
18 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Logic Synthesis for Silicon and Beyond-Silicon Multi-gate Pass-Logic Circuits / Tenace, Valerio; Calimera, Andrea; Macii,
Enrico; Poncino, Massimo - In: VLSI-SoC: System-on-Chip in the Nanoscale Era – Design, Verification and
ReliabilitySTAMPA. - [s.l] : Springer, 2017. - ISBN 978-3-319-67103-1. - pp. 60-82 [10.1007/978-3-319-67104-8_4]

Original

Logic Synthesis for Silicon and Beyond-Silicon Multi-gate Pass-Logic Circuits

Publisher:

Published
DOI:10.1007/978-3-319-67104-8_4

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2681679 since: 2020-02-25T13:21:06Z

Springer

Logic Synthesis for Silicon and Beyond-Silicon
Multi-Gate Pass-Logic Circuits

Valerio Tenace, Andrea Calimera, Enrico Macii, and Massimo Poncino

Dipartimento di Automatica e Informatica, Politecnico di Torino,
Corso Duca degli Abruzzi 24, Torino, Italy

{valerio.tenace,andrea.calimera,enrico.macii,massimo.poncino}@polito.it

Abstract. In the last decade several new technologies have been pro-
posed as possible replacement for MOSFETs; Silicon Nanowires, Mag-
netic Tunnel Junctions, Graphene p-n Junctions are just some of the
most representative examples. Although their intrinsic differences, they
all share a common key characteristic, i.e., enable the implementation of
logic gates with an expressive power much higher than that of state-of-
art silicon CMOS gates. This may translate into more complex and faster
switching functions that count less devices. The view of new materials
that can serve as technological vehicles for energy efficient circuits and
systems attracted the interested of the whole electronics research com-
munity. Apart from the many technological aspects, the path towards
large-scale integration of emerging devices crosses the need of (i) new
integration strategies that better fit the characteristics of the new tech-
nologies and (ii) new computer-aided design (CAD) methodologies able
to cope with the complexity of today’s design specs. The availability of
this two elements may open the way for fast design space exploration
and better assessment of new technologies against standard CMOS.
This work focuses on logic synthesis and optimization tools for ultra-low
power pass-gate circuits mapped into emerging technologies, Graphene
and silicon nano-wires. More specifically, we describe a novel multi-
function decomposition engine that (i) efficiently performs abstract cir-
cuit modeling through a highly-compact data structure called Multi-
Function Pass Diagram (MFPD), (ii) provides an effective multi-gate
synthesis&optimization flow, (iii) allows accurate power/delay estima-
tions. The contents reported in the following sections represent one of
the first examples of how dedicated algorithms and data-structures can
substantially improve the quality-of-design when moving from CMOS to
emerging technologies.
Simulation run conducted on different benchmarks demonstrate that
pass-gate circuits synthesized with the proposed tool are smaller and
shallower, hence less power hungry and faster than circuits obtained
through conventional synthesis methodologies based on standard design
flows. As an additional contribution, the results prove that our solution
is not only applicable to beyond-silicon technologies but also to standard
MOSFETs.

Keywords: Emerging technologies, Graphene, Silicon nano-wires, Pass-
Gate Logic, CAD, Logic Synthesis, Low-Power, Adiabatic Computing

2 Valerio Tenace, Andrea Calimera, Enrico Macii, and Massimo Poncino

1 Introduction

1.1 CMOS at the end of the line

The introduction of Metal-Oxide-Semiconductor Field-Effect-Transistors (MOS-
FETs), officially set in 1947 at Bells Labs as a replacement to vacuum tubes,
represents a milestone in the industry of semiconductors. Since then, and after
60-year long research efforts, Complementary MOS (CMOS) electronic circuits
have become the dominant technology for the entire ICT segment.

The continuous demand for smaller, faster and more power-efficient Inte-
grated Circuits (ICs) have pushed CMOS technology close to its boundary. At
the time being, technology trends are clearly highlighting that a radical shift in
thinking digital hardware design might come soon. Among the many aspects, we
highlight three well known issues that sustain this claim.

– Non-ideality of the Silicon scaling process: below the 45nm node the
technology scaling process faced several limitations due to (i) the increased
difficulty in discretizing transistors on a physical die, a problem related to
the gate-oxide thickness that is slowly approaching a few-atom width [1];
(ii) the miniaturized gate length of MOS transistors and the upsurge of
short-channel effects (SCEs), leakage current in particular, which represent
a serious reliability issue [2]; (iii) as transistors size decreases, power dis-
sipation and process-variation induced reliability issues become critical [3].
These issues impact the fabrication yield of reliable ICs.

– Nanometric CMOS styles are no longer the most energy-efficient
integration strategy: static CMOS has been taken as a reference style for
mainstream VLSI circuits due to high noise immunity, resilience to supply-
voltage scaling and low leakage currents. However, as the technology scaling
process went below the 90nm mark, some of these characteristics faded out
due to SCEs. This suggests that other logic families that were discarded
in the past, e.g., Dynamic-Logic, Pass-Transistor-Logic [4], may represent a
new way out for low-power ICs.

– Hitting the power-wall and the dark-silicon problem: achieving ultra-
low power consumptions is becoming a vital feature for consumer electronics,
especially in the context of the Internet-of-Things (IoT) [5] where always-on,
always-connected devices running sensoring applications and data-intensive
computing represent the new mainstream paradigm. Even if many low-
power techniques for CMOS circuits and systems are available today [6],
e.g., Dynamic-Voltage-Frequency Scaling, Power-Gating, Multi-Threshold-
Voltage and Reverse-Body-Biasing, the power consumed by CMOS based
Systems-on-Chips (SoCs) architectures may exceed the power budget. This
implies that an ever larger portion of the silicon die must be kept off (Dark-
Silicon). To address this issue, standard SoC architectures will make space
to less power hungry solutions that implies the use of dedicated accelerators
with embedded memory resources and more energy efficient circuitry.

Logic Synthesis for Silicon and Beyond-Silicon Circuits 3

For such reasons, soon or late, Silicon, CMOS and standard Von-Neumann
architectures will drop the scepter in favor of emerging technologies, alternative
integration strategies and new architectures. From a technological point of view,
recent works proposed several options such as Ambipolar Silicon-NanoWires [7],
Graphene p-n Junctions [8], Graphene Nanoribbons[9], Magnetic Tunnel Junc-
tions [10] and Domain-Wall Nanowires [11]. Apart from their improved electrical
characteristics, those technologies could enhance switching primitives with new
fascinating properties able to accommodate the specifications of alternative com-
puting paradigms.

1.2 Candidates to replace the CMOS technology

The above qualitative analysis suggests that the Silicon/CMOS pair could be
soon replaced by some new material and a more energy efficient integration
strategy. Among the many options we believe ambipolar technologies, such as
Graphene or Silicon-Nanowires, integrated à la pass-gate logic style, a.k.a. pass-
transistor logic (PTL), represent an interesting option. In particular, as it will
be shown later in the text, Graphene-based devices are particularly suited for
pass-gate logic.

