Θ← Θ ∪ θk
17: N ← N ∪Nk
18: end do
19: return Θ, N
20: end procedure
21: Θ: Set of hubs coordinates
22: N : Set of hubs neighborhoods

hub must have a neighborhood that is non-negligibly
different with respect to that of the already present ones,
otherwise it is discarded and a new one is drawn. In
mathematical terms, being j an already placed hub and k
the new one, and being Nj and Nk their neighborhood,
the number of nodes that are in Nk but not in Nj
normalized by the number of nodes in Nk has a lower
bound given by dN , i.e., |Nk \ Nj | / |Nk| ≥ dN , ∀j < k.
A simple example illustrating the neighborhood diversity
concept is illustrated in Figure 3. We refer to this strategy,
illustrated in Algorithm 1, as div-H.

Note that div-H includes rnd-H as a prerequisite to
be able to compute |Nk \ Nj | / |Nk|, while rnd-H can be
considered a special case of div-H with dN = 0. Note
also that none of the two strategies ensures a coverage of
the whole unit square. As a consequence, sensor nodes may
exist that are not covered by any hubs, in particular if M is
small. This can be clearly observed in Figure 4, illustrating
two examples of coverage for the rnd-H and the div-H
strategies, respectively, with N = 128, M = 12, rTX = 0.25
and dN = 0.25 (for to the div-H case only).

C. Compressed sensing design

The design of the readings pre-processing stage in the hubs
follows the usual CS guidelines. Two parameters can be tuned
to improve parameters: the number of measurements m and
the sensing matrix A. Since the former has an impact on
performance that is trivial, we focus here on the latter.

Temporarily neglecting the additive noise terms ηk consid-
ered in previous section, let us assume that the generic j-th
measurement yj =

∑N−1
k=0 Aj,kxk, with j = 0, . . . ,m − 1, is

generated by the hub u, with u = 0, . . . ,M − 1, by collecting
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1

(a)
1

(b)

Fig. 4. Example of coverage for the proposed strategies, for N = 128,
M = 12 and rTX = 0.25. (a): rnd-H; (b): div-H, with dN = 0.25.

and linearly combining all the readings from the nu = |Nu|
nodes in its neighborhood Nu. This implies that Aj,k = 0 if
k /∈ Nu.

To allow a simpler notation, let us introduce the vector a ∈
Rn as the generic j-th row of A, i.e., a = Aj,·

>. With this,
the generic j-th measurement is given by the scalar product

yj = a>x = a|u
>x|u (2)

where the ·|u is an operator that, given an input indexed
quantity, returns only the elements whose indexes are in Nu.
In other words, a|u ∈ Rnu and x|u ∈ Rnu are two vectors
containing only the non-zero elements of a and the readings
of the neighborhood Nu, respectively.

According to well-known CS guarantees, the non-zeros
elements of a (i.e., the elements of a|u) can be taken as
instances of zero-mean and unit-variance Gaussian random
variables, independently of the each other. We refer to this
strategy as rnd-CS.

Yet, if the second-order prior X for the considered input sig-
nal is known, it can be exploited to improve CS performance.
This is what the rakeness concept, developed in [24], [25],
[38], [46], [47], does by adapting the second-order statistic
of a to that of X thus increasing the ability of the linear
combination in (2) to rake energy from x. In other words, the

rakeness approach introduces correlation among the elements
of a single row of A, while all rows of A are still independent
of each other as in standard CS.

More formally, a slight modification with respect to the
rakeness mathematical framework in [25] is required, to cope
with the constraint that only the terms in a|u need to be
effectively designed, as described in the following.

Let X|u ∈ Rnu×nu be the second order statistic characteri-
zation of x|u. The average energy of the generic measurement
as in (2) is

E
[
a|u
>x|ux|u

>a|u
]

=

tr
(
E
[
a|ua|u

>]E [x|ux|u>]) = tr
(
A|uX|u

)
where A|u = E[a|ua|u>] is the correlation matrix of a|u (i.e.,
the non-zeros elements of a), and where tr (·) is the trace of
its matrix argument.

