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Abstract: The zero moment point (ZMP) and the linearized inverted pendulum model linking the
ZMP to the center of gravity (COG) have an important role in the control of the postural equilibrium
(balance) of biped robots and lower-limb exoskeletons. A solution for balance real time control,
closing the loop from the joint actual values of the COG and ZMP, has been proposed by Choi.
However, this approach cannot be practically implemented: While the ZMP actual value is available
from the center of pressure (CoP) measured under the feet soles, the COG is not measurable, but it
can only be indirectly assessed from the joint-angle measures, the knowledge of the kinematics,
and the usually poorly known weight distribution of the links of the chain. Finally, the possible
presence of unknown external disturbance forces and the nonlinear, complex nature of the kinematics
perturb the simple relationship between the ZMP and COG in the linearized model. The aim of
this paper is to offer, starting from Choi’s model, a practical implementation of closed-loop balance
control fusing CoP and joint-angle measures, eliminating possible inconsistencies. In order to achieve
this result, we introduce a model of the linearized inverted pendulum for an extended estimation,
not only of COG and ZMP, but also of external disturbances. This model is then used, instead of
Choi’s equations, for estimation and balance control, usingH∞ theory. As the COG information is
recovered from the joint-angle measures, the identification of a statistically equivalent serial chain
(SESC) linking the COG to the joint angles is also discussed.

Keywords: biped robotics; exoskeletons; postural equilibrium; zero moment point; inverted
pendulum; robust control

1. Introduction

The zero moment point (ZMP) and linearized inverted pendulum have continued to play a
fundamental role in the control of postural equilibrium of biped robots and lower-limb exoskeletons
since their introduction by Vukobratovic [1]. Vukobratovic showed that the center of pressure (CoP)
of reaction forces under the feet soles on a flat horizontal surface coincides with a point he called the
zero moment point (ZMP) and that postural equilibrium can be guaranteed if the CoP (alias ZMP) is
maintained inside the convex hull of the surface encompassing the supporting foot (or feet in double
stance). Moreover, a very simple relationship, based on the linearized inverted pendulum, links the
ZMP and the center of gravity (COG) projection on the ground of the mechanical chain. The goal is to
control the COG acting on the joint angles as both are algebraically linked by the kinematics of the
chain, the target objective being the ZMP.
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If motion maintaining postural equilibrium is desired (e.g., during a step in gait), to control the
ZMP requires a certain degree of anticipation. Hence, in the so-called preview control framework [2],
transition of COG, COG velocity, and ZMP were precomputed in advance and applied in open loop
as reference to the biped control. However, this approach has not been able to model a closed-loop
system and does not face the problems of disturbance rejection and stability.

A solution to track the preview trajectories in closed loop was successively proposed by Choi [3].
The preview COG− ZMP trajectories during rectilinear gait were reviewed, and a closed-loop strategy
was devised and proven, using Lyapunov techniques, to guarantee closed-loop stability and a bounded
error tracking of the COG and ZMP preview references. The loop was closed from the actual values
of COG and ZMP, generating a feedback signal to control the COG velocity. Then, a speed control
for the joints from the COG velocity was designed using a COG Jacobian with specified embedded
motion. The output measures were not detailed, but presumably, COG was assessed by measuring
the joint angles from the weight distribution on the kinematic chain, and ZMP was measured by
pressure sensors under the feet of the biped. The strategy, according to theory, guarantees closed-loop
stability. However, when the authors tested it in simulations and practical examples, it showed a
lack of robustness to disturbances or poor damping of the closed-loop dynamics. Lyapunov theory
guarantees stability but does not say how much the resulting closed-loop poles will be damped.

If real-time measures (let us call them COGm and ZMPm) of COG and ZMP are independently
available, it is reasonable to assume that before closing the loop, a filtering is performed, fusing
both data. However, if these are generated, as stated before, the latter by direct measures and the
former indirectly from joint measures and a priori information, they are not always consistent with
the relationship stated by the linearized inverted pendulum. The main reasons are: uncertainties
in the model parameters (especially in the weight distribution when dealing with an exoskeleton
interacting with a patient), external forces acting on the biped (crutches or a chair in a sit-to-stand
exercise), centrifugal forces in the frontal plane when motion is not rectilinear.

This study was motivated by the intention to improve postural equilibrium in lower-limb
exoskeletons for rehabilitation. The same approach is at the basis of all applications needing balance
control of biped robots, such as biped walking in rectilinear [4,5] and curved trajectories [6], in haptic
lower-limb exoskeletons [7], and in performing sit-to-stand exercises [8], described by the authors in
other papers.

