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SELF-PROPELLED MICRO-SWIMMERS IN A BRINKMAN FLUID

MARCO MORANDOTTI

ABSTRACT. We prove an existence, uniqueness, and regularity result for the motion of a self-

propelled micro-swimmer in a particulate viscous medium, modeled as a Brinkman fluid. A

suitable functional setting is introduced to solve the Brinkman system for the velocity field

and the pressure of the fluid by variational techniques. The equations of motion are written

by imposing a self-propulsion constraint, thus allowing the viscous forces and torques to be

the only ones acting on the swimmer. From an infinite-dimensional control on the shape of

the swimmer, a system of six ordinary differential equations for the spatial position and the

orientation of the swimmer is obtained. This is dealt with standard techniques for ordinary

differential equations, once the coefficients are proved to be measurable and bounded. The

main result turns out to extend an analogous result previously obtained for the Stokes system.
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1. INTRODUCTION

Modeling the motion of living beings has stimulated scientists for many decades. The

first attempts to study motion inside fluids date back to the pioneering works by Taylor

[21] and Lighthill [16]. These papers and the 1977 paper by Purcell [18] point out that the

description of motion in viscous fluids at low Reynolds number can involve some counter-

intuitive facts. The low Reynolds number flow approximation is particularly efficient for

microorganisms, while lager bodies or animals exploit more the inertial forces rather than

the viscous ones. The recent literature has been populated by new and more refined results,

both theoretical and experimental, in the two limit regimes. Concerning the viscous one, on

which we concentrate in this paper, we recall that approximated theories, such as slender

body approximation [3, 13], resistive force theory [10], and also others [19, 15], have been

developed, and a number of biological experiments has been run to understand swimming

strategies.

In a recent paper by S. Jung [11], the motion of Caenorhabditis elegans is observed in

different environments: this nematode usually swims in saturated soil, and its behavior

was studied in different saturation conditions as well as in a viscous fluid without solid

particles. It must be noticed that the locomotion strategy of C. elegans is not completely

understood, as it is shown by the many studies on this nematode in different conditions;

nevertheless it has been taken as a model system to approach the study of many biological

problems [24]. A satisfactory attempt to understand its locomotion dates back to [23],

where the experiment was conducted in an environment close to the one in which C. elegans

usually lives, yet the wet phase in which the particles are usually immersed was neglected.

Other and more recent experiments have been run on agar composites [12, 14], and they

could give a hint on the swimming strategies of C. elegans, showing that it moves more

efficiently in a particulate medium rather than in a viscous fluid without particles [11].

Date: October 4, 2010 – Preprint SISSA 68/2010/M.

1



2 MARCO MORANDOTTI

The aim of this paper is to provide a theoretical framework for the motion of a body in a

particulate medium. Following the approach proposed in [11, III.C], we model the particu-

late medium surrounding the swimmer as a Brinkman fluid. We show that the framework

we proposed in [5] also applies to the case of a Brinkman problem in an exterior domain.

We prove the existence, uniqueness, and regularity of the solution to the equations of mo-

tion for a body swimming in such an environment, thus generalizing the result previously

obtained for the Stokes system. The novelty in this work is that we are able to show that

the hypotheses needed to solve the equations of motion for a swimmer in a Brinkman fluid

are satisfied. These are the measurability and boundedness of the coefficients of the ordi-

nary differential equations which govern the spatial position of the swimmer. Techniques

from Calculus of Variations and results in the theory of Ordinary Differential Equations

are used to achieve these results.

We shall define swimming the ability of an organism to propel itself in a fluid by chang-

ing its shape. The self-propulsion constraint is assumed: there are no other forces acting

on the swimmer but the viscous interaction between the fluid and the swimmer itself. Also,

we call shape function the map which describes the shape of the swimmer at any given

time; the position function will describe its spatial position.

With these definitions in mind, the main result of this work, Theorem 4.6, proves that

under the reasonable assumptions presented in Section 3 on the shape function a swimmer

is able to advance in a particulate viscous fluid. It also shows that the significative shape

functions that can provide net displacement are not simple rigid motions. Indeed, should

the shape function, which is the one that the swimmer can control, be a rigid motion,

then the resulting position function will turn out to be the inverse rigid motion, therefore

implying no overall movement. As pointed out by Shapere and Wilczek [19], there must be

a symmetry breaking for effective swimming to occur, thus avoiding the case of Purcell’s

Scallop Theorem [18]. In our case this is achieved by letting the shape vary in a rather

non-trivial way, i.e., by allowing the control function be infinite-dimensional.

The paper is organized as follows. In Section 2 the functional setting for solving the

Brinkman system in an exterior domain is presented. Consistent and general definition for

the viscous force and torque and for the power expended during the swimming are given. In

section 3 the kinematics setting is described and the equations of motion are obtained from

the self-propulsion constraint on the swimmer. Moreover, regularity property for some of

the coefficients of the equations of motion are proved. Eventually, in Section 4 the main

theorem is stated and proved, once some technical results about the extension of bound-

ary velocity fields are obtained. Finally, Section 5 provides some comments and hints on

possible future directions.

2. BRINKMAN EQUATION – FUNCTIONAL SETTING

In this section we present some results about Brinkman equation. It was originally pro-

posed in [4] to model a fluid flowing through a porous medium as a correction to Darcy’s law

by the addition of a diffusive term. A rigorous mathematical derivation from the Navier-

Stokes equation via homogenization can be found in [1].

In a Lipschitz domain Ω ⊂ R
3, the Brinkman system reads

(2.1)






ν∆u − α2u = ∇p in Ω,

div u = 0 in Ω,

u = U on ∂Ω,

u = 0 at infinity.