Raked energy can be increased by generating vectors a|u
whose correlation matrix A|u is the solution of the optimiza-
tion problem

max
A|u

tr
(
A|uX|u

)
(3a)

s.t. A|u = A|u> (3b)
s.t. A|u � 0 (3c)
s.t. tr

(
A|u
)

= nu (3d)

s.t. tr
(
A|u2

)
≤ 1

2
nu

2 (3e)

where (3b) and (3c) ask for a symmetric and positive semidef-
inite A|u, respectively (i.e., A|u is a feasible correlation
matrix), and (3d) sets the energy of a|u according to the
number of nodes in Nu. Conversely, as discussed in detail
in [24], [25], the aim of (3e) is to guarantee a minimum
randomness level for a|u in order to span the whole signal
space and allow a correct reconstruction even for the instances
of x that are observed with a smaller frequency.

Following [25], the analytic solution of the above optimiza-
tion problem is given by

A|u =
1

2

(
nuX|u

tr
(
X|u
) + Inu

)
(4)

where Inu
is the nu × nu identity matrix.

We indicate with rak-CS a second option for generating A,
where every row is randomly generated using jointly-Gaussian
variables such that the corresponding a|u is characterized by
a correlation matrix (4).

D. Energy costs

Finally, also energy quantities are degrees of freedom. In
our simplified model we have considered the energy EWAN

required to long range transmit the generic linear combination
yj , and the energy ETX and ERX required to short range
transmit and receive a reading xk, respectively. According to
our model, the total energy required by all local transmissions
is given by nTXETX, where nTX is the number of “readable”
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TABLE II
SYSTEM CONFIGURATIONS USED AS REFERENCE CASES WITH

CORRESPONDING AVERAGES FOR NUMBER OF TX AND NUMBERS OF RX.

Range Technology Eb
TX [nJ/bit] Eb

RX/E
b
TX Ref.

SR IEEE 802.15.4 109 0.65 [48]
BLE 27 0.65 [49]
WiFi 18 0.23 [50]

LR LoRa 39600 − [51]
GSM 17757 − [52]

transmission, with nTX ≤ N due to the possible presence
of nodes not covered by any hub. The energy required for
receiving these readings depends on the hubs positions, and
it is given by

∑
k |Nk|ERX = nRXERX. The long range

link, relying on m transmissions, has an energy cost given
by mEWAN. As already anticipated, we consider the amount
of energy required for pre-processing in the hub negligible.

The energy values depend on the adopted communication
protocol, that also sets the transmission range. As an example,
we have indicated in Table II the value of the energy required
for the transmission of one bit Eb

TX and the ratio between
reception and transmission energy Eb

RX/E
b
TX for some refer-

ence solutions implementing either a short range (SR) or a long
range (LR) communication protocol. The Eb

TX can be used as
a starting value for computing either ETX (SR protocols) or
EWAN (LR protocols); the ratio Eb

RX/E
b
TX is a good estimator

for ERX/ETX. The transmission range is not indicated in the
table as it depends on many factors, but for all solutions is in
the tens of meters range for SR, and in the kilometer range
for the LR.

Interestingly, all reference solutions also allow a reduction
of EbTX with a consequent reduction of the transmission
range for energy saving purposes. We will exploit this in the
following for the local communication introducing a quadratic
dependence of ETX from rTX. In detail, indicating with
E

(nom)
TX and r

(nom)
TX the nominal values of energy required to

transmit a reading and the transmission range of the selected
communication protocol, respectively, the actual value of ETX

is given by

ETX = E
(nom)
TX

(
rTX

r
(nom)
TX

)2

(5)

Furthermore, instead of directly using energy values, we
focus on the two dimensionless quantities γ = ERX/E

(nom)
TX

and ε = E
(nom)
TX /EWAN. The former, according to Table II,

is set to γ = 0.65. Instead, the latter is considered in a wide
range, with particular attention to the two corner cases of the
table, given by ε = 5 · 10−4 and ε = 5 · 10−3.