The choice of PTL is justified by its high intrinsic efficiency, already proven
for silicon technologies. PTL circuits can implement logic functions with a lower
transistor count, smaller parasitic capacitance and hence better performance [12].
Even today’s CMOS libraries make use of PTL for some logic gates, e.g., flip-
flops and multiplexers, because of their efficient implementation. Moreover, PTL
circuits offer an opportunity to work “adiabatically”, namely, mimicking the
adiabatic (i.e., without energy exchange) charging process [13]. Adiabatic PTL
may find space with the implementation of dedicated hardware accelerators in
charge of processing “slow” physical-data (e.g., biometric signals) with a very
limited energy budget [5].

The use of PTL and, more precisely, adiabatic PTL, has been already proven
for emerging technologies, such as nanoelectromechanical switches (NEMs), car-
bon nanotubes (CNTs), and graphene p-n junctions. For such devices the PTL
style enables the design of logic circuits with improved energy efficiency if com-
pared to CMOS [14,15,16].

1.3 Lack of logic synthesis tools for PTL

It is clear that new hardware schemes, such as PTL, will inevitably ask for
new CAD tools for the logic synthesis of digital blocks. Algorithms and data
structures for the logic synthesis evolved following the growth of semi-custom
CMOS libraries, while synthesis for PTL has been improved only marginally.
This is why, even today, PTL remains underutilized [12]. It’s not a coincidence
that most of the previous works do focus on circuits for very specific arithmetic
functions [17,18] or handcrafted basic Boolean logic gates [4,19]. Indeed, when
the target design turns into random logic, standard multi-level synthesis engines

4 Valerio Tenace, Andrea Calimera, Enrico Macii, and Massimo Poncino

can’t exploit the structural properties of PTL. That brings to sub-optimal im-
plementations that typically require ad-hoc actions at the post-synthesis stage.

This problem is not new to the research community and several solutions
have been introduced in the last years. Most of them, if not all, are closely
related to the concept of Binary Decision Diagrams (BDDs) or some of its vari-
ants [20,12,21]. There are two main reasons behind the use of BDDs. First,
there exists a one-to-one matching between the BDD representation of the logic
function and the final PTL circuit implementation; this enables the concept of
one-pass logic synthesis [22] where logic optimization and technology mapping
are carried out concurrently on the same data structure thereby saving CPU and
memory usage. Second, BDDs [23] are a very mature data-structure with lots of
available optimization algorithms for redundancy removal and circuit optimiza-
tion.

Despite the efficiency of BDDs as data-structure is unquestionable, BDD-
based synthesis tools show many limitations. First, the tree-like structure of
BDDs reflects into a deep circuit topology with large depth, and hence large
propagation delays. Second, state-of-the-art decomposition methods for BDDs
construction all operate using a pre-fixed variable-order (VO), namely, the order
used for variable expansion is fixed during the entire decomposition procedure,
no matter what the logic function is. Since V O affects the vertex-set cardi-
nality of BDDs, a wrong V O might result into dramatic area increase of the
resulting circuit. Third, decomposition methods are constrained to a “single-
function” decomposition. Such a function, here referred as g(X), differs depend-
ing on the type of BDD variant in use, e.g., MUX for standard BDDs [23], XOR
for Biconditional-BDDs [21]. Logic circuits dominated by g(X), e.g., XOR-rich
arithmetic circuits, take advantage of this characteristic, others, like random
logic circuits, may suffer from sub-optimal minimization. While the first two
issues have been addressed in [24] with the introduction of the Pass Diagram
(PD) data-structure and the non-fixed V O decomposition, this work elaborates
on the third issue, i.e., how to overcome “single-function” decomposition.

1.4 Contribution of this work

As an extension of the contents proposed in [25], this work gives a comprehensive
description of efficient abstract models and data-structures that are particularly
suited for the synthesis of Multi-Gate Pass Logic (MGPL) circuits mapped with
emerging technologies, Graphene and Silicon-NanoWires in particular, or, alter-
natively, with standard silicon MOSFETs.

An MGPL circuit consists of series connections of two-input pass-gates that
can be turned-ON (OFF) and thus open (close) an electrical path between a
clocked-power (the source) and the main output (the leaf); multiple paths are
connected in parallel making the final logic circuit. Hence, similar to PTL, the
information is not carried in the form of charges stored in parasitic capacitance,
but rather through the root-to-leaf propagation of the clock-power signal. It is
worth noticing that, differently from any other existing PTL solutions, MGPL
makes use of pass-gates that embed multiple Boolean operators, like AND, OR,

Logic Synthesis for Silicon and Beyond-Silicon Circuits 5

NAND, and not just MUX or XOR as in the previous works; the choice of which
operators depends on the technology in use.

We introduce a novel abstraction model, namely, the binary Multi-Function
Pass-Diagram (MFPD), a graph-based representation for k-ary Boolean func-
tions. An MFPD is a polarized, acyclic directed graph made up of N root-to-leaf
logical paths. Each path is composed of an arbitrary number of two-input nodes
connected in series, where each node represents a binary connective between
two, out of k, primary input variables and can assume either a TRUE logical
value, e.g., closed switch, or a FALSE logical value, namely an open switch. Un-
der a specific input pattern, logical paths can be activated (all nodes are closed
switches) in mutual exclusion (1 path out of N) and thus create a gateway from
the root to the leaf. In such case, the equivalent logic function represented by the
MFPD is evaluated as TRUE; on the contrary, when no active paths do exist,
the logic function is said to be evaluated as FALSE. This structure matches the
topology of a Multi-Gate Pass-Logic circuit.

The construction of a binary MFPD encompasses two major steps: multi-
function decomposition using a set of basic Boolean operators, e.g., AND, OR,
XOR and their complement; and redundancy removal through iterative reduc-
tion rules. Those phases have been integrated into an automatic synthesis and
optimization tool namedKanon. Moving from single- to multi-function decompo-
sition can be conceptually seen as the shift from two-level to multi-level synthesis
carried out for CMOS circuits.

We apply our tool Kanon to a sub-set of generic benchmarks mapped onto
three different technologies, i.e., Silicon MOS transistors, Ambipolar Silicon
Nanowires and Graphene p-n junctions. The use of generic benchmarks avoids
biased results due to the presence of circuits dominated by a specific function,
the use of different technologies demonstrates that the proposed solution well
fits both silicon and beyond-silicon technologies. The obtained MGPL circuits
are then compared against standard PTL circuits synthesized using state-of-art
BDD-based tools. The collected results validate the functionality of the proposed
MFPD model and the related multi-function decomposition, whilst simulations
using SPICE models quantify the energy efficiency of MGPL circuits.

2 Multi-Gate Pass Logic

A first example of pass-logic circuit for emerging devices has been recently pro-
posed in [26] in the form of Pass-XNOR Logic (PXL) network using graphene
p-n junctions. A PXL circuit consists of a network of Pass-XNOR Gates (PXGs);
PXGs connected in series form a logic path, while logic paths connected in par-
allel connect the root of the circuit (fed by a clock-power signal) to the leaf (the
main output). The clock-power signal works as an evaluation signal that eventu-
ally reaches the output when at least one parallel logic path is ON; in this case
the logic function is evaluated as TRUE, i.e., 1-logic. When none of the parallel
logic paths is ON, the propagation of the clocked-power signal is inhibited and
the logic function is evaluated as 0-logic.