1.1. Paper Contributions

The main contribution of the paper is the development of a feedback control more robust
than the one offered by Choi. In order to achieve this result, a detailed understanding of the
closed-loop dynamics generated by controlling an inverted pendulum is presented, with particular
attention devoted to the control design techniques and the engineering problems in closing the loop.
Then, in order to make the filtering effective and close the loop from COGm and ZMPm, ensuring
compatibility, the proposed approach operates at two levels: a nonlinear algebraic function and a a
linear dynamic model.

The nonlinear function is a simplified mapping from joint angles to COG, called statistically
equivalent serial chain (SESC) [9], to be identified in a priori experiments. As this identification is
based on the same force sensors under the feet used for measuring the CoP, it also resolves any
calibration mismatch.

The linear model is an extended system based on the inverted pendulum from input u,
the reference COG velocity, and output COGm and ZMPm, used to estimate, along with the COG,
ZMP, and external disturbances affecting the CoP, the model states. Then, using the estimated
states, the loop from COGm and ZMPm can be closed applying robust control theory. The reasons for
estimating the unknown external force disturbances are twofold: (1) to take into account real external
disturbances, especially in exoskeletons but also in biped robots (e.g., centrifugal forces in turning
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while walking); (2) robustness in the COG− ZMP joint estimation, accommodating modeling errors,
parameter uncertainties, and the simplifications introduced by the linearized inverted pendulum.

Still recently, the linearized inverted pendulum has continued to be at the basis of the models
for balance control ([10,11] and references therein). However, to the authors’ knowledge, there are
no works introducing, for robustness, an extended system to estimate disturbances, or the need for a
SESC identification.

The proposed control is a non-conventional tracking problem, as two separate model states are
tracked. Two different control design techniques are proposed and tested to control the extended
system: (1) computing a robust estimator and solving the output feedback problem from the estimated
states using a numerical approach based on the Levenberg–Marquardt algorithm [12,13]; (2) solving
the standard robust regulator, adapted to deal with the preview signal tracking.

In order to test the approaches, three different experiments were performed. First, both observer
and state feedbacks were implemented and compared with Choi’s original feedback through simulation
of the 2D linearized inverted pendulum. In a standing position, a preview shift of the COG from
the heels to the tips of the feet was imposed, while in the meantime, an external force disturbance
was applied. Then, a real lower-size mechanical mock-up was considered, composed of foot, leg,
thigh, and trunk, with three degrees of freedom (DOF) in the sagittal plane to represent the real
exoskeleton for implementing the sit-to-stand exercise. The SESC model of this simplified kinematics
was identified with a priori experiments and used in the proposed feedback control through the COG
Jacobian of the chain. Finally, a non-linear simulation of the full-scale exoskeleton with patient was
run on the same exercise executed by the linearized inverted pendulum, emulating the first phase of
a stand-to-sit exercise. A complete sit-to-stand exercise with the presence of a chair and switching
dynamics exploiting the same control technique can be found in [8].

The paper is organized as follows. Section 2 reviews Choi’s results. Section 3 introduces the
main contribution of the paper: a COG− ZMP model of the linearized inverted pendulum and an
extended system, embedding in the model external disturbances, for applying robust estimation
and robust control. This model is also used in the Appendix to show the limitations of Choi’s
feedback. Sections 3.1 and 3.2 present the robust estimator–estimate state feedback and the standard
robust regulator. Sections 3.3 and 4 contain simulated and real control experiments. In particular,
Section 4.1 approaches the identification of the SESC model, and Section 4.2 presents the simulation of
a stand-to-sit exercise. Section 5 concludes the paper. The appendix discusses the limitations of Choi’s
original method.

2. Choi’s Approach

As in [3], the 3D linearized inverted pendulum is split into two separate, independent 2D models
for the sagittal and the frontal planes. However, in this paper only the sagittal plane will be considered,
with axes x (horizontal) and z (vertical). The equation linking COG and ZMP, adopting Choi’s
notation, is

p = c− (1/w2
n)c̈, (1)

wn ,
√

g/cz, (2)

where p is the coordinate of the ZMP, c is the projection of the COG on the ground, cz is the height of
the COG, and g is the acceleration of gravity. wn is the only parameter of the model of the simplified
biped walking system.

Let pd, cd, and ċd indicate the desired preview trajectories of the ZMP, of the COG, and of its
derivative during a postural exercise, and assume that the pendulum joint servo is controlled in speed
by an input signal u according to

ċ = u + ε, (3)
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where ε accounts for the speed-tracking error and process disturbances and u is given by the following
feedback law:

ec = cd − c, ep = pd − p, u = ċd + kcec − kpep. (4)

Then, Choi’s results prove, with Lyapunov theory ([3], Theorem 1), that if kc > wn and
0 < kp < wn, the closed-loop system is bounded disturbance (ε) - bounded errors (ec, ep) stable.