V. SETTING AND NUMERICAL EVIDENCES

The effectiveness of the proposed design has been inves-
tigated by Montecarlo simulations for a huge number of
different system configurations. The values considered for the
parameters discussed in the Section III are listed in Table I,
while Table III an Table IV list technological parameters that

TABLE III
TECHNOLOGICAL PARAMETERS IN THE SYSTEM DESIGN.

description values

r
(nom)
TX

maximum value of rTX for a fixed
comm. technology 0.3

E
(nom)
TX nominal value of ETX for r(nom)

TX

γ
ratio between energy for TX and RX in
short range communication 0.65

ε
ratio between energy for short and long
range transmission [5× 10−6, 5× 10−2]

TABLE IV
DEGREES OF FREEDOM IN THE SYSTEM DESIGN.

description values

hub positioning rnd-H random positioning, dN = 0

div-H heuristic in Subsection IV-B
with dN > 0

dN neighborhood diversity {0, 0.05, 0.1, 0.15, 0.2, 0.25}
sensing matrix design
paradigm

rnd-CS classical random coefficients

rak-CS rakeness-based coefficients

characterize communication protocols and degrees of freedom
in the system design as described in Section IV. With the
set of parameters in Table III it is possible to identify a
pair of communication technologies, one for short and one
for long range transmission, while the hub position and data
compression mechanism depend on the degree of freedom in
Table IV.

For the considered class of input signals, we focus here
on the signal sparsity with κ = {6, 12} in order to account
different effectivenesses for the entire CS framework. The
corresponding sparsity basis is the Fourier of adjacency matrix
D = F [C] (with dth = 0.15) which refers, for each trial,
to a different set of sensor nodes randomly positioned in the
unit square. Input signal characterization is completed by the
empirical evaluation of X . This is computed over a training
set composed by 10000 signal instances.

For the network configuration, we focus here on neighbor-
hood characterization that depends on the number of hubs
M , on the adopted hub positioning policy and on the sensor
transmission range rTX with: M ∈ {14, 16, 18, 20, 22, 24}.
Hubs are drawn according to both rnd-H and div-H
and rTX ∈ {0.2, 0.25, 0.3}. For div-H we have dN ∈
{0.05, 0.1, 0.15, 0.2, 0.25}.

As described in Section III-C, the M hubs are cyclical used
in the computation of the m-dimensional measurements vector
y, i.e., each hub computes at least bm/Mc measurements.

The computation of y refers to the adopted policy for data
compression. Two different sensing matrices A, obtained by
drawing non-null elements either as instances of independent
and identically distributed Gaussian random variable, i.e, by
applying rnd-CS, or as instances of a Gaussian process with
a correlation profile as in (4), i.e., by following the rak-CS
approach.

Accordingly, all the possible combinations described above
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give rise to a total amount of 864 combinations. For each
one of these cases, performance has been evaluated for a
number of measurements m given by all possible integers
in the range [4, N ], and by averaging 1500 different trials.
Signals recovery problem (1) was solved according to [53].
Quality of the reconstructed instances x̂ is evaluated by means
of the Reconstruction Signal-to-Noise Ratio (RSNR), defined
as

RSNR = 20 log10

(
‖x‖2
‖x− x̂‖2

)
The main figure of merit considered in this paper is the

Probability of Correct Reconstruction for a given quality of
service, PCRQ, that is defined as the probability that the
RSNR exceeds a threshold Q

PCRQ = Pr {RSNR ≥ Q}

We prefer this figure of merit with respect to the average value
of the RSNR because it also gives indications on the variance
of the reconstruction quality. The PCRQ is, in fact, capable
of revealing undesired situations that the simple observation
of the average RSNR value may mask. In particular we will
focus on PCRQ = 0.95, implying that the required minimum
RSNR value is obtained at least 95% of the times.