The positive constant α takes into account the permeability properties of the porous matrix

and the viscosity of the fluid, the constant ν is an effective viscosity of the fluid, while the

third equation in the system is the no-slip boundary condition. The condition u = 0 at

infinity is significant, and necessary, only when the domain Ω is unbounded. From now on,

we will get rid of the effective viscosity, upon a redefinition of α, by setting ν = 1. A brief

discussion on the constant ν can be found in Brinkman’s paper [4].

In order to cast equation (2.1) in the weak form, we introduce the function spaces in

which we will look for the weak solution. Define

X (Ω) := {u ∈ H1(Ω;R3) : div u = 0 in Ω}, X0(Ω) := {u ∈ H1
0 (Ω;R

3) : div u = 0 in Ω}.
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Both X (Ω) and X0(Ω) are equipped with the standard H1 norm but we introduce this equiv-

alent one

‖u‖
2
X (Ω) := α2 ‖u‖

2
L2(Ω;R3) + 2 ‖Eu‖

2
L2(Ω;M3×3

sym) ,

the equivalence being a consequence of Korn’s inequality.

The weak formulation of equation (2.1) is now given by

(2.2)






find u ∈ X (Ω) such that u = U on ∂Ω,

2

∫

Ω

Eu : Ew dx + α2

∫

Ω

u · w dx = 0, for every w ∈ X0(Ω),

where the boundary velocity is a given function U ∈ H1/2(∂Ω;R3), the solution being the

unique minimum in X (Ω) of the strictly convex energy functional

E(u) := 2

∫

Ω

|Eu|
2
dx+ α2

∫

Ω

|u|
2
dx = ‖u‖

2
X (Ω) .

Here and henceforth the symbol Eu denotes the symmetric gradient of u, namely Eu :=
1
2 (∇u+ (∇u)T ).

We call Ω an exterior domain with Lipschitz boundary if Ω is an unbounded, connected

open set whose boundary ∂Ω is bounded and Lipschitz, see [5, Section 2]. If we consider

the term α2u as a forcing term f in system (2.1), we can invoke a classical existence and

uniqueness result, see, e.g., [6], [20], or [22].

Theorem 2.1. Let U ∈ H1/2(∂Ω;R3). Then the following results hold:

(a) Let Ω be a bounded connected open subset of R3 with Lipschitz boundary. If

(2.3)

∫

∂Ω

U · n dS = 0,

there exists a unique solution u to problem (2.2). Moreover, there exists p ∈ L2(Ω)
such that ∆u−∇p = f in D′(Ω;R3).

(b) Let Ω ⊂ R
3 be an exterior domain with Lipschitz boundary. Then problem (2.2) has

a solution. Moreover, there exists p ∈ L2
loc(Ω), with p ∈ L2(Ω ∩ Σρ) for every ρ > 0,

such that ∆u−∇p = f in D′(Ω;R3).

The following density result is particularly useful when dealing with exterior domains.

Theorem 2.2 (Density [9]). Let Ω ⊂ R
3 be an exterior domain with Lipschitz boundary.

Then, the space {u ∈ C∞
c (Ω;R3) : div u = 0 in Ω} is dense in X (Ω) for the H1 norm. �

We now define some physically relevant quantities. The stress tensor associated with the

velocity field u and the pressure p is given by

(2.4) σ := −p I+2Eu.

The viscous force and torque are the resultant of the viscous forces and torques acting on

the boundary ∂Ω, respectively, and are given by

F :=

∫

∂Ω

σ(x)n(x) dS(x), M :=

∫

∂Ω

x×σ(x)n(x) dS(x).

These definitions are valid under the condition that σn has a trace in L1(∂Ω;R3). Since, in

general, this assumption is not fulfilled, we have to define the viscous force and torque in a

different way, namely by introducing σn as an element of H−1/2(∂Ω;R3). This will lead to

a consistent definition of the power of the viscous force and torque. In order to do this, we

introduce M
3×3
sym , the space of 3×3 symmetric matrices, and recall that every σ ∈ M

3×3
sym can

be orthogonally decomposed as σ = 1
3 tr σ I+σD where the deviatoric part σD is traceless.

We are now ready to give the following

Definition 2.3. Let Ω ⊂ R
3 be an exterior domain with Lipschitz boundary and let σ ∈

L1
loc(Ω;R

3) be such that σD ∈ L2(Ω;M3×3
sym) and div σ ∈ L2(Ω;R3). The trace of σn, still

denoted by σn, is defined as the unique element of H−1/2(∂Ω;R3) satisfying the equality

(2.5) 〈σn, V 〉Ω :=

∫

Ω

(div σ) · v dx+

∫

Ω

σ : Ev dx,

where 〈·, ·〉Ω denotes the duality pairing between H−1/2(∂Ω;R3) and H1/2(∂Ω;R3), and v is

any function in X (Ω) such that v = V on ∂Ω.
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If there is no risk of misunderstanding, the subscript Ω will be dropped whenever the

domain of integration is clear. Notice that if σ is sufficiently smooth then integrating (2.5)

by parts leads to the equality

〈σn, V 〉Ω =

∫

∂Ω

σn · V dS, for every V ∈ H1/2(∂Ω;R3).

In the general case, the right-hand side of (2.5) is easily proved to be well defined, given

the assumptions on σ. In fact, div σ ∈ L2(Ω;R3) and v ∈ L2(Ω;R3) make the first integral

well defined, while the second one is also good since σ : Ev = σD : Ev, because of the symme-

try of Ev, and both σD and Ev belong to L2(Ω;M3×3
sym). Lastly, the definition is independent of

the choice of v ∈ X (Ω), since the right-hand side vanishes for every v ∈ X0(Ω): this follows

from the very same computation for the more regular case, by the Density Theorem 2.2. It

is easy to see that (2.5) defines a continuous linear functional on H1/2(∂Ω;R3) by choosing

v ∈ X (Ω) an extension of V .