6 Valerio Tenace, Andrea Calimera, Enrico Macii, and Massimo Poncino

!

"

!"

#$%

!# !$

!%

!&

'()* +, - .
&

'

'()* +, - "
&

'

()*+,-$.

,/0.1/123$3,42

!

#5%

!" !%

!# !$

!&

67$.8$3,429+,:2$.

#;%

#-% !" /()"*)#,

!# /()$*",

!$ /()$*)&,

!& /()&*",

!% /()$*)%,

<451951+-=,03,42

Fig. 1. MGLP circuit example, where f = (x1¬∨x2) ∧ [(x3¬∨1) ∨ ((x3¬∨x4) ∧
(x4¬∨1))] ∨ (x3¬∨x5)

A logic path is ON iff all its series connected PXGs are ON simultaneously.
The PXGs can be seen as logic primitives whom electrical behavior resembles a
CMOS transmission gate with an embedded XNOR Boolean functionality. More
specifically, each PXG is electrostatically controlled through primary input logic
signals that tune the equivalent resistance of the PXG itself; a PXG fed by logic
signals having same polarity shows a low-resistance, the ON state, whereas logic
signals with opposite polarity lead the PXG to high-impedance, the OFF state.

As a further step to achieve a higher level generalization of the Pass-XNOR
Logic (PXL) style, [25] introduces the concept ofMulti-Gate Pass Logic (MGPL).
The physical primitives of an MGPL network are generic pass-gates (PGs), that,
from a functional point of view, can be seen as function-controlled switches. Sim-
ilar to PXGs, they consist of two logic-terminals fed by the input logic signals (x
and y in Figure 1-(b)), and two transmission terminals, one playing as the source
of an evaluation signal and the other as the collector (S and D in Figure 1-(b)).
The control function is a two-input Boolean operator g(x, y) between the x and
y logic inputs; when g(x, y) = 1 the PG is ON (low-resistance), Figure 1-(b),
when g(x, y) = 0 the PG is turned OFF (high-impedance), Figure 1-(c). PGs
with different control functions can be designed depending on the technology
in use; the example in Figure 1 is for a NAND-PG, i.e., g(x, y) = x¬∨y. No-
tice that an MGPL circuit can contain PGs with different embedded functions.
Similar to PXL, an MGPL (Figure 1-(d)) consists of logic paths connected in
parallel between a clocked-power supply (the root) and the main output (the
leaf). Each path consists of a cascade of independent PGs driven by primary
inputs. When activated (all PGs turned-ON), a logic path creates a low-resistive
gateway through which the clocked-power signal can flow from the root to the
leaf. Under this condition the circuit’s output is evaluated as 1-logic. Logic paths
are in mutual exclusion by construction, that is, for a given input pattern one
and only one path can be eventually activated. When there are no activated

Logic Synthesis for Silicon and Beyond-Silicon Circuits 7

paths the circuit’s output is evaluated as 0-logic. An MGPL circuit can be mod-
eled using a new dedicated abstract model, the Multi-Function Pass-Diagram
(MFPD), Figure 1-(a), described in the next section.

As for other dynamic logic families, the logical computation of MGPL circuits
consists of two distinct phases: the configuration phase and the evaluation phase.
During the former, primary logic inputs, i.e., the literals composing the logic
function, are fed to the logic inputs of the pass-gates. At the end of this phase
the doping profile of each and every device is fixed and the resistive paths of
the network are set up. In the evaluation phase the clocked power signal is pre-
charged and propagated through the network. A pulse detected on an output leaf
evaluates the implemented function as TRUE; in this regard, a Sense Amplifier
can be used for each output cone in order to quickly identify the 1-logic and
reshape the clock-supply signal [27].

It is worth emphasizing that although the MGPL resembles the PTL struc-
ture, the difference is substantial. In PTL circuits, transistors are used as
switches that deviate the current flow to different paths; on the contrary PGs
are used as switches to open/close a logic path. This is reflected by the model
used to represent the circuit. Indeed, BDDs are not the most intuitive repre-
sentation as PG gates do not implement any deviation of the signal. Second,
while in PTL an output is always connected to a static power supply terminal,
Vdd if ’1’ or Gnd if ’0’, output evaluation in MGPL logic is dynamic: current
is flowing if ’1’, not flowing if ’0’. Alternatively, one can see MGPL circuits as
a half way between CMOS and PTL. As in CMOS series/parallel connections
between gates are available, as in PTL, information is carried out by means of
root-to-leaf current flow.

2.1 Pass-Gate Devices

New logic primitives introduced by emerging technologies represent a perfect fit
to the structure of PGs. Figure 2 pictorially describes some of them. In particular,
Figure 2-(a) shows four PG embodiments using Ambipolar Silicon-NanoWires
(SiNW) [28]. The first two (left) are composed of a single SiNW transistor and
implement the AND and NOR logic gates. The remaining two (center and right)
consist of a pair Si-NW transistors and implement the XNOR or XOR logic
gates.

Figure 2-(b) shows two possible pass-gates using standard MOSFET
transmission-gates. The first one (left) implements the AND, whereas the sec-
ond one (right) implements the NOR. Since both configurations require four
MOSFETs, silicon devices have less expressive power when compared to SiNWs.

Finally, Figure 2-(c) shows pass-gates mapped on graphene p-n junctions [29].
A graphene p-n junction consists of two metal back-gates (blue and green tri-
angles) driven by logic signals (x and y). Logic signals with same polarity turn
the junction ON. The first PG (top left) implements the NOR gate; the outer
input connections x and y are both compared to a logical-0 reference. It works
as follows: when both x and y are set to 0-logic, the input evaluation signal (red

8 Valerio Tenace, Andrea Calimera, Enrico Macii, and Massimo Poncino

!"

!#$ % "

$!$"

!# & "

!"

$! $"

!#$'"

!"#$%&'() *$+,-.

$! $"

! "

!# & "

$! $"

! "

!#$ % "

/0*12345(..43)(6.$.7&)48&9$:

! "

((

!#$ % "
!

"

!#$'"

! "

))

!# & "

;)(%<=6=4%+64>?6:7$&6.

@(A

@#A

@:A

$!"

! $"

!#'"

$!

"

!#'"

Fig. 2. Possible PGs for different logic primitives.

ramp) is allowed to propagate; in all the remaining cases at least one p-n junc-
tion is OFF and the evaluation signal is stopped. Similarly, the second pass-gate
(bottom left) implements the AND; the evaluation signal propagates iff both
x and y are fed wit 1-logic. Notice that for NOR and NAND SiNWs need less
devices (1 vs. 2). The last two pass-gates (top and bottom right) implement
the the XNOR and XOR gates. In this case graphene shows higher expressive
power than SiNW. It is therefore clear how different technologies can be better
exploited using different logic primitives.

2.2 Delay and Power Modeling of MGPL circuits

The total delay Dp of an MGLP logic circuit can be estimated as the sum of
delays due to the configuration phase Dconf and the evaluation phase Deval, as
described in (1), where Dconf is the time primary logic inputs take to charge

Dp = Dconf +Deval (1)

Logic Synthesis for Silicon and Beyond-Silicon Circuits 9

the parasitic capacitances at the back-gates, whereas Deval is the propagation
delay of the input pulse through the front resistive paths of the network.