For a certain system configuration, i.e., a certain set of
values assigned to the features described below, it is possible
to identify an energy cost needed to send all the information to
the data collector. The overall cost, as detailed in Section IV-D,
is made by three different contributions: energy required by
sensors to transmit readings to the hubs, energy required by
the hubs to receive readings, and energy required by the hubs
to transmit the computed measurement. Mathematically:

ECS = mEWAN + nTX

(
rTX

r
(nom)
TX

)2

E
(nom)
TX + nRXERX

where we have taken into account the possibility to reduce
ETX by reducing the rTX according to (5).

We normalize this energy to that required by a straightfor-
ward acquisition scheme where N readings are long range
transmitted to the data collector, i.e., E0 = NEWAN. The
obtained figure of merit is

ECS

E0
=
m

N
+

nTX

(
rTX

r
(nom)
TX

)2

+ nRXγ

N
ε (6)

that depends on the two dimensionless quantities γ and ε
defined in Subsection IV-D. Clearly, values of ECS/E0 lower
than 1 indicate energy saving with respect to the straightfor-
ward approach.

A trade-off between two defined figures of merit (the quality
of service Q and the energies ratio ECS/E0) is expected where
a higher values of Q implies a lower energy saving.

A. Numerical Evidences

According to Table I, a very large number of scenarios can
be identified by {κ, rTX,M, pf}. Additionally, the commu-
nication technologies are modeled by ε, the hub positioning

TABLE V
SYSTEM CONFIGURATIONS USED AS REFERENCE CASES WITH

CORRESPONDING AVERAGES FOR NUMBER OF TX AND NUMBERS OF RX.

rak-CS rnd-CS

div-H rnd-H div-H rnd-H

κ M dN rTX E[nTX] E[nRX] min
m
{PCR55 dB ≥ 0.95}

SYS1 6 16 0.2 0.3 126.7 461.0 45 56 67 82
SYS2 6 22 0.1 0.25 125.2 454.2 51 60 74 84
SYS3 12 16 0.1 0.3 125.4 455.6 78 92 120 -
SYS4 12 24 0.25 0.2 123.9 331.4 90 - 123 -

depends on dN (the rnd-H is achieved for dN = 0) and
the adopted compression scheme is one among rnd-CS and
rak-CS. The considered value of m is the smallest one that
guarantees the desired PCRQ.

By now, we neglect the impact of both ε and pf and we
limit ourselves to consider only four configurations as case
studies. We indicate them with labels from SYS1 to SYS4
that correspond to parameter values in Table V. To give an
idea of the connectivity generated by those configurations,
we also propose in the table the average number of links
between nodes and hubs, expressed in terms of average
number of achieved transmissions E[nTX] and of total number
of readings received by hubs E[nRX]. E[nTX] is determined
by the number of nodes whose reading cannot be received by
any hub, while E[nRX] refers to hub diversity along with M
and rTX.

For each of these reference cases we propose reconstruction
performance as a function of m for any possible combination
of rnd-CS or rak-CS, and of rnd-H or div-H. Results
can be seen in Figure 5 in terms of probability of correct
reconstruction given a 55 dB quality of service (PCR55dB).

The rak-CS approach largely outperforms the rnd-CS
one. Conversely, there is a non-negligible difference between
rnd-H and div-H, with slightly advantage for the div-H
approach, excluding SYS4 (characterized by a large M with
small rTX ) for which also an improvement is more evident.

The figure has to be read as follows. By considering SYS1
with div-H and rak-CS, the desired quality of service
Q = 55 dB is achieved with a probability higher than 0.95
for any value of m larger than 45. The computation of m is
fundamental to assess long-range communication costs. The
values of m for the other options are shown in Table V.

