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Abstract—With the uptaking of virtualization technologies
and the growing usage of public cloud infrastructures, an ever
larger number of applications run outside of the traditional
enterprise’s perimeter, and require new security paradigms that
fit the typical agility and elasticity of cloud models in service
creation and management. Though some recent proposals have
integrated security appliances in the logical application topology,
we argue that this approach is sub-optimal. Indeed, we believe
that embedding security agents in virtualization containers and
delegating the control logic to the software orchestrator provides
a much more effective, flexible, and scalable solution to the
problem.

In this paper, we motivate our mindset and outline a novel
framework for assessing cyber-threats of virtualized applications
and services. We also review existing technologies that build the
foundation of our proposal, which we are going to develop in the
context of a joint research project.

I. INTRODUCTION

Cloud management software typically provides isolation
among multiple tenants by running applications in virtual ma-
chines or software containers, and by connecting them through
overlay networks (e.g., VLAN, VXLAN, GRE tunnels). In
addition, basic packet filtering (i.e., firewalling) is usually
available to control incoming/outgoing traffic. Motivated by
the lack of common and uniform Security-as-a-Service APIs
in cloud management software and the substantial untrustwor-
thiness of the underlying infrastructure, especially with the
expected advent of distributed edge technologies [1], security
is now starting to be seen as integral part of the design of
cloud applications.

Recent efforts in software design for cloud services have
investigated new paradigms beyond service-oriented architec-
tures and web services, which pursue more automation in de-
veloping, deploying, and managing applications. The purpose
is to define high-level programming abstractions that describe
each application as a logical “graph” or “chain” of elementary
components (also referred to as micro-services or virtual
functions), while smart engines provision cloud resources
and automatically deploy and manage service graphs [2].
TOSCA [3], ETSI MANO [4], and IEEE SFC [5] are currently
the main orchestration models used in the cloud and network
function virtualization domains.

The modular architecture of virtualized services implicitly
suggests that virtual instances of security appliances might be

themselves software components to be included in the service
graph, either at design time or at deployment time (in this
case, by including proper security policies to be interpreted
by the orchestrator). However, we argue that this approach
suffers some limitations in terms of scalability, effectiveness,
efficiency, integration, and security. In this paper, we propose
a new paradigm that de-couples inspection tasks from the
detection logic; the former to be integrated into the different
forms of virtualization containers, and the latter to be part
of the orchestration process and directly interacting with
application management to provide situational awareness and
support quick reaction and mitigation actions.

The rest of the paper is organized as follows. Section II
briefly reviews the current approach and its limitations. We
describes our concept in Section III, together with a pre-
liminary architecture for building situational awareness of
virtualized applications. We also discuss enabling technologies
in Section IV, and point out open challenges and research
issues for the implementation of the devised architecture in
Section V. Finally, we give our conclusions and plans for
future work in Section VI.

II. STATE OF THE ART AND MOTIVATIONS FOR A NEW
PARADIGM

Cloud management software provides basic isolation be-
tween different tenants and distributed firewalling;clearly, this
is a very rough approach and requires service owners to
apply security appliances within each sandbox, by integrating
them in the design of their service graph, in order to inspect
software, network traffic, user and application behavior.

Since, on first approximation, virtualization environments
could be viewed as special instances of physical networks,
more and more vendors are now offering software versions
of their security appliances (Intrusion Prevention/Detection
Systems, Firewalls, Antivirus, Network Access Control, etc.),
mostly for data centers and virtualized IT environments, which
simplify deployment and re-configuration. This approach de-
mands for tight integration between service design and op-
eration, which is not always simple to achieve in current
development processes; to address elasticity and autonomicity,
several research projects are developing policies frameworks



and orchestration models to integrate security appliances into
service graph design [6].