The amount of power consumed during the configuration phase Pc is due
to charging/discharging of the input gate capacitance of the PGs. For a circuit
made up N gates, an approximate, yet accurate model borrowed from CMOS
is reported in (2), with PPGi

as the power consumed from the i-th PG, Vdd as
the supply voltage, f the operating frequency, Ci the input capacitance of the
i-th PG, and ESWi,j representing the probability that the input signal makes a
transition.

Pc =

N∑
i

PPGi
=

N∑
i

2∑
j=1

0.5V 2
dd · f · Cin · Eswi,j

(2)

During the evaluation phase, once primary inputs have settled and PGs have
been turned-ON or OFF, the circuit simply reduces to an equivalent resistor Req,
i.e., the sum of the ON resistances RON of the PGs belonging to the ON-path, in
series with the output load capacitance Cl. The average power consumed Pe can
be therefore obtained as described in (3), where trf is rise/fall output transition
time, and iCl

(t) is the current charging Cl. Notice that Pe is consumed iff the
output is TRUE, while it is almost zero otherwise.

Pe =
1

trf

∫ trf

0

Reqi
2
Cl
(t)dt =

ReqC
2
l

t2rf
V 2
dd (3)

Moreover, for values of Trf large enough, the evaluation phase completes at
zero-power, namely, adiabatically.

3 Building MFPDs

3.1 Multi-Function Decomposition

The decomposition of a logic function through the primitives made available
by the technology in use represent a fundamental step of any logic synthesis
algorithm. Since most techniques leverage multi-level logic representations, in
this section we illustrate an ad-hoc decomposition that is fine-tuned for pass-
gates logic. Such decomposition, named multi-function decomposition, relies on
the basic assumption that any Boolean equation given in the form of sum-of-
products (SOPs), or product-of-sums (POSs), can be decomposed by means of a
user-defined set of logic connectives G = {g : B2 → B}. Let us assume a function
f(S) with support-set S = {x1, x2, x3} described with the following SOP:

f(S) = (x1 ∧ ¬x4) ∨ (¬x1 ∧ ¬x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3) (4)

By resorting to the distributive property and the identity rule, it is possible
to expand the function f(S) as a sequence of cubes, having cardinality of two
literals:

f(S) = (x1 ∧ ¬x4) ∨ (¬x1 ∧ ¬x2)

∧ (x3 ∧ 1) ∨ (x1 ∧ x2) ∧ (x3 ∧ 1)
(5)

10 Valerio Tenace, Andrea Calimera, Enrico Macii, and Massimo Poncino

Each product can then be rewritten using the Boolean connectives g ∈ G by
means of duality. For instance, let us assume the availability of two connectives
G = {{x ¬ ∨ y}, {x ¬⊕ y}}, where the first one, the NOR (¬∨ symbol), has
higher priority, i.e., is processed first. This means that the function f(S) could
be NOR-decomposed as shown in (6).

f(S) = (¬x1¬∨x4) ∨ (x1¬∨x2) ∧ (¬x3¬∨¬x3)

∨ (¬x1¬∨¬x2) ∧ (¬x3¬∨¬x3)
(6)

Such reformulation reveals that (¬x3¬∨¬x3) is a common term, that can be
factorized as reported in (7).

f(S) = (¬x1¬∨¬x4)

∨ (¬x3¬∨¬x3) ∧ [(x1¬∨x2) ∨ (¬x1¬∨¬x2)]
(7)

At this point, the second operator in G, the XNOR (¬⊕ symbol), could be applied
on (7) in order to further reduce the number of literals in (5). Indeed, the term
(x1¬∨x2) ∨ (¬x1¬∨¬x2) can be represented as the XNOR between x1 and x2.
We refer to this operation as Boolean substitution. Eventually, the final result
of the multi-function decomposition, the original function (4) is decomposed as
described in (8).

f(S) = (¬x1¬∨x4) ∨ (x1¬⊕x2) ∧ (¬x3¬∨¬x3) (8)

Similarly, it is possible to assume a library of logic connectives described as
G = {{x¬ ∧ y}, {x¬⊕y}}, where the symbol ¬∧ denotes the NAND operator.
In this case, the same Boolean function described in (4) is NAND-decomposed
as described in (9), and thus optimized by means of the XNOR connective, as
reported in (10).

f(S) = (¬x1¬∧¬x4) ∨ ¬(¬x1¬∧¬x2)

∧ (¬x3¬∧x3) ∨ (¬x1¬∧x2) ∧ (¬x3¬∧x3)
(9)

f(S) = (¬x1¬∧¬x4) ∨ (x1¬⊕x2) ∧ (¬x3¬∧x3) (10)

It is easy to check the Boolean equivalence between (8), (10) and the original
function (4); in terms of savings, both (8) and (10) show 25% literal savings.

As far as the efficiency is concerned, the proposed multi-function decompo-
sition is closely related to (i) the set of Boolean operators and (ii) their priority
ordering in G. Although several options do exist, we resort to a technology-
instructed strategy, namely, available operators in G are sorted, from highest to
lowest, in terms of their expressive power (EP), which describes the ratio be-
tween the complexity of the logic operator and the number of devices needed to
implement the corresponding logic gate. This guarantees the high flexibility and
orthogonality of our tool onto different technologies.

As will be shown later in the text, different primitives are used during differ-
ent stages of the multi-function decomposition. For the sake of clarity we define
the first operator in G, the one with the highest EP, as the primary primitive,
the remaining ones as the secondary primitives.

Logic Synthesis for Silicon and Beyond-Silicon Circuits 11

!

"

!

"

!

"

#$%%$&

&$'()

*"+(,-%(,./&.-$"-

0$%%$&-)123.,456)

7,/./&48-9:;<

=$$8(4&

(>1/?48(&+

+$-!"#$"% $&'

*"+(,-=$$8(4&-

)12)+/+1+/$&

(" (&

()

(*

(+

(" (&

()

(* (" (,

()

(" !-#.$"% $*'

(& !-#$"% $&'

() !-#.$)%-'

(* !-#.$"% .$&'

(+ !-#.$)%-'

(, !"#$"% $&'

@$'(-'()0,/5+/$&

/ 0 1!- 0 $2. 3 $4 % !" 0 $2.5$4 6

A/2,4,B-$"-0$&&(0+/?()-

C4D C2D C0D

Fig. 3. MFPD of function of Equation (6) before optimization (a), after merging of
common sub-graphs (b), and after Boolean substitution (c).

3.2 Multi-Function Pass Diagrams (MFPDs)

The synthesis of MGPL circuits needs an abstract model for reasoning and op-
timization. We introduce the MFPD, a simple, yet efficient abstract model for
one-pass synthesis of MGPL circuits.