We now proceed in showing other useful properties of the duality pairing introduced in

Definition 2.3. Let U ∈ H1/2(∂Ω;R3) and let u be the solution to the Brinkman problem

(2.2) with boundary datum U and let σ be the corresponding stress tensor. Since all the

assumptions of Definition 2.3 are fulfilled, for any given V ∈ H1/2(∂Ω;R3) we have

〈σn, V 〉 =

∫

Ω

(div σ) · v dx+

∫

Ω

σ : Ev dx = α2

∫

Ω

u · v dx+

∫

Ω

[−p I : Ev + 2Eu : Ev] dx

= α2

∫

Ω

u · v dx−

∫

Ω

p div v dx+ 2

∫

Ω

Eu : Ev dx

= α2

∫

Ω

u · v dx+ 2

∫

Ω

Eu : Ev dx,

(2.6)

where v is an arbitrary element in X (Ω) such that v = V on ∂Ω. If we take, in particular,

v to be the solution to problem (2.2) with boundary datum V , we recover the well known

reciprocity condition (see, e.g., [8, Section 3-5])

〈σn, V 〉 = 〈τn, U〉,

with τ being the stress tensor associated with v. Moreover, by taking U = V in (2.6) we

obtain

〈σn, U〉 = α2 ‖u‖2L2(Ω;R3) + 2 ‖Eu‖2L2(Ω;M3×3
sym) = ‖u‖2X (Ω) .

This equality allows us to show that the quadratic form 〈σn, U〉 is positive definite: if

〈σn, U〉 = 0, then it follows that u = 0, and therefore U = 0.

We are now in a position to define the viscous force and torque in a rigorous way, by

means of the duality product introduced in Definition 2.3.

Definition 2.4. Let Ω ⊂ R
3 be an exterior domain with Lipschitz boundary, let u ∈ X (Ω) be

the solution to the Brinkman problem (2.2) with boundary datum U ∈ H1/2(∂Ω;R3), let σ be

the corresponding stress tensor defined by (2.4), and let σn ∈ H−1/2(∂Ω;R3) be the trace on

∂Ω defined according to (2.5). The viscous force exerted by the fluid on the boundary ∂Ω is

defined as the unique vector F ∈ R
3 such that

(2.7) F · V = 〈σn, V 〉 for every V ∈ R
3.

The torque exerted by the fluid on the boundary ∂Ω is defined as the unique vector M ∈ R
3

such that

(2.8) M · ω = 〈σn,Wω〉 for every ω ∈ R
3,

where Wω(x) := ω×x is the velocity field generated by the angular velocity ω.

Notice that this definition allows us to define two different physical quantities by means

of the same mathematical object, namely the duality pairing defined in (2.5).
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3. KINEMATICS AND THE EQUATIONS OF MOTION

In this section we describe the kinematics of the swimmer. The motion of a swimmer is

described by a map t 7→ ϕt , where, for every fixed t, the state ϕt is an orientation preserving

bijective C2 map from the reference configuration A ⊂ R
3 into the current configuration

At ⊂ R
3. Given a distinguished point x0 ∈ A , for every fixed t, we consider the following

factorization

(3.1) ϕt = rt ◦ st ,

where the position function rt is a rigid deformation and the shape function st is such that

(3.2) st(x0) = x0 and ∇st(x0) is symmetric.

We allow the map t 7→ st to be chosen in a suitable class of admissible shape changes and

use it as a control to achieve propulsion as a consequence of the viscous reaction of the

fluid. By contrast, t 7→ rt is a priori unknown and it must be determined by imposing that

the resulting ϕt = rt ◦ st satisfies the equations of motion.

Since, as it is clear, the kinematics of the swimmer does not depend on the fluid the

swimmer is surrounded by, we can adopt the same setting as in [5]. For the reader’s con-

venience, we recall the results proved there, and refer the reader to the above mentioned

paper and the references therein for a more detailed exposition.

The reference configuration of the swimmer A ⊂ R
3 is a bounded connected open set

of class C2. The time-dependent deformation of A from the point of view of an external

observer is described by a function ϕt : A→ R
3 with the following properties:

(3.3) ϕt ∈ C2(A;R3), ϕt is injective, det∇ϕt(x) > 0 for all x ∈ A,

for every t; here and henceforth ∇ denotes the gradient with respect to the space variable.

Under these hypotheses, At := ϕt(A) is a bounded connected open set of class C2 and

the inverse ϕ−1
t : At → A belongs to C2(At;R

3).

We also assume that

(3.4) the sets R
3 \At are connected for all t ∈ [0, T ].

This assumption is technical and is made in order to prevent change of topology in the

swimmer and in the surrounding fluid.

Concerning the regularity in time, we require that

the map t 7→ ϕt belongs to Lip([0, T ];C1(A;R3)) ∩ L∞([0, T ];C2(A;R3)).

This condition implies that for almost every t there exists ϕ̇t ∈ Lip(A;R3) such that

ϕt+h − ϕt

h
→ ϕ̇t , uniformly on A as h→ 0.

From this, the Eulerian velocity on the boundary ∂At, defined by

Ut := ϕ̇t ◦ ϕ
−1
t

belongs to Lip(∂At;R
3) with Lipschitz constant independent of t.