Unfortunately, virtual environments have peculiar charac-
teristics that point out some important limitations of current
approaches. First, hypervisors and overlay networks provide
isolation, but are not immune to attacks. DoS attacks against
the physical network affect all virtual networks of all tenants,
while a compromised hypervisors is a potential source of
eavesdropping and alteration for every hosted virtual machine
or software container [7]. Second, software-based security ap-
pliances do not benefit from hardware acceleration. Complex
multi-vector attacks are evolving inspection from memory-
less simple string matching to stateful rules (such as regular
expressions) [8], hence more processing power is required,
which is likely to overwhelm software-based implementation
of load balancers, firewalls, and intrusion prevention systems,
especially in case of large volumetric attacks.Third, security
appliances run in the same type of virtualization environment
(e.g., virtual machines, containers) of the actual services;
hence they are also vulnerable to attacks and possibly in-
crease the attack surface of the whole application. Fourth,
programmers and service developers are not usually security
experts, since security is usually managed by operation staff.
Integrating security appliances in graph design may lead to
weak or ineffective protection [1], giving false trust confidence
to service users.

III. BASIC CONCEPT AND APPROACH

We envisage a new approach to assess situational awareness
of virtualized services and effectively support quick remedi-
ation actions, beyond mere integration of security appliances
in service graphs. The main concept is the disaggregation of
cyber-security appliances into business logic (i.e., detection
algorithms) and data plane (i.e., monitoring and inspection
tasks), mediated by orchestration logic and proper security
models.

Fig. 1 depicts the main differences between current ap-
proaches and the new concept. Instead of overloading the
execution environment with complex and sophisticated threat
detection capabilities, efficient processing capabilities are pro-
vided in the execution environment that create events and
knowledge; algorithms for detection of threats and vulnerabili-
ties are moved upwards and process such data in a coordinated
way for the whole execution environment.

To implement the above concept, we envision the multi-tier
architecture shown in Figure 2. Multiple programmable hooks
are present in the virtualization container (in the OS kernel,
in system libraries, and in the micro-service code), to monitor
what happens inside. Programmable hooks include logging and
event reporting capability developed by programmers into their
software, as well as monitoring frameworks built in the kernel
and system libraries that inspect network traffic and system
calls. The security model logically decouples programmable
hooks from orchestration. It uses specific semantics to describe
security-related capability, e.g., logging, event reporting, filter-
ing, deep packet inspection, system call interception. Through

the security model, orchestration knows what kinds of opera-
tions can be carried out on each component, collects data and
measurements, and feeds the layers above. The management
framework includes the definition of policies and detection
algorithms. Policies describe in an abstract form life-cycle
management; for example, what kind of actions should be
undertaken upon detection of potential attacks. Orchestration
provides a sort of adaptation that abstracts the heterogeneity
of deployed components, protocols, and interfaces to the
overall management framework. Finally, algorithms analyze
and correlated information provided by orchestration at graph
level to detect threats, anomalies, vulnerabilities, attacks.

The security model and the policies are used to take de-
ployment, placement, and (re-)configuration decisions, hence
shaping the system behavior according to the evolving context.
For instance, orchestration takes into consideration both user-
defined policies and output from detection algorithms to
configure monitoring and executive processes. This means
that packet filters, types and frequency of event reporting,
level of logging is selectively and locally adjusted to retrieve
the exact amount of knowledge, without overwhelming the
whole system with unnecessary information. The purpose is
to get more details for critical or vulnerable components
when anomalies are detected that may indicate an attack,
or when a warning is issued by cyber-security teams about
new threats and vulnerabilities just discovered. This approach
allows lightweight operation with low overhead when the risk
is low, even with parallel discovery and mitigation, while
switching to deeper inspection and larger event correlation in
case of anomalies and suspicious activities, hence being able
to properly scale with the system complexity, even for the
largest services (e.g., carriers large scale virtual networks, and
worldwide mass applications as social nets).

IV. A FRAMEWORK FOR ADDRESSING CYBER-THREATS OF
VIRTUALIZED APPLICATIONS

The multi-layer architecture described in Section III repre-
sents the foundation for addressing cyber-threats for virtual-
ized applications. Fig. 3 sketches a framework for deployment
of virtual applications and management of security aspects. We
identify three main logical blocks:

• service engineering, concerning the development and
modeling of software components (micro-services, virtual
functions) and service graphs;

• service management, dealing with secure deployment and
life-cycle management of service graphs;

• situational awareness, responsible for detecting threats
and certifying data for security audits and court investi-
gations.