Given a generic multi-input/single-output Boolean function f with support-
set S = {x1, ..., xN}, its MFPD (Figure 3) representation is a polarized, directed
acyclic graph defined as G = (Φ ∪ V ∪ Θ ∪ A). The set of internal nodes v ∈ V
are labeled as g(x, y), with g ∈ G a two-input primitive Boolean connective and
x, y ∈ S. Each internal node v has one outgoing edge a ∈ A representing the
logical conjunction (AND) with the successor node. The terminal node with
indegree 0 represents the root of the MFPD, where the function starts to be
evaluated; the terminal node with outdegree 0 is the leaf of the MFPD, the
output of the function f . Multiple output functions are represented by many
MFPDs as the number of outputs. As an example, Figure 3-(a) shows the MFPD
structure for the function (6) with g0 = (xi¬ ∨ xj) and g1 = (xi¬⊕xj).

The main strengths of an MFPD are three. First, they guarantee the capa-
bility of supporting multi-function decomposition. This degree of freedom comes
at the cost of canonicity, that is, MFPDs do not have an unique representa-
tion of Boolean formulae. However, relaxing the canonicity constraint is a well-
accepted concept in the EDA community; indeed, And-Inverter Graphs (AIGs)
integrated into commercial multi-level logic synthesis tools are non-canonical
representations, but nonetheless they are likely used because more compact and
manageable. Second, a MFPD has a 1-to-1 mapping to the final circuit imple-
mentation, that is, each internal node is implemented by a single logic primitive
in the resulting network (please refer to Figure1-(a)). This makes the MFPD a

12 Valerio Tenace, Andrea Calimera, Enrico Macii, and Massimo Poncino

T
U

B:TáU;

Silicon NanoWiresGraphene p-n

junctions

T U

Magnetic Tunnel

Junctions (MTJs)

T

U§T

$U

Multi-function

Pass Diagram node

Fig. 4. Multi-Function Pass Diagram node mapping with different technologies.

universal model for both the optimization stage and the technology mapping,
a key aspect for one-pass logic synthesis [22]. Third, but not for importance,
MFPDs may serve as model for MGPL circuits mapped using different emerg-
ing devices. As an example, Figure 4 depicts a generic MFPD internal node,
with f = x¬⊕y, and its implementation using Graphene p-n junctions, Silicon-
NanoWires, Magnetic Tunnel Junctions and Memristors. Thus, the proposed
MFPD model and its synthesis methodology can be seen as orthogonal tools for
the assessment of a wide range of emerging technologies.

4 Algorithms

4.1 Building MFPD

Algorithm 1 describes the pseudo-code of the Build routine we implemented for
multi-function decomposition and MFPD construction.

The main input parameters are (i) a tabular description T of the Boolean
function and (ii) the primary connective (the first operator in the list of primi-
tives G). Table T can be a non-minimized implicant table (i.e., not prime) and
can be obtained through any Verilog compiler, e.g., ABC [30]. We refer to T as
the PLA table. As an example, Table 1 shows the PLA table for the Boolean
function (5), where the character ’-’ identifies a dont’care.

Table 1. PLA table of function (5)

x1 x2 x3 x4 f
1 - - 0 1
0 0 1 - 1
1 1 1 - 1

Logic Synthesis for Silicon and Beyond-Silicon Circuits 13

Algorithm 1: MFPD build

Input: PLA Table T , Primary connective g0 ∈ G
Output: Multi-Function PD MFPD

1 MFPD = ∅
2 foreach row R ∈ T do
3 CUBESR = ∅
4 DontCareSet = DetermineDCS(R)
5 foreach primary input PI ∈ R do
6 if PI /∈ DontCareSet then
7 CUBESR.append(PI)
8 end

9 end
10 foreach vi,k ∈ CUBESR do
11 NewNode← SetPolarity(vi,k, g)
12 PTR.append(NewNode)

13 end
14 MFPD.append(PTR)

15 end

The MFPD is generated branch-wise, that is, for each row of the PLA table,
i.e., for each product term of the function, nodes are appended in series by
iterating the following sequence of operations:

Cube sequence generation (line 3-9) – variables not belonging to the don’t-
care set are included in the cube list CUBESR in order of appearance; those
belonging to the dont-care set are dropped. For odd sequences, the last vari-
able is paired with ’1’ logic so as to maintain Boolean equivalence. For in-
stance, considering Table 1, for the first row CUBES1 = {(x1,¬x4)}, for the
second row CUBES2 = {(¬x1,¬x2), (x3, 1)}, for the third row CUBES3 =
{(x1, x2), (x3, 1)}.

Node generation (line 10-14) – for each pair of cubes stored in CUBESR, the
polarity of the variables are fixed according to the primary Boolean connective
g and the resulting nodes are appended on the current branch. Let us consider
CUBES2 which contains two cubes, (¬x1,¬x2) and (x3, 1); with g the NOR
operator (like the example in Section 3.1), variables are complemented (by De-
Morgan) as (x1, x2) and (¬x3,¬x3) respectively.

Given a table T with N implicants and M literals, the proposed build routine
has a complexity of O(N ·M).

4.2 Optimization

Algorithm 2 describes the pseudo-code of the optimization stage for redundancy
removal. It implements two different optimization techniques: (i) node elimina-
tion by Boolean substitution; (ii) merging of isomorphic sub-graphs. While the
latter is reminiscent of standard reduction rules from BDDs [23], the former one

14 Valerio Tenace, Andrea Calimera, Enrico Macii, and Massimo Poncino

Algorithm 2: MFPD optimization algorithm

Input: MFPD, Secondary connectives G = (g1, . . . gm) ∈ G
Output: Optimized Multi-Function PD OMFPD

1 OMFPD = ∅
2 foreach path P ∈MFPD do
3 CM ← ∅
4 CE ← ∅
5 foreach path Q ∈MFPD, with Q ̸= P do
6 if SameSupport(P , Q) then
7 if CheckBoolSub(P , Q, G) then
8 CE .append(Q, gk ∈ G)
9 end

10 else
11 if SharedNodes(P , Q) then
12 CM .append(Q)
13 end

14 end

15 end
16 if |CE | > 0 then
17 M ← ApplyBoolSub(P , CE , G)
18 else if |CM | > 0 then
19 M ← MergeIsomorphic(P,CM)
20 OMFPD.append(M)

21 end

is an ad-hoc strategy for MFPDs. Its purpose is to find suitable equivalent logic
connectives, among the list of secondary connectives in G, that can be even-
tually substituted in order to enable node elimination and reduce the MFPD
cardinality; as illustrated in the examples of Section 3.1. Please note that sec-
ondary connectives are selected with a greedy approach, that is, the first one
that satisfies the Boolean equivalence is instantiated in the network.

Input parameters of Algorithm 2 are the MFPD obtained through the MFPD
Build routine, and the list of secondary connectives G ∈ G.

Candidate selection (line 3-15) – Each root-to-leaf path P of the MFPD is
compared with any other path Q (P ̸= Q). If (line 6) P and Q share the same
support set (i.e., nodes in P and Q are driven by the same literals) the algorithm
checks (line 7) whether it is possible to perform a Boolean substitution, namely,
it checks whether some of the operators associated with the nodes in Q can be
substituted with some other operator gk ∈ G s.t. Boolean equivalence is satisfied.
If so, P and Q share a common node expressed by means of gk, that allows to
merge P and Q in a single path. Therefore, Q is stored in the candidates list
CE together with the connective gk that enables its elimination. If P and Q do
not have common support set (line 10), the algorithm checks whether a path

Logic Synthesis for Silicon and Beyond-Silicon Circuits 15

Q shares at least one node with P ; if so, Q is a potential candidate for node
merging and it is temporarily stored in the list of candidates CM .