We now introduce the description of the kinematics from the point of view of the swim-

mer. Let x0 ∈ A be a distinguished point and let us look for a factorization of ϕt of the

form (3.1). The function st : A → R
3 satisfies properties (3.2), in view of which it can be

interpreted as a pure shape change from the point of view of an observer inertial with x0,

and the rigid motion rt : R
3 → R

3 is written in the form

(3.5) rt(z) = yt +Rtz,

with yt ∈ R
3 and Rt ∈ SO(3), the set of orthogonal matrices with positive determinant. This

allows us to say that the deformation ϕt , from the point of view of an external observer, is

decomposed into a shape change followed by a rigid motion.

From (3.1), (3.3), and (3.5), the following properties of st can be inferred: for every t,

st ∈ C2(A;R3), st is injective, det∇st(x) > 0 for all x ∈ A,(3.6a)

the inverse s−1
t : Bt → A belongs to C2(Bt;R

3),(3.6b)

where Bt := st(A), see Fig. 1. Note that (3.6b) is a consequence of (3.6a). Note also that

Bt is a bounded connected open set of class C2 and that st(Bt) = At and st(∂Bt) = ∂At .
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t

z

FIGURE 1. Notation for the kinematics.

Moreover, since A is bounded and st is continuous, there exists a ball Σρ centered at 0 with

radius ρ such that

A ⊂⊂ Σρ−1 and Bt ⊂⊂ Σρ−1 .

Lastly, (3.4) implies that

(3.7) the sets Σρ \Bt are connected for all t ∈ [0, T ].

By means of the Polar Decomposition Theorem and the factorization (3.1), it is possible

to give explicit formulae for Rt and yt that clearly show that the maps t 7→ Rt and t 7→ yt
are Lipschitz continuous. Since st = r−1

t ◦ ϕt ,

(3.8) the map t 7→ st belongs to Lip([0, T ];C1(A;R3)) ∩ L∞([0, T ];C2(A;R3)),

The third property in (3.6a) and (3.8) imply that
∥∥s−1

t

∥∥
C2(Bt;R3)

6 C < +∞, with C inde-

pendent of t. Moreover, condition (3.8) yields the existence of ṡt ∈ Lip(A;R3) such that

st+h − st
h

→ ṡt , uniformly on A, as h→ 0.

Other properties of st that are worth mentioning, and whose full derivation can be found

in [5, Section 3] are:

the map t 7→ ṡt belongs to L∞([0, T ];H1/2(∂A;R3)),
Lip(ṡt) 6 L, with L independent of t,

for any fixed x ∈ A, the map t 7→ ṡt(x) is measurable.

To conclude the description of the kinematics of the swimmer, we give the form of the

boundary velocity on the intermediate configuration Bt . It turns out that, if we define

Vt(z) := RT
t Ut(rt(z)) and Wt(z) := ṡt(s

−1
t (z)), for every z ∈ ∂Bt , an elementary computation

shows that for almost every t ∈ [0, T ]

Vt(z) = RT
t ẏt +RT

t Ṙtz +Wt(z) for every z ∈ ∂Bt .

We proceed now to the description of the motion of the swimmer. The motion t 7→ ϕt

determines for almost every t ∈ [0, T ] the Eulerian velocity Ut through the formula

Ut(y) := ϕ̇t(ϕ
−1
t (y)) for almost every y ∈ ∂At .

Notice that Ut ∈ H1/2(∂At;R
3) for almost every t ∈ [0, T ]. By applying Theorem 2.1 (b) with

Ω = Aext
t := R

3 \ At and, for almost every t ∈ [0, T ], we obtain a unique solution ut to the

problem

(3.9)





find ut ∈ X (Aext
t ) such that ut = Ut on ∂At ,

2

∫

Aext
t

Eut : Ew dy + α2

∫

Aext
t

ut · w dy = 0 for every w ∈ X0(A
ext
t ).
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Let FAt,Ut and MAt,Ut be the viscous force and torque determined by the velocity field

Ut according to (2.7) and (2.8). By neglecting inertia and imposing the self-propulsion con-

straint, the equations of motion reduce to the vanishing of the viscous force and torque,

i.e.,

(3.10) FAt,Ut = 0 and MAt,Ut = 0 for almost every t ∈ [0, T ].

By assuming that ϕt is factorized as ϕt = rt ◦ st , where rt is a rigid motion as in (3.5)

and t 7→ st is a prescribed shape function, our aim is to find t 7→ rt so that the equations of

motion (3.10) are satisfied. To this extent, we present Theorem 3.1 below, whose result is

that (3.10) is equivalent to a system of ordinary differential equations where the unknown

functions are the translation t 7→ yt and the rotation t 7→ Rt of the map t 7→ rt.
The coefficients of these differential equations are defined starting from the intermediate

configuration described by the sets Bt = st(A) introduced before and the 3×3 matrices Kt ,

Ct , Jt , depending only on the geometry of Bt , whose entries are defined by

(Kt)ij := 〈σ[ej ]n, ei〉Bext
t
,(3.11a)

(Ct)ij := 〈σ[ej ]n, ei×z〉Bext
t
,(3.11b)

(Jt)ij := 〈σ[ej×z]n, ei×z〉Bext
t
,(3.11c)

where Bext
t := R

3 \ Bt , the duality product is given in Definition 2.3 by formula (2.5), and

σ[W ] denotes the stress tensor associated with the outer Brinkman problem in Bext
t with

boundary datum W . The notation σ[W ] is chosen to emphasize the linear dependence of σ
on W . Formula (2.6) shows that Kt and Jt are symmetric. The matrix

[
Kt CT

t

Ct Jt

]

is often called in the literature grand resistance matrix, and is symmetric and invertible.