Service engineering is based on the usage of metadata
both at the component and service graph level. Meta-data
include information about characteristics, dependencies on
other components (e.g., web application that needs a database
for storage), requirements on computing/networking/storage
resources (e.g., number of CPUs, RAM, bandwidth), etc. They
also contain hooks for lifecycle management operations that
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Fig. 1: Our approach entails a transition from in-service embedding of security appliances to a multi-layer architecture tightly
integrated with orchestration logic.
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Fig. 2: Conceptual multi-layer architecture.

can be invoked on the component: start/stop/restart the service,
clone the service, de-provision the service, configure the
service after deployment, monitor performance and execution,
and so on. Orchestration makes use of this information for
deployment, by adapting the service and its components to the
changing context. According to this interpretation, meta-data
are indicated as the context model. In a similar way, life-cycle
management is driven by policies, which are described by a
condition/action pattern.

The context model includes specific information about
security-related capabilities, including what kinds of logs,
events, and behavioral/traffic monitoring can be generated or
consumed by the micro-service, the hooks for configuring
and controlling the generation of such data, and trust and
certification mechanisms to seal information with legal validity
for forensics investigation.

Policies are sets of operating rules, usually in the form
‘on event, if condition, then action’, that describe life-cycle
management operations, so that orchestration can shape the

system behavior to the evolving context without altering the
system implementation. Specifically, security policies (defined
in Section III) reflect the resource owners intention of ade-
quately protecting valuable resources. A list of security poli-
cies include but is not limited to: deployment constraints (trust-
worthiness and security of the underlying infrastructure and
the other chainable components in the graph), re-configuration
of individual components to change their reporting behavior,
and re-action to threats and attacks.

Service management entails various life-cycle operations on
the service graph, in addition to policies for automated tasks.
Our framework also envisions authentication and encrypted
channels for interacting with the service components. Thus,
management is mediated by ABAC (Attribute-Based Access
Control) and ABEC (Attribute-Based Encription Control). It
also contains an IdM (Identity Management) component and a
PKI infrastructure (rooted at a trusted and public Certification
Authority). Secure deployment also entails selection of trusted
services, hence a TSL (Trusted Service List) component is
present.

Finally, situational awareness represents a totally new func-
tional block in frameworks for developing and deploying
cloud applications. It includes all the components to collect
and process security-related data, and to provide knowledge
and evidence about cyber-security threats, vulnerabilities, and
attacks. The context broker collects context information, likely
by a Pub/Sub or similar paradigm, and feeds other engines
that process and store such information. Threat intelligence
is a collection of detection algorithms that analyzes events,
data, and logs, arguably by combining innovative detection
methodologies (rules-based, machine learning) with big data
techniques; the purpose is to locate vulnerabilities in the
graph and its components, to identify possible threats, and
to timely detect on-going attacks. The target is protection
from both software vulnerabilities and network threats, hence
involving a mix of source and run-time code analysis, formal
verification, network analytics, and packet filtering techniques.
We remark that, since orchestration manages all service graphs
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Fig. 3: Conceptual architecture of the framework for addressing cyber-threats of virtualized services.

of the same service provider, threat intelligence combines and
correlates context information from different graphs, which
further improves threat detection and brings the possibility
to fix vulnerabilities in advance before other components get
compromised. Knowledge built by the detection logic is shared
with other processes:

• the user interface, to provide proper visual representation
of the current situation to the service provider, and to
assist him in taking decision for remediation actions and
countermeasures;

• the certification process, which is responsible for origin,
timestamping, digital signing, integrity of relevant infor-
mation that is used for security audits and legal inter-
ception; the solution should be able to capture enough
information to trace security attacks in a reliable manner
and to interpret the data post-factum;

• the secure repository, which conserves data with legal va-
lidity (security audit trails) for forensics investigation that
is initiated after the threat or attack has been identified.