Merge and Eliminate (line 16-20) – once candidates have been selected, the
algorithm first evaluates whether there exists at least one candidate for node
elimination by Boolean substitution (|CE | > 0). If so, the common node between
P and CE is replaced with the new connective gk, and redundant paths in
CE are removed (ApplyBoolSub function). If not and the list CM is not empty,
then common nodes between CM and P are evaluated for merging through the
MergeIsomorphic function.

Figure 3-(b) and 3-(c) show the results of the optimization procedures de-
scribed above applied on the MFPD obtained through the build function (Fig-
ure 3-(a)).

Since Boolean elimination guarantees higher benefits in terms of node count
and circuit complexity, e.g., it reduces the number of common branches due
to merge operations, this characteristic is exploited first during the last phase
of the optimization process with the MergeAndRemap function. Otherwise,
common nodes between the CANDIDATESM list and P are merged by means
of the MergeMaxSharing function. The final result is then appended in the
optimized MFPD structure OMFPD. Applying this procedure to the MFPD
depicted in Figure 3-a allows us to achieve a more compact representation of the
same function by means of only three logical nodes/operations, as depicted in
Figure 3-b.

Concerning complexity, since each path P is compared with any other path

Q, the total number of loops is N ·(N−1)
2 , with N the number of paths in the

starting MFPD. The complexity of the optimization routine is O(N2). Notice
that all other sub-routines have a O(1) complexity (operations are completed
in constant time) except for functions SameSupport and SharedNodes which
show a complexity of O(M), with M the number of nodes in the path Q.

5 Simulation Results

Experimental results reported in this section provide a fair comparison of MFPDs
and the resulting MGPL circuits mapped onto different technologies against
state-of-the-art data-structures and PTL circuits. The goal is to demonstrate
that:

1. MFPDs optimized with the eduction rules described in Section 3 give sub-
stantial savings.

2. MFPDs represent the most compact solution for the representation of switch-
ing functions implemented through the MGPL style; metrics adopted are
expressive power, namely the number of nodes and depth, i.e., nodes count
along the longest path.

3. MFPDs are a true technology-independent abstract model, namely, the way
they model a Boolean function can be orthogonally applied to any kind of
technology and, most importantly, whatever the logic primitives are.

16 Valerio Tenace, Andrea Calimera, Enrico Macii, and Massimo Poncino

4. MGPL circuits obtained through MFPDs might become the vehicle for ultra-
low power computing using emerging technologies, graphene in particular;
in this regard, we show that the MGPL style allows large gains w.r.t. PTL
and, most importantly, it is well suited for ultra-low power digital circuits.

We set up five different synthesis flows, the first four are for pass-gate logic
circuits, the target of this work, the fifth one is for standard cells-based circuits.

– MFPDs (the solution proposed in this work): circuits described using the
PLA format [30] are processed with our tool Kanon for multi-function
decomposition using the connective set G = {{x¬ ∨ y}, {x¬⊕y}, {x ⊕ y}}.
It is worth to notice that even though more Boolean operators can be used,
here we force our tool working in worst-case conditions where only three
primitives are allowed. Resulting MFPDs are then mapped onto MGPL
circuits using different technologies.

– PDs (introduced in [24]): circuits described using the PLA format [30] are
processed leveraging Gemini, a single-function XNOR decomposition tool;
resulting PDs are mapped onto PXL circuits using different technologies.

– Biconditional-BDDs (described in [21]): circuits are first synthesized
using a standard multi-level synthesis tool and then translated into BDDDs
using single-function XOR decomposition scheme; the resulting BBDDs
are mapped onto a tree-based PTL-like structure using different technologies.

– BDDs: circuits are processed with a C program that leverage the CUDD
package [23]; BDD structures, obtained with a single-function MUX-based
decomposition, are mapped on PTL-like circuit using different technologies.

– AIGs: obtained with the ABC synthesis tool [30], the AIGs are mapped on a
CMOS library containing only AND and INV gates; it is worth emphasizing
that AIGs cannot be directly used for pass-gates logic circuit, however, they
serve as a reference point to better evaluate MFPDs.

The experiments were run on a set of open-source benchmarks from the
LGSynth91 suite [31], and accurate SPICE simulations were used for the char-
acterization of the obtained netlists. Please note that the size of such benchmarks
is comparable to that of those used in other synthesis-related works, e.g., [21].
Without loss of generality, only combinational logic cones have been considered
for synthesis, i.e., in-to-out and register-to-register logic cones.

5.1 Efficiency of reduction rules during MFPD optimization

Table 2 gives a brief description of the adopted benchmarks and an overview of
the efficiency of the algorithms proposed in this work. Columns PI, PO and I
represent the total number of primary inputs, primary outputs and implicants of
each benchmark. Under the label Number of nodes, column w/o opt refers

Logic Synthesis for Silicon and Beyond-Silicon Circuits 17

Table 2. MFPD reduction rule efficiency.

PI PO I
Number of nodes

w/o opt w/ opt Savings %

sao2 10 4 58 229 152 33.62
o64 130 1 65 65 65 -
5xp1 7 10 75 161 111 31.06
c8 28 18 79 156 108 30.77
duke2 22 29 87 401 287 28.43
apex1 45 45 206 921 677 26.49
misex1 8 7 32 67 31 53.73
misex2 25 18 29 101 75 25.74
b12 15 9 431 1007 579 42.50
k2 45 45 936 3791 2103 44.53
bigkey 486 421 6151 19054 10771 43.47
s13207.1 700 790 10987 53868 33005 38.73

Total 79821 47964 Avg. 39.91

3997
8695.75

141474.42
61995.67

2521.5

100

101

102

103

104

105

AIG BBDD BDD MFPD PD

A
vg

. #
 o

f n
od

es

5.25

10.17

126.75 121.33

22.83

1

10

100

AIG BBDD BDD MFPD PD

A
vg

. d
ep

th
 (

of

 g
at

es
)

3997
8695.75

141474.42
61995.67

2521.5

100

101

102

103

104

105

AIG BBDD BDD MFPD PD

A
vg

. #
 o

f n
od

es

5.25

10.17

126.75 121.33

22.83

1

10

100

AIG BBDD BDD MFPD PD

A
vg

. d
ep

th
 (

of

 g
at

es
)

Fig. 5. Binary MFPDs efficiency w.r.t. PDs, BDDs, BBDDs and AIGs. Average num-
ber of nodes (left), average depth (right).

to MFPDs after the build process, whereas column w/ opt refers to MFPDs
after optimization; column Savings reports optimization gain;

As the table suggests, the proposed reduction rules allow about 40% of sav-
ings on average. Noticeably, large savings have been recorded for all the bench-
marks, except for o64. For this case we observed the PLA table is a diagonal
matrix of ’1s’ which prevents MFPD optimization.