It originally arises in the case of a Stokes system [8], but the adaptation to the Brinkman

system is straightforward: it only shares the structure with the original one, while the

values of the entries are computed with a different formula, namely (2.6). Let

(3.12)

[
Ht DT

t

Dt Lt

]
:=

[
Kt CT

t

Ct Jt

]−1

be its inverse. For almost every t ∈ [0, T ], we defined Wt = ṡt ◦ s
−1
t , and let F sh

t and M sh
t

be the viscous force and torque on ∂Bt determined by the boundary velocity field Wt. The

components of F sh
t and M sh

t are given, according to (2.7) and (2.8), by

(F sh
t )i = 〈σ[Wt]n, ei〉Bext

t
,(3.13a)

(M sh
t )i = 〈σ[Wt]n, ei×z〉Bext

t
.(3.13b)

Consider now the linear operator A : R3 → M
3×3 that associates to every ω ∈ R

3 the only

skew-symmetric matrix A(ω) such that A(ω)z = ω×z; therefore, ω is the axial vector of

A(ω). Finally, we define a vector bt and a matrix Ωt according to

(3.14) bt := HtF
sh
t +DT

t M
sh
t , Ωt := A(DtF

sh
t + LtM

sh
t ),

which depend on st and, most importantly on ṡt , via (3.13) and the definition of Wt.

Theorem 3.1. Assume that the shape function t 7→ st satisfies (3.6) and (3.8), and that the

position function t 7→ rt satisfies (3.5) and is Lipschitz continuous with respect to time. Then

the following conditions are equivalent:

(i) the deformation function t 7→ ϕt := rt ◦ st satisfies the equations of motion (3.10);

(ii) the functions t 7→ yt and t 7→ Rt satisfy the system

(3.15) ẏt = Rtbt , Ṙt = RtΩt , for almost every t ∈ [0, T ],

where bt and Ωt are defined in (3.14). �

The proof was given in [5] and need not be modified, so we skip it. It is developed by

setting the problem in the intermediate configurationBt , assuming the point of view of the
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coordinate system of the shape functions. Changing the variables according to y = rt(z),
z ∈ Bext

t , the velocity field vt(z) := RT
t ut(rt(z)) is the solution to the problem

(3.16)





find vt ∈ X (Bext
t ) such that vt = Vt on ∂Bt ,

2

∫

Bext
t

Evt : Ew dz + α2

∫

Bext
t

vt · w dz = 0, for every w ∈ X0(B
ext
t ),

where Vt(z) = RT
t Ut(rt(z)), see Fig. 2.

FIGURE 2. Notation for the boundary velocities (we neglect here the sur-

rounding particulate medium).

Denote by FBt,Vt and MBt,Vt the viscous force and torque on ∂Bt determined by the

velocity field vt according to (2.7) and (2.8), with Ω = Bext
t . A straightforward computation

yields FBt,Vt = RT
t FAt,Ut and MBt,Vt = RT

t MAt,Ut , so that the equations of motion (3.10)

reduce to

FBt,Vt = 0 and MBt,Vt = 0 for almost every t ∈ [0, T ].

Again by a simple manipulation we obtain the following form of the equations of motion
[
ẏt
ωt

]
=

[
Rt 0
0 Rt

] [
Ht DT

t

Dt Lt

] [
F sh
t

M sh
t

]
for almost every t ∈ [0, T ],

which read, by means of (3.14), as (3.15).

Now, the standard theory of ordinary differential equations with possibly discontinuous

coefficients [7] ensures that the Cauchy problem for (3.15) has one and only one Lipschitz

solution t 7→ Rt , t 7→ yt , provided that the functions t 7→ Ωt and t 7→ bt are measurable and

bounded. By (3.12) and (3.14), this happens when the functions

(3.17) t 7→ Kt , t 7→ Ct , t 7→ Jt , t 7→ F sh
t , t 7→M sh

t

are measurable and bounded. The continuity of the first three functions will be proved in

the last part of this section. The proof of the measurability and boundedness of the last two

functions in (3.17) requires some technical tools that will be developed in Section 4.

We need the following notion of set convergence: given a sequence of sets (Sk)k, we say

that Sk converge to S∞ , Sk → S∞ , if for every ε > 0 there exists m such that for every

k > m

(3.18) S−ε
∞ ⊂ Sk ⊂ S+ε

∞ ,

where S−ε
∞ = {y ∈ R

3 : dist(y,R3 \ S∞) > ε} and S+ε
∞ = {y ∈ R

3 : dist(y, S∞) 6 ε}. The next

lemma states a continuity property of the set-valued function t 7→ Bt .

Lemma 3.2 ([5]). Let st satisfy (3.8). Then if t → t∞ the sets Bt converge to the set Bt∞ in

the sense of (3.18). �
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Theorem 3.3. Let wt be the solution to the exterior Brinkman problem (2.2) on Bext
t with

boundary datum W on ∂Bt , where W can be either a constant vector a ∈ R
3 or the rotation

Wω := ω×z, with ω ∈ R
3. Define w̃t to be the extension

(3.19) w̃t :=

{
W on Bt ,

wt on Bext
t ,

Assume that t 7→ st satisfies (3.8). Then the map t 7→ w̃t is continuous from [0, T ] into X (R3).

Proof. Let (tk)k ⊂ [0, T ] be a sequence that converges to t∞ ∈ [0, T ]. Lemma 3.2 ensures the

convergence of the sets Btk to Bt∞ in the sense of (3.18).