Once that the m value satisfying the desired quality of
service has been computed, it is possible to evaluate the com-
munication costs in terms of the normalized energy ECS/E0.
Results for this second figure of merit are depicted in Figure 6
for both sparsity levels and as a function of ε, for the constant
value of γ = 0.65. Results do not refer to a single system
configuration, but each plot in the the obtained profiles refers
to the configuration ensuring the lowest normalized energy
among all configurations given by all possible values of m, M ,
rTX and dN that guarantee PCR55 dB ≥ 0.95. Each plot re-
ports performance for rnd-CS and rak-CS, in combination
with rnd-H and div-H. Note that rnd-H implies dN = 0,
i.e., the reported lowest energy ratios span combinations of m,
M and rTX only.
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Fig. 5. PCR against m for the different system configurations of Table V. rnd-H lines refer to dN = 0.
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Fig. 6. Energy ratio against ε, for κ = {6, 12} and with γ = 0.65. For each value of ε the corresponding ECS/E0 is the lowest along all possible
combinations of m, M , rTX and dN that guarantees PCR55 dB ≥ 0.95. rnd-H lines refer to dN = 0.

With 5 × 10−4 ≤ ε ≤ 5 × 10−3, i.e., for values of
ε intermediate between the two corner cases of Table II,
performances are almost flat since energy cost is dominated by
the long range transmissions that is proportional to m. This
means that the lowest energy is always given by the same
configuration. Optimal system configuration changes only for
extreme values ε > 10−2.

Focusing on values of ε associated to technologies con-
sidered in Table II, the simultaneous adoption of div-H
and rak-CS outperforms others possible combination of CS
approach and hub positioning with ECS/E0 ≈ 0.33 for
κ = 6 and ECS/E0 ≈ 0.48 for κ = 12. Here we have

(m,M, rTX, dN ) equal to (42, 16, 0.3, 0.25) for κ = 6 and
(62, 22, 0.3, 0.25) for κ = 12. For this reason, in the rest of
the paper we will focus only on the div-H and rak-CS
case.

The proposed results show that the optimal configuration
(including transmission cost) mainly depends on the desired
quality of service so that a quality-energy trade-off can be
investigated. Different levels of Q as a function of ECS/E0,
always considering PCRQ ≥ 0.95, are depicted in Figure 7
for κ = {6, 12}. Figure 7 shows also profiles for few values of
ε that exploit current communication technologies along with
the extreme case ε = 10−2 in which energy ratio between
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Fig. 7. Trade-offs between quality of service Q and energy ratio ECS/E0 for div−H + rak−CS and for κ = {6, 12} with γ = 0.65. Each line reports
the lowest ECS/E0 along all possible combinations of m, M , rTX and dN that guarantee PCRQ ≥ 0.95. rnd-H lines refer to dN = 0.
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Fig. 8. Trade-offs between quality of service Q and energy ratio ECS/E0 for div−H + rak−CS (with dN = 0.25) along with cases where hubs are on
a regular grid (sqr-H) and either rnd-CS or rak-CS are considered for data compression. Results are for ε = 5× 10−3, γ = 0.65 and for κ = {6, 12}.
Each line reports the lowest ECS/E0 along all possible combinations of m, M and rTX that guarantee PCRQ ≥ 0.95.

short and long range communication is drastically increased.
Even for possible unfavorable future trends, represented by
ε = 10−2, the energy saving obtained with Q ≤ 55 dB is
greater than 65% for κ = 6 and it is greater than 45% for
κ = 12.

Furthermore, for Q ≤ 50 dB an increasing in Q has
a negligible cost in terms of overall energy consumption
while for Q > 50 dB the additional energy cost needed to
increase Q rapidly grows. This interesting phenomenon is due
to an intrinsic property of the CS paradigm: when strong
signal degradation is allowed, i.e., Q � ISNR, the slope of
the dependency of the average performance on m is high.
Conversely, average performance slowly increase with m when
Q is close to ISNR.