V. OPEN CHALLENGES AND RESEARCH ISSUES

Beyond the main functions envisioned by the conceptual
architecture in Fig. 3, a deeper definition is necessary to clearly
define what to capture, where to store, how to access, and
how to search. In this Section we review open challenges and
research issues for the main functional blocks of the proposed
framework.

A. Orchestration

If security functions were part of service graph design, they
would be basically treated as all other software components,
with no appreciable results in tackling the specific challenges
of virtual environments (see Section II). For example, the

missing part of all the NVF-based architectures is that the
“clones” which are deployed for each tenant are not properly
customized for the usage resulting into very uniform security
deployments, not appropriate for the service usage. Indeed,
true and effective integration of security in service orches-
tration requires a new approach that addresses at least the
following needs:

• checking the trustworthiness of software and service
graphs at deployment time;

• adapting the service graph to the evolving security context
– e.g., replace compromised or vulnerable components
with equivalent (but better) ones, inject new functions or
disable existing ones;

• triggering software analysis at run-time periodically or
after suspicious events;

• translate policies and high-level instructions into proper
code and configuration at the container/micro-service
level – e.g., setting/changing firewalling rules, monitor-
ing and deep packet inspection, forwarding and routing
policies;

• ensure, though formal models and methods, the correct
implementation of security policies.

Beyond adaptation between algorithms and the underlying
security mechanisms, orchestration plays a crucial role in
checking correctness, congruence, and consistence of security
policies and actions. A limitation of all current techniques is
that they are not integrated into the orchestration process, but
they act either before it (on the user-specified service graph)
or as a post-processing step after orchestration. This is not
the best solution. An early check, in fact, may miss security
problems introduced afterwards, while with a later check, if
errors are detected by the verifier, service deployment fails



because the orchestrator does not have clues about how to fix
the errors or the orchestrator has to iterate through the many
possible solutions, which is clearly inefficient.

It is therefore necessary the development of formal ap-
proaches that, while providing final assurance levels similar to
the ones of the state-of-the-art formal verification techniques,
are incorporated into the secure orchestration process, which in
this way produces network configurations that, once deployed
into the underlying infrastructure, are formally guaranteed to
satisfy the required security policies. Ensuring the correctness
of service orchestrators has already been recognized a crucial
problem in security-critical cloud computing environments, so
that the idea of formally verifying orchestration procedures
has been recently proposed (e.g., [9]–[11]), for verifying
cloud-related policies (e.g., verify that payment procedures
are properly designed). Future extensions should also address
networking aspects, in particular for NFV services that steer
packets across different virtual functions.

B. Monitoring, inspection, enforcement

Many network security appliances (typically for DoS pro-
tection) already collect traffic information and measurements
from network devices, originally by flow collectors like Net-
Flow, sFlow, and IPFIX, and, more recently, by also integrat-
ing software-defined protocols (OpenFlow and NetConf). In
addition, the concept of distributed firewall has recently been
proposed for virtualization environments, to integrate packet
inspection and filtering in hypervisors [12]. A distributed
firewall removes the need for traffic steering (all network
packets go through the hypervisor, which is part of the firewall)
and IP-based rule structures (through the notion of logical
“containers” or “security groups”). These kinds of approaches
are largely used in commercial and open-source products for
analyzing traffic flows and enforcing filtering rules, but does
not have the flexibility to provide deep and flexible inspection
of network packets and system calls tailored to the specific
needs for detecting a broader class of threats and attacks.