Since wtk are solutions to Brinkman problems, we have the bound 2
∫
Bext

tk

|Ewtk |
2
dz +

α2
∫
Bext

tk

|wtk |
2 dz 6 C, which, in turn, implies that

2

∫

R3

|Ew̃tk |
2 dz + α2

∫

R3

|w̃tk |
2 dz 6 C.

Therefore, w̃t admits a subsequence that converges weakly to a function w∗ ∈ X (R3). By

the convergence of the Btk , it is easy to see that w∗ = W on Bt∞ . We now prove that

w∗|Bext
t∞

solves the exterior Brinkman problem on Bt∞ . Too see it, consider a test function

ϕ ∈ C∞
c (Bext

t∞ ;R3). For k large enough, ϕ ∈ C∞
c (Bext

tk
;R3), so that

2

∫

sptϕ

Ewtk :Eϕdz + α2

∫

sptϕ

wtk · ϕdz = 0.

This equality passes to the limit as k → ∞, showing that w∗|Bext
t∞

is a solution to the

Brinkman problem at t∞ . Therefore, w∗ = w̃t∞ , and we have proved that t 7→ wt is strongly

continuous from [0, T ] into X (R3). �

We can now prove the following continuity result for the elements of the grand resistance

matrix by means of Theorem 3.3.

Proposition 3.4. Assume that st satisfies (3.6) and (3.8). Then the functions

(3.20) t 7→ Kt , t 7→ Ct , t 7→ Jt ,

and consequently t 7→ Ht , t 7→ Dt , t 7→ Lt , are continuous.

Proof. Formulae (3.11) and (2.6) provide us with an explicit form for the elements of the

grand resistance matrix

(Kt)ij = 2

∫

Bext
t

Evjt :Ev
i
t dz + α2

∫

Bext
t

vjt · v
i
t dz,(3.21a)

(Ct)ij = 2

∫

Bext
t

Evjt :Ev̂
i
t dz + α2

∫

Bext
t

vjt · v̂
i
t dz,(3.21b)

(Jt)ij = 2

∫

Bext
t

Ev̂jt :Ev̂
i
t dz + α2

∫

Bext
t

v̂jt · v̂
i
t dz,(3.21c)

where vit and v̂it are the functions defined in (3.19) with W = ei and W = ei×z, respectively.

We prove the result for Kt only, since the others are similar. We write

(Kt)ij = 2

∫

R3

Eṽjt :Eṽ
i
t dz + α2

∫

R3

ṽjt · ṽ
i
t dz − α2

∫

Bt

ej · ei dz,

where ṽit and ṽjt are the extensions considered in (3.19). By Theorem 3.3, the first two

integrals are continuous with respect to t. The continuity of the last integral is guaranteed

by Lemma 3.2. �

The proof of the measurability and boundedness of t 7→ F sh
t and t 7→ M sh

t is a delicate

issue. The difficulty arises from the fact that both the domains Bt and the boundary data

Wt = ṡt ◦ s
−1
t depend on time. Moreover, since it is meaningful and interesting to consider

boundary values Wt that might be discontinuous with respect to t, we cannot expect the

functions t 7→ F sh
t and t 7→M sh

t to be continuous.

To prove the measurability we start from an integral representation of F sh
t and M sh

t ,

similar to (3.21). As
∫
∂Bt

Wt · n dS is not necessarily zero, we will not be able to compute
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integrals over the whole space R
3, so we will have to work in the complement of an open

ball Σ0
ε ⊂⊂ Bt . Since, in general, this inclusion holds only locally in time, we first fix

t0 ∈ [0, T ] and z0 ∈ Bt0 and select δ > 0 and ε > 0 so that the open ball Σ0
ε := Σε(z

0) of

radius ε centered at z0 satisfies

(3.22) Σ0
ε ⊂⊂ Bt , for all t ∈ Iδ(t0) := [0, T ] ∩ (t0 − δ, t0 + δ).

This is possible thanks to the continuity properties of t 7→ st listed in the first part of this

section.

Next we consider the solution wt to the problem

min
{
‖w‖

2
X (Σ0,ext

ε ) : w ∈ X (Σ0,ext
ε ), w =Wt on ∂Bt , and w = λt(z − z0)/ε3 on ∂Σ0

ε

}

In order for the flux condition (2.3) to be fulfilled by wt on ∂Bt ∪ ∂Σ
0
ε , we choose

λt := −
1

4π

∫

∂Bt

Wt · n dS.

Finally, putting together (3.13) and (2.6), we obtain the following explicit integral repre-

sentation of F sh
t and M sh

t

(F sh
t )i = 2

∫

Σ0,ext
ε

Ewt :Ev
i
t dz + α2

∫

Σ0,ext
ε

wt · v
i
t dz − α2

∫

Qε,t

wt · v
i
t dz

(M sh
t )i = 2

∫

Σ0,ext
ε

Ewt :Ev̂
i
t dz + α2

∫

Σ0,ext
ε

wt · v̂
i
t dz − α2

∫

Qε,t

wt · v̂
i
t dz

where vit and v̂it have been defined in the proof of Proposition 3.4 and Qε,t := Bt \ Σ0
ε.

We deduce from Theorem 3.3 and Lemma 3.2 that the functions t 7→ vit and t 7→ v̂it are

continuous from Iδ(t0) into X (Σ0,ext
ε ). Therefore, the measurability and boundedness of

t 7→ F sh
t and t 7→ M sh

t will be proved once t 7→ wt is proved to be measurable. We first show

that t 7→ wt is measurable and bounded from Iδ(t0) into X (Σ0,ext
ε ) and eventually we will

prove that the function t 7→
∫
Qε,t

wt dz is continuous with respect to time. These two results

are proved in the next Section.