As discussed in Section III-B, random hub positioning has
been introduced to cope with possible physical constraints that
do not permit to completely control the hubs deployment. Nev-
ertheless, a comparison of the proposed (div-H +rak-CS)
approach with hub positioning based on a regular pattern is
depicted in Figure 8. These results refer to hubs deployed
on a square grid, named sqr-H, that is a trivial solution
for the coverage of a square area. As in the previous cases,
trade-offs for sqr-H refer to the best option along different
system configurations identified by M = {1, 4, 9, 16, 25} and

rTX = {0.75/√2M, 1/
√
2M, 1.25/

√
2M, 1.5/

√
2M}.

The proposed div-H +rak-CS outperforms sqr-H com-
bined with rnd-CS. Moreover the adoption of rak-CS with
hubs on a regular grid guarantees the highest energy saving for
all considered values of Q. Results suggest two important re-
marks: i) rak-CS outperforms rnd-CS also in case of hubs
on a regular grid; ii) the limited deviation between profiles for
sqr-H +rak-CS and div-H +rak-CS accounts for the
possible physical constraints imposed to the hub positioning.

Finally, it is possible to evaluate the role of the probability
of failure in a short-range transmission pf in Figure 9. Also
here we refer to the div-H +rak-CS cases only and to the
four system configurations in Table V. As figure of merit, we
define the ratio between ECS and ECS,pf=0 where the latter
corresponds to the already presented results while, here, the
ECS values account for the impact of pf . As before, both
ECS and ECS,pf=0 correspond to the minimum value of m
that satisfies PCR55 dB ≥ 0.95.

The shown profiles highlight the robustness of this frame-
work to this hard to avoid phenomenon. In particular, such
results are to be considered as a trade-off energy vs tolerance
in missing single communications. As an example, for SYS2
m = 51 is enough to ensure PCR55 dB ≥ 0.95 with pf = 0
(see Table V), while to tolerate a 20% failure rate in data
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Fig. 9. Energy ratio against pf , probability that a hub fails in receiving a
single sample from a sensor, with the adoption of div−H+rak−CS in the
four system configurations of Table V. ECS,pf=0 profiles are for ε = 10−3,
γ = 0.65 and for the minimum m that guarantees PCR55 dB ≥ 0.95.

reception (pf = 0.2) the minimum m is 56. In this example,
5 additional measurements are enough to compensate missing
readings in the ratio of 1 out of 5.

This robustness to transmission failures is related to one
of the CS properties discussed in [25], [54], i.e., a CS based
acquisition system is able to tolerate some missing data that,
in our system, correspond to sensors that do not communicate
with any hub. This is the case of a sensor, staying in a
single neighborhood, that is temporally unable to transmit its
readings. In case of sensors that belong to more than one
neighborhood, transmission failures towards a single hub is
less restrictive than scenarios discussed in [25], [54].

The robustness to missing data from sensor to hubs is also
related to the sparsity of the input signal, i.e., to the value of
κ. For both SYS3 and SYS4 (where κ = 12) the system is
less robust to this phenomenon with respect to the cases of
SYS1 and SYS2 (where κ = 6).

VI. CONCLUSION

Compressed Sensing, especially its rakeness-based variant,
is able to yield non-negligible lossy compression though
entailing an extremely limited computational burden. Hence,
it is the ideal candidate for the compression stage that may
be implemented at the intermediate level in a sensor net-
work architecture in which local hubs collect sensor readings
by means of short-range communications and relay their
compressed version to a remote concentrator by long-range
transmission.

In the paper we were able to show that such an approach,
paired with an empirical strategy aiming at promoting diversity
between the set of readings collected by different hubs, is able
to substantially reduce the energy requirements with respect
to the no-compression and, though it clearly strips part of the
redundancy in the sensed data, it is still quite robust with
respect to the possible failure of local communications.
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