Anyway, in spite of stability, a feedback implemented using Choi’s equations has a poor damping
of the closed-loop dynamics in practical operating conditions. A proof and discussion about this topic
can be found in Appendix A.

3. An Extended System for COG–ZMP Robust Estimation and Control

Choi does not introduce any input–output dynamic model to prove his results, but only a
Lyapunov function directly based on Equations (1)–(4). Here, vice versa, the essence of the feedback
control problem involving measures of COG and ZMP with the reference velocity as input is captured
by the simple model of the block diagram of Figure 1: a third-order model with states c, ċ, c̈, where
the jerk of the COG (in the following with an excess of notation, COG indicates its projection on the
ground) is controlled by a reference velocity signal u in an internal partial speed loop with velocity
gain kv and output COG and ZMP. The third-order model is needed to guarantee a realistic strictly
proper system for the design of the state estimator and feedback as position and acceleration are
both present in the output, and in the meantime, representing the internal speed loop with the servo
dynamics. If the gain of the local speed loop is taken relatively high (kv > 100) the COG speed will
closely track the reference u, as desired. This model does not take into account external forces acting
on the system or internal disturbances, as in the case of a lower-limb exoskeleton with the presence of a
patient. External forces are introduced when crutches are used or when the patient is sitting on a chair
in a sit-to-stand exercise, or simply to accommodate discrepancies between COG and ZMP measures.
Internal disturbances are generated by the involuntary motion of the patient in the small freedom
offered by the exoskeleton, independent of the joint motion, and obviously, by modeling errors.
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Figure 1. The COG–ZMP model of the linearized inverted pendulum.

Then the model can be completed, generating the extended system of Figure 2, as defined in
robust control theory (for the definition of the extended system and its role in robust control andH∞

theory, see [14,15]).
F represents low-frequency external forces influencing the CoP. In the model ZMPactual (i.e., CoP),

the value measured and ZMPideal , the one linked to the COG by the linearized inverted pendulum
relationship, are defined separately, where δ is the difference between the two, the effect of disturbance
F to be estimated. COG and CoP are measured as before, taking into account measurement noise
represented by two high pass filters WnoiseCOG , WnoiseZMP . Output objectives are set on the COG and
on the ZMP for sensitivity requirements with respect to process noise ε (in a different context, here ε

has the same interpretation and scope as in Equation (3)) and the effect of the unknown external force
F. The weighting functions WCOG and WZMP are chosen to guarantee steady-state gain (i.e., tracking
error with respect to disturbances ε and F) and the frequency band of the loop transfer function in
the designed feedback. In order to have a balanced design, the control activity zu (with a weighting
function Wu) is added as an objective against measurement noises nCOG and nZMP, to set the control
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activity. This extended system is used to design robust estimators of COG, CȮG, ZMPideal , and δ,
as well as robust controls.
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Figure 2. The extended system of COG–ZMP, disturbance model of the linearized inverted pendulum.

Let ĉ, ˆ̇c, p̂, δ̂ be the estimates of the COG projection on the ground, its derivative, the ZMPideal ,
and δ. Then the control strategy of Equation (4) is modified as follows:

ec = cd − ĉ− δ̂,

ecv = ċd − ˆ̇c,

ep = pd − p̂− δ̂, (5)

u = ċd + kcec − kpep + kcvecv,

with the control scheme represented in Figure 3. This means that c (and in the steady state, p) must
track a perturbed reference in order to guarantee that the CoP, and not the ZMPideal linked to the COG,
follows the desired preview signal, despite ZMPideal and COG converging to the same value in the
steady state, independently of the presence of disturbances. A feedback from ˆ̇c is also introduced as it
has a critical influence on the closed loop damping.

In the next subsections, two different approaches, based on robust control theory, to compute the
state observer and the state feedback coefficients, are introduced and tested. The estimates and the
coefficients in Equation (5) result explicitly from standardH∞ techniques by operating a state-space
transformation in the extended system of Figure 2, choosing as states c, ċ, p, δ, augmented (for the
whole extended system) by the unobservable or uncontrollable states introduced by the dynamics of
the weighting functions.
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Figure 3. Control of COG–ZMP with observer feedback.

3.1. Separate Estimator and Feedback

In this first approach, the extended system with the new state representation is used to design a
state estimator.