4. EXTENSIONS OF BOUNDARY DATA AND MAIN RESULT

In order to prove the main result, some work is still to be done to prove the regularity

property of the coefficients of the equations of motion (3.15). To this aim, results concerning

the extension of boundary data are needed to be able to use standard variational techniques

to solve the relevant minimum problem of Theorem 4.4. The following result has been

proved in [5].

Proposition 4.1 (Solenoidal extension operators). Assume that st satisfies (3.6) and (3.8),

and let t0 ∈ [0, T ] and z0 ∈ Bt0 . Let δ > 0 and ε > 0 be such that (3.22) holds true. Then

there exists a uniformly bounded family (Tt)t∈Iδ(t0) of continuous linear operators

Tt : H
1/2(∂A;R3) → X (Σρ \ Σ

0
ε)

such that

(i) for all t ∈ Iδ(t0) and for all Φ ∈ H1/2(∂A;R3),

Tt(Φ) = Φ ◦ s−1
t on ∂Bt ,

Tt(Φ) = λt
z

|z|
3 on ∂Σρ ,

(ii) for every Φ ∈ H1/2(∂A;R3) the map t 7→ Tt(Φ) is continuous from Iδ(t0) into X (Σρ \

Σ0
ε).

In particular, the following estimate holds

(4.1) ‖Tt(Φ)‖H1(Σρ\Σ0
ε;R

3) 6 C ‖Φ‖H1/2(∂A;R3) ,

where the constant C is independent of t and Φ. �
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Proposition 4.2. Assume that st satisfies (3.6), (3.7), and (3.8). Let t0 ∈ [0, T ] and z0 ∈
Bt0 , and let Σ0

ε and Iδ(t0) be as in (3.22). Suppose, in addition, that for every t ∈ Iδ(t0)
there exists a C2 diffeomorphism Ψt0

t : Σρ → Σρ coinciding with the identity on Σρ \ Σρ−1 ,

such that Ψt0
t = st0 ◦ s−1

t on Bt . Let the map t 7→ Φt belong to C0(Iδ(t0);H
1/2(∂A;R3)) ∩

L∞(Iδ(t0); Lip(∂A;R
3)). Let wt be the solution to the problem

(4.2) min
{
‖w‖

2
X (Σ0,ext

ε ) : X (Σ0,ext
ε ), w = Φt ◦ s

−1
t on ∂Bt and w = λt(z − z0)/ε3 on ∂Σ0

ε

}
,

where λt := − 1
4π

∫
∂Bt

(Φt ◦ s
−1
t ) · n dS. Then t 7→ wt belongs to C0(Iδ(t0);X (Σ0,ext

ε )).

Proof. The proof can be easily adapted from that of [5, Proposition 6.1]; the following im-

portant estimate provides a uniform bound for the norms of the wt’s in X (Σ0,ext
ε ) that will

also be useful in the proof of Proposition 4.3

2

∫

Σ0,ext
ε

|Ewtk |
2
dz + α2

∫

Σ0,ext
ε

|wtk |
2
dz 6 2

∫

Σ0,ext
ε

|Eψtk |
2
dz + α2

∫

Σ0,ext
ε

|ψtk |
2
dz

6 ‖ψtk‖
2
H1(Σρ\Σ0

ε;R
3) 6 C2(Lip(Φtk) + max |Φtk |)

2 6 (CM)2,

(4.3)

where ψt ∈ X (Σ0,ext
ε ) is defined by

ψt :=





Tt(Φt) in Σρ \Σ
0
ε

λt
z

|z|
3 in Σext

ρ

and is the function provided by Proposition 4.1 and extended on Σext
ρ , C is the constant

in (4.1), and M > 0 is a uniform upper bound of Lip(Φtk) + max |Φtk |, whose existence is

guaranteed by the fact that t 7→ Φt belongs to L∞(Iδ(t0); Lip(∂A;R
3)). �

Proposition 4.3. Under the hypotheses of Proposition 4.2, recalling that Qε,t = Bt \Σ
0
ε , the

maps

(4.4) t 7→

∫

Qε,t

wt dz, t 7→

∫

Qε,t

z×wt dz

where t 7→ wt ∈ X (Σ0,ext
ε ) is the solution to the minimum problem (4.2) as in Proposition 4.2,

are continuous with respect to time in Iδ(t0).

Proof. We check the continuity with the definition
∣∣∣∣∣

∫

Qt+h

wt+h dz −

∫

Qt

wt dz

∣∣∣∣∣ =
∣∣∣∣∣

∫

Qt+h

(wt+h − wt) dz +

∫

Σ0,ext
ε

wt(χQt+h
(z)− χQt(z)) dz

∣∣∣∣∣

6

(∫

Σ0,ext
ε

|wt+h − wt|
2
dz

) 1
2

|Qt+h|
1
2 +

(∫

Σ0,ext
ε

|wt|
2
dz

) 1
2

|Qt+h4Qt|
1
2

6 ‖wt+h − wt‖X (Σ0,ext
ε ) |Qt+h|

1
2 + ‖wt‖X (Σ0,ext

ε ) |Qt+h4Qt|
1
2

6 |Σρ|
1
2 ‖wt+h − wt‖X (Σ0,ext

ε ) + CM |Qt+h4Qt|
1
2

h→0
−−−→ 0.