As the data plane is not intended only as the transport layer
for network traffic, the above monitoring/inspection/enforcing
elements should operate on a larger extent of information
such as any data that is actually being generated in the
virtualized environment, such as kernel-level system calls, disk
I/O, and more, hence offering a broader and more precise
coverage of what happens in the system under control. In this
respect, the IOVisor technology [13] offers a wider range of
options, including both in-kernel network eXpress Data Paths
(XDP), enhanced Berkeley Packet Filters (BPF), and analysis
of system calls. However, current IOVisor technology has been
validated mostly with monitoring applications, hence with
limited (or no) capabilities to perform more effective actions
(e.g., data modification/manipulation) on the incoming data.
Furthermore, only simple data plane programs are allowed,
i.e., without support for complex programs created according
to the split data/control plane paradigm as originally proposed
with SDN/OpenFlow. It is therefore necessary to extend this
technology (i) to support more powerful programs, which can

operate according to the split data/control plane paradigm;
(ii) to support more powerful actions on the data in transit,
which enable to implement some proactive security actions
(e.g., drop network traffic, modify packet information, craft
ad-hoc packets for specific purposes) that go beyond simple
monitoring.

C. Threat detection

Fine grained monitoring and inspection capabilities as de-
scribed in Section V-B would not only be suitable for volume
anomaly detection that processes raw flow information [14],
but would also support effectively signature- and rule-based
detection similarly to existing IPS/IDS tools [7], [15]. Dif-
ferent techniques may be used for these purposes: regression
analysis, predictive and prescriptive analytics, data mining and
machine learning. Obviously, a larger base of data and events
would increase the processing burden, but this should not
be a problem, since the control plane is outside the service
graph and could run in dedicated infrastructures with big data
techniques.

From a conceptual point of view, virtual services constitute a
hackable network of services; thus, a continuous internal audit
of their security is required. Both static and dynamic analysis
of code are required to protect virtual services during their
lifecycle. Static code analyzers use flow-insensitive and inter-
procedural constraint-based analysis to extract a vulnerability
detection model from the source code targeting the general
class of buffer-related vulnerabilities. This can be applied to
the detection of vulnerability types such as buffer overflow,
format string attack, and code injection [16]–[18]. Even though
there are many static analyser tools there is a clear lack of
code assessment mechanisms that targets specifically cloud
applications and virtual network functions. Dynamic tools fall
mainly into two categories: dynamic and concolic analysis
systems. Dynamic analysis systems [19], such as fuzzers,
monitor the native execution of an application to identify
flaws. Concolic execution engines [20], [21] utilize program
interpretation and constraint solving techniques to generate
inputs to explore the state space of the binary, in an attempt
to reach and trigger vulnerabilities. Here the challenge is to
develop hybrid vulnerability analysis tools that leverage packet
fuzzing, packet sniffing and selective concolic execution (some
of the prominent vulnerability assessment techniques) in a
complementary manner, to find deeper (possible) bugs during
the execution of the services and their components. By using
techniques such as packet sniffing and fuzzing, a set of the
most severe attacks can be investigated in order to study their
after-effects and help identify sufficient mitigation actions.

D. Legal and forensics investigation

Even the most reliable system may occasionally be compro-
mised, and in this case it is important to investigate the cause
to identify additional protection measures. In this respect, a
critical issue is the legal validity of the extracted data to
prosecute attackers. Common challenges in this area include:
i) storing trusted evidence, ii) respecting the privacy of users



when acquiring and managing evidence, iii) preserving the
chain of custody of the evidence. We remark that in the
proposed framework the problem is not the same as the
definition of Cloud forensics [22], [23], since investigation in
our case is carried out by the service owner and not by the
cloud provider.

VI. CONCLUSIONS

In this paper, we have outlined the background concept and
the overall approach that will be followed in the XXXXX
project for managing the cyber-security of virtualized ap-
plications. The framework will be based on a multi-layer
architecture that decouples monitoring and inspection tasks
(data plane) from the detection and reaction logic (control
plane).

We believe that our proposal brings far more dynamicity,
scalability, robustness, and self-adaptability than current prac-
tice of inserting virtual instances of security appliances in
the application topology. Our belief relies on more elasticity
brought by the intermediate orchestration layer, more effective-
ness in monitoring and processing in the data plane, reduced
overhead on graph execution and attack surface by avoiding
additional security appliances, and more adaptability brought
by programmable infrastructures.
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