5.2 Compactness of the MFPD model and execution time

Figure 5 depicts the obtained synthesis results averaged over all the benchmarks
described in Table 2. The plot suggests that MFPDs outperform BBDDs, which
are 35.39x larger, BDDs (15.51x larger) and PDs (2.1x larger); only AIGs are
more compact (0.63x). Indeed, AIGs leverage two key options available in multi-
level optimization, namely the possibility of reusing cascades of common sub-

18 Valerio Tenace, Andrea Calimera, Enrico Macii, and Massimo Poncino

0.67

25.73

0

10

20

BBDD MFPD

A
gv

. e
xe

cu
tio

n
tim

e
(s

)

Fig. 6. Average device count after synthesis and mapping. Graphene (left), Ambipolar
Si-NWs (center), MOSFET PTL (right).

expressions and local don’t-care conditions, a technique that is not applicable to
pass-gates logic styles.

However, an important aspect concerns the depth of the data-structures. In
this case MFPDs are the most efficient solution since BBDDs (21.12x deeper),
BDDs (20.33x deeper) and PDs (1.83x deeper) show an higher number of devices
on the longest path. AIGs do the same as they return circuit topologies 3.83x
deeper. Therefore, MFPDs are well suited for pass-gates logic circuits, where
smaller depth translates into shorter delays and smaller voltage noise.

Such huge savings achieved are the consequence of the efficient multi-function
decomposition, in particular: (i) the availability of more Boolean operators w.r.t.
BDDs, BBDDs and PDs, (ii) the fact that inputs variables belonging to the
dont-care set are dropped during decomposition (please refer to Algorithm 1),
(iii) the regularity of the implication table that allows large minimization (see
Algorithm 2).

From a complexity viewpoint, the barchart in Fig. 6 reports the average CPU
execution time of the Kanon tool compared to the BBDD package. It turns out
that MFPD synthesis is, on the average, 38x faster w.r.t. the procedures used
for BBDDs. As a representative example, for the largest benchmark (s13207.1)
the MFPD is built and optimized in 7.08s, whereas the equivalent BBDD takes
241.9s. This is due to the lower computational workloads of MFPD algorithms
which do not require the reconstruction of the network graph during optimiza-
tion.

5.3 Many technologies, one synthesis methodology

To demonstrate the “orthogonality” of both the MFPD model and the MGPL
style over different technologies, we mapped the benchmarks under analysis using

Logic Synthesis for Silicon and Beyond-Silicon Circuits 19

95471

3395386

100

102

104

106

BBDD MFPD

of

 p
−

n
ju

nc
tio

ns
 (

av
g.

)
48421

6790772

100

102

104

106

BBDD MFPD

of

 tr
an

si
st

or
s

(a
vg

.)

197340

27163088

100

102

104

106

BBDD MFPD

of

 tr
an

si
st

or
s

(a
vg

.)

95471

3395386

100

102

104

106

BBDD MFPD

of

 p
−

n
ju

nc
tio

ns
 (

av
g.

)
48421

6790772

100

102

104

106

BBDD MFPD

of

 tr
an

si
st

or
s

(a
vg

.)

197340

27163088

100

102

104

106

BBDD MFPD

of

 tr
an

si
st

or
s

(a
vg

.)

Fig. 7. Average device count after synthesis and mapping. Graphene (left), Ambipolar
Si-NWs (center), MOSFET PTL (right).

three different devices: graphene p-n junctions (Graphene), Ambipolar Silicon
NanoWires (Si-NWs) Pass-Transistors (Si-NW PT), and traditional MOSFET-
based Pass-Transistors (Si-MOS PT). As described in Section 2.1, each of these
technologies has different ”optimal” primitives, namely the ones with the highest
expressive power. Hence, tools that can seamlessly use different logic primitives
may represent a genuine solution for the evaluation and comparison of different
emerging technologies.

Figure 7 summarizes the post-synthesis results obtained using our tool. Since
MFPDs are a superclass of Pass Diagrams, we only provide comparison against
BBDD-based synthesis. BBDDs represent the most recent solution proposed for
emerging technologies [21] and their superiority w.r.t. other solutions have been
already demonstrated. Notice that MFPDs nodes can be mapped with NOR,
XOR and XNOR, while BBDDs only allow XOR mapping. Each of this pass-
gates count different devices according to the adopted technology (Fig. 7). As
a result of the multi-function decomposition, circuits synthesized using MFPDs
are several orders of magnitude smaller in size; this translates into more area
and more power efficient MGPL circuits.

5.4 Power and Performance efficiency of MGPL circuits

The extremely compact structure of MGPL circuits allows very high
power/energy reduction. While this is an intuitive conclusion, here we underline
the energy efficiency of the MGPL style for emerging technologies, Graphene
in particular. Figure 8 provides a technological comparison between Graphene-
based MGPL circuits and Silicon-MOS PTL circuits. The plot shows the power-
delay product (PDP) averaged over all the benchmarks as function of the tran-
sition time Tr of the input signals. The plot highlights the “adiabatic” nature of
both implementations, i.e., PDP reduces as Tr increases. For a Tr that ranges
from 1 to 1000 ps (3 orders of magnitude), the PDP of graphene reduces by more
than 5 orders of magnitude, whereas that of silicon reduces only by 3 orders of
magnitude. However, and this is the most important aspect, graphene circuits

20 Valerio Tenace, Andrea Calimera, Enrico Macii, and Massimo Poncino

10
−4

10
−2

10
0

10
2

10
0

10
0.5

10
1

10
1.5

10
2

10
2.5

10
3

Transition time (ps)

N
o
rm

a
liz

e
d
 p

o
w

e
r−

d
e
la

y
 p

ro
d
u
c
t

G.MGPL
Si.PTL

G-MGPL

Si-PTL

Fig. 8. Normalized PDP vs transition time.

10−5

10−4

10−3

10−2

10−1

100

100 100.5 101 101.5 102 102.5 103

Transition time (ps)

N
or

m
al

iz
ed

 d
yn

am
ic

 p
ow

er

G−MGPL
Si−PTL

Fig. 9. Normalized dynamic power vs. transition time.

are more energy efficient, not just in terms of absolute numbers, a result due to
the intrinsic characteristics of the material [24]), but also in terms of “scalabil-
ity”. This concept is further explained in Fig.9 that correlates dynamic power
consumption over transition time. As the plot suggests, for Tr

∼= 1ps, namely
outside the adiabatic region, PTL circuits are more power efficient, but as Tr

increases, the adiabatic nature of the MGPL circuits shows reaching a power con-
sumption that is about 2 order of magnitude lower that the PTL counterpart
(best case at Tr

∼= 1ns).

Logic Synthesis for Silicon and Beyond-Silicon Circuits 21

6 Conclusions

In this work we introduced a novel abstract representation for Boolean switching
functions: the MFPD. Such a new data-structure, obtained with a multi-function
logic decomposition, allows the implementation of compact MGPL circuits that
well fit the characteristics of new emerging devices.

Results obtained with our tool Kanon demonstrate that MGPL circuits show
superior characteristics w.r.t. state-of-art solutions, in particular (i) larger area
efficiency (almost 15.51x better than PTL circuits obtained with BDDs) and
(ii) shallower logic paths (77% w.r.t. CMOS circuits obtained with AIG-based
multi-level synthesis).