Here, χQ denotes the characteristic function of the set Q, 4 is the symmetric difference

operator, and CM is the uniform (with respect to t) upper bound coming from (4.3). The

continuity for the second map is achieved in the same way. �

Proposition 4.2 and Proposition 4.3 combined together give the continuity of t 7→ F sh
t

and t 7→ M sh
t with respect to time, in the case of regular boundary data Φt ◦ s

−1
t on ∂Bt,

where the map t 7→ Φt belongs to C0(Iδ(t0);H
1/2(∂A;R3)) ∩ L∞(Iδ(t0); Lip(∂A;R

3)). The

next results will prove that when the boundary data on ∂Bt are given by ṡt ◦ s
−1
t , then the

maps t 7→ F sh
t and t 7→M sh

t are measurable and bounded.

Theorem 4.4. Assume that st satisfies (3.6), (3.7), and (3.8). Let t0 ∈ [0, T ] and z0 ∈ Bt0 ,

and let Σ0
ε and Iδ(t0) be as in (3.22). Suppose, in addition, that for every t ∈ Iδ(t0) there

exists a C2 diffeomorphism Ψt0
t : Σρ → Σρ coinciding with the identity on Σρ \ Σρ−1 , such

that Ψt0
t = st0 ◦ s

−1
t on Bt . Let wt be the solution to the problem

min
{
‖w‖2X (Σ0,ext

ε ) : w ∈ X (Σ0,ext
ε ), w = ṡt ◦ s

−1
t on ∂Bt , and w = λt(z − z0)/ε3 on ∂Σ0

ε

}
.
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Then the function t 7→ wt is measurable and bounded from Iδ(t0) into X (Σ0,ext
ε ). Moreover,

also the functions (4.4) considered in Proposition 4.3 are measurable and bounded in Iδ(t0).

Proof. It suffices to convolve the boundary datum with a suitable regularizing kernel and

to apply Propositions 4.2 and 4.3. By passing to the limit, the continuity is lost but the

functions turn out to be measurable and bounded. �

Proposition 3.4 and Theorem 4.4 give the regularity result for bt and Ωt in (3.14), as

stated in the following result.

Theorem 4.5. Assume that t 7→ st satisfies (3.6), (3.7), and (3.8). Then the vector bt
and the matrix Ωt in (3.14) are bounded and measurable with respect to t. If, in ad-

dition, the function t 7→ st belongs to C1([0, T ];C1(A;R3)), then t 7→ (bt ,Ωt) belongs to

C0([0, T ];R3×M
3×3). �

We are now in a position to state the existence, uniqueness, and regularity result for the

equations of motion (3.15).

Theorem 4.6. Assume that t 7→ st satisfies (3.6), (3.7), and (3.8). Let y∗ ∈ R
3 and R∗ ∈

SO(3). Then (3.15) has a unique absolutely continuous solution t 7→ (yt , Rt) defined in [0, T ]
with values in R

3×SO(3) such that y0 = y∗ and R0 = R∗. In other words, there exists a

unique rigid motion t 7→ rt(z) = yt +Rtz such that the deformation function t 7→ ϕt = rt ◦ st
satisfies the equations of motion (3.10).

Moreover this solution is Lipschitz continuous with respect to t. If, in addition, the

function t 7→ st belongs to C1([0, T ];C1(A;R3)), then the solution t 7→ (yt , Rt) belongs to

C1([0, T ];R3×SO(3)). �

Proof. The existence and uniqueness of the solution of the Cauchy problem for (3.15) follow

immediately from Theorem 4.5, by standard results on ordinary differential equations with

bounded measurable coefficients, see, e.g., [7, Theorem I.5.1]. The assertion concerning the

deformation function t 7→ ϕt and the equation of motion (3.10) follows from the equivalence

Theorem 3.1. The Lipschitz continuity of the solution follows from the boundedness of the

right-hand sides of the equation in (3.15).

If, in addition, the function t 7→ st belongs to C1([0, T ];C1(A;R3)), then Theorem 4.5

ensures that the coefficients of the equations in (3.15) are continuous with respect to t, and

therefore the solutions are of class C1. �

5. CONCLUSIONS AND FUTURE WORK

We have shown that the framework for modeling the motion of a deformable body in a

viscous fluid that we presented in [5] also fits in the case of a particulate system for which

the Brinkman equation is assumed to model the fluid phase of the surrounding medium. A

suitable functional setting has been developed, and the solution to the Brinkman system

has been found by solving a minimum problem for the associated functional. Some extra

terms appeared, with respect to the Stokes case, due to the presence of the −α2u term in

the Brinkman system. Nonetheless, the corresponding integrals, depending on time both in

the integrand function and in the domain of integration, have been proved to be continuous

with respect to time, thus allowing the coefficients of the equations of motion to be regular

enough.

Another noteworthy feature of our work is that the infinite-dimensional control t 7→ st
is coupled with and determines a finite-dimensional function to describe the position of the

swimmer. In previous works [18], [17], and [2], only swimmers with a finite number of

shape parameters were dealt with. Here, we have been able to extend the study to the case

of a more complex deformations.

In our model, we neglected the interactions between the solid particles and the swim-

mer, considering only the body-fluid phase viscous interaction. We think this is a reason-

able approximation for using a simple model such as the Brinkman equation. Also, the

mathematical model to describe the experiments in [11] is the same, and in that case the

elastic and adhesive interactions between the nematode and the surrounding particles are

neglected as well. Nevertheless, we think it can be interesting to develop more complex
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models to take into account also that kind of contact forces, and that could be the object of

a future study.

Even though it has not been addressed in this work, we also expect our model to be

able to predict, on the basis of an energy comparison, whether swimming in a particulate

medium is more efficient than swimming in a plain viscous fluid; that would be an inter-

esting theoretical check of the thesis advanced by Jung on the basis of his experimental

results that C. elegans swims more efficiently in a particulate medium.
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