These achievements demonstrate that there is a huge margin of improvement
when moving to new technologies and that solutions universally recognized as
a de facto standard for CMOS may fail when considering devices with different
characteristics.

References

1. M. Schulz, “The end of the road for silicon?” Nature, vol. 399, no. 6738, pp. 729–
730, 1999.

2. S. E. Thompson and S. Parthasarathy, “Moore’s law: the future of si microelec-
tronics,” Materials Today, vol. 9, no. 6, pp. 20–25, 2006.

3. K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R. Nassif, E. J.
Nowak, D. J. Pearson, and N. J. Rohrer, “High-performance cmos variability in
the 65-nm regime and beyond,” IBM journal of research and development, vol. 50,
no. 4.5, pp. 433–449, 2006.

4. R. Zimmermann and W. Fichtner, “Low-power logic styles: Cmos versus pass-
transistor logic,” IEEE Journal of Solid-State Circuits, vol. 32, no. 7, pp. 1079–
1090, 1997.

5. C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context aware
computing for the internet of things: A survey,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 1, pp. 414–454, 2014.

6. J. M. Rabaey and M. Pedram, Low power design methodologies. Springer Science
& Business Media, 2012, vol. 336.

7. M. De Marchi, D. Sacchetto, S. Frache, J. Zhang, P. Gaillardon, Y. Leblebici, and
G. De Micheli, “Polarity control in double-gate, gate-all-around vertically stacked
silicon nanowire fets,” in IEDM’12: International Electron Devices Meeting, Dec
2012, pp. 8.4.1–8.4.4.

8. H.-Y. Chiu, V. Perebeinos, Y.-M. Lin, and P. Avouris, “Controllable pn junction
formation in monolayer graphene using electrostatic substrate engineering,” Nano
letters, vol. 10, no. 11, pp. 4634–4639, 2010.

9. M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of
graphene nanoribbons,” Physical review letters, vol. 98, no. 20, p. 206805, 2007.

10. S. Ikeda, J. Hayakawa, Y. M. Lee, F. Matsukura, Y. Ohno, T. Hanyu, and H. Ohno,
“Magnetic tunnel junctions for spintronic memories and beyond,” IEEE Transac-
tions on Electron Devices, vol. 54, no. 5, pp. 991–1002, May 2007.

11. S. S. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall racetrack mem-
ory,” Science, vol. 320, no. 5873, pp. 190–194, 2008.

22 Valerio Tenace, Andrea Calimera, Enrico Macii, and Massimo Poncino

12. R. S. Shelar and S. S. Sapatnekar, “Bdd decomposition for delay oriented pass
transistor logic synthesis,” IEEE Transactions on VLSI Systems, vol. 13, no. 8,
pp. 957–970, 2005.

13. V. G. Oklobdzija et al., “Pass-transistor adiabatic logic using single power-clock
supply,” IEEE Transactions on Circuits and Systems II, vol. 44, no. 10, pp. 842–
846, 1997.

14. S. Houri, G. Billiot, M. Belleville, A. Valentian, and H. Fanet, “Limits of cmos
technology and interest of nems relays for adiabatic logic applications,” IEEE
Transactions on Circuits and Systems I, vol. 62, no. 6, pp. 1546–1554, 2015.

15. L. Ding, Z. Zhang, S. Liang, T. Pei, S. Wang, Y. Li, W. Zhou, J. Liu, and L.-
M. Peng, “Cmos-based carbon nanotube pass-transistor logic integrated circuits,”
Nature communications, vol. 3, p. 677, 2012.

16. S. Miryala, A. Calimera, E. Macii, and M. Poncino, “Ultra low-power computa-
tion via graphene-based adiabatic logic gates,” in DSD’14: Digital System Design
Conference, 2014, pp. 365–371.

17. M. Suzuki, N. Ohkubo, T. Shinbo, T. Yamanaka, A. Shimizu, K. Sasaki, and
Y. Nakagome, “A 1.5-ns 32-b cmos alu in double pass-transistor logic,” IEEE
Journal of Solid-State Circuits, vol. 28, no. 11, pp. 1145–1151, Nov 1993.

18. J. D. Lee, Y. J. Yoon, K. H. Lee, and B.-G. Park, “Application of dynamic pass-
transistor logic to an 8-bit multiplier,” Journal-Korean Physical Society, vol. 38,
no. 3, pp. 220–223, 2001.

19. T.-Y. Wu, L.-Y. Lu, and C.-H. Liang, “Low-leakage and low-power implementation
of high-speed 65nm logic gates,” in EDSSC’08: Electron Devices and Solid-State
Circuits Conference. IEEE, 2008, pp. 1–4.

20. V. Bertacco, S. Minato, P. Verplaetse, L. Benini, and G. De Micheli, “Decision
diagrams and pass transistor logic synthesis,” in Int’l Workshop on Logic Synthesis,
vol. 168, 1997.

21. L. Amaru et al., “Biconditional binary decision diagrams: A novel canonical logic
representation form,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 4, no. 4, pp. 487–500, Dec 2014.

22. R. Drechsler and W. Günther, Towards One-Pass Synthesis. Springer Science &
Business Media, 2013.

23. F. Somenzi, “Cudd: Cu decision diagram package release 2.3. 0,” University of
Colorado at Boulder, 1998.

24. V. Tenace, A. Calimera, E. Macii, and M. Poncino, “One-pass logic synthesis for
graphene-based Pass-XNOR logic circuits,” in DAC’15: Design Automation Con-
ference. ACM, 2015, pp. 1–6.

25. V. Tenace, A. Calimera, E. Macii, and M. Poncino, “Multi-function logic synthesis
of silicon and beyond-silicon ultra-low power pass-gates circuits,” in VLSI-SoC’16:
International Conference on Very Large Scale Integration, Sept 2016, pp. 1–6.

26. V. Tenace, A. Calimera, E. Macii, and M. Poncino, “Pass-XNOR logic: a new logic
style for PN junction based graphene circuits,” in DATE’14: Design, Automation
and Test in Europe. IEEE, 2014, pp. 1–4.

27. V. Tenace, A. Calimera, E. Macii, and M. Poncino, “Quasi-adiabatic logic arrays
for silicon and beyond-silicon energy-efficient ics,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 63, no. 12, pp. 1111–1115, 2016.

28. M. De Marchi, D. Sacchetto, S. Frache, J. Zhang, P.-E. Gaillardon, Y. Leblebici,
and G. De Micheli, “Polarity control in double-gate, gate-all-around vertically
stacked silicon nanowire fets,” in IEDM’12: International Electron Devices Meet-
ing, 2012, pp. 4–8.

Logic Synthesis for Silicon and Beyond-Silicon Circuits 23

29. S. Miryala, V. Tenace, A. Calimera, E. Macii, and M. Poncino, “Ultra-low power
circuits using graphene p–n junctions and adiabatic computing,” Microprocessors
and Microsystems, vol. 39, no. 8, pp. 962–972, 2015.

30. B. L. Synthesis and V. Group, “Abc: A system for sequential synthesis and verifi-
cation,” http://www.eecs.berkeley.edu/ alanmi/abc/, 2014.

31. “Collection of digital design benchmarks,” http://goo.gl/6fOVfN, 2015.