Then, a static output feedback problem for constrained pole placement is solved on the cascade of
the extended system and observer to derive the gains kc, kcv, and kp in (5).

It is known that static output feedback has no analytical solution. Hence, a numerical technique
based on the Levenberg–Marquardt algorithms was implemented. No algorithm details are presented
here. Just note that by minimizing the sum of the squares of a certain number of penalty functions,
the closed-loop poles are brought into a stability region with desired damping, constraining kc to be
greater than a lower bound, and the control activity (measured by the H∞ norm of the closed-loop
operator from measuring noises to control objectives) to be smaller than an upper bound.

3.2. H∞ Robust Control

In the second approach, estimation and feedback are jointly computed solving a H∞ robust
control regulator. Even if the classical separation ofH2 does not apply inH∞ controls [14,15], a weakly
coupled state observer and estimated state feedback can still be recognized. Then, maintaining the
feedback coefficients of the estimated states of interest ( ĉ, ˆ̇c, p̂, δ̂) and setting to zero the remaining ones
relative to unobservable or uncontrollable modes (it can be verified that this has very little influence
on the closed-loop poles), the strategy of Equation (5) can be implemented. It is interesting to note the
similarity of the performances obtained between the two approaches, as shown in the next section.

3.3. Simulation Results

The model of an exoskeleton with a patient used in [5,7] was considered, with parameter wn = 3.34
and choosing a speed gain for the velocity loop of kv = 250. In this experiment, the linear model of
the block diagram of Figure 2 was simulated. In an erect posture, with a preview reference computed
as suggested by [2], a step transition on the sagittal plane of p of 0.2 m moving the c from the heels
to the tips of the feet at time t = 1.25 s was imposed. Then at t = 3.5 s, an external horizontal force
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disturbance acting in the sagittal plane on the COG, tries to move the CoP outside the feet support by
an additional 0.1 m, causing—if not compensated—a loss of balance.

The experiments are compared using the identical tracking gain kc of the COG loop and the best
(for damping) value of kp with Choi’s control and feedback from a robust estimator obtained from the
extended system of Figure 2. The gain parameters adopted in the case of Choi’s feedback were kc = 60,
kp = 5, with a resulting damping ratio of the dominant poles of 0.05; and in the case of observer
feedback, kc = 60, kp = 3, kcv = 4, with a resulting damping ratio of the dominant poles of 0.7.

The figures represent reference (dashed) and actual COG (blue), ZMPideal (red), and CoP (cyan),
COG speed estimate (green), and the estimate of the disturbance effect (violet).

Figure 4 shows the results adopting the Choi control. The low damping of the closed-loop poles
is clearly visible. Note that, ignoring the disturbances, the CoP does not follow the reference path and
exits from the tip of the feet.

Figure 4. Choi’s control without any disturbance compensation.

Vice versa, when disturbances are also estimated, after a short interval of time depending on
the filtering bandwidth of the estimator, the ZMP returns to the desired value. Figures 5 and 6 show
the feedback from the extended estimator with compensation of disturbances, obtained with the
approaches of Sections 3.1 and 3.2, respectively.

The transition of the force disturbance was chosen to be unrealistically steep to evidence that,
because of the estimator bandwidth, the compensation of the disturbance can’t be perfect, depending
on the values assigned to the weighting functions in the extended system.

The delay in the estimation of δ, as a consequence of the disturbance, is shown in Figure 7, where
δ is in blue and its estimate is in green.
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Figure 5. Extended observer feedback with disturbance compensation.

Figure 6. Robust control with disturbance compensation.
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Figure 7. Effect of disturbance on the CoP and its estimation.

4. Control of a 3 DOF Biped

The approach was tested on the real three-DOF small-scale mock-up of an exoskeleton (Figure 8)
and on the simulation of the full-scale exoskeleton. The chains, in both cases, are composed of two
joint feet, legs, thighs, and one trunk. The 3 × 3 Jacobian matrix relating COG to joints embedding
knee motion and trunk attitude is the following: ċ

θ̇2

θ̇trunk

 =

 Jcog

0 1 0
1 1 1

 ·
θ̇1

θ̇2

θ̇3

 , (6)

where θ1, θ2, θ3 are the angles of the ankle, knee, and hip, Jcog is the Jacobian of c, and θtrunk is the
attitude of the trunk. Joints are controlled by velocity servos, with their references being obtained
through the inverse of the Jacobian matrix (6) driven by speed feedback signals. The COG speed
feedback is similar to the one used for the linearized inverted pendulum (5), where the measures of the
ZMPm were obtained from the CoP and that of the COMm from the joint-angle measures θ1m, θ2m, θ3m.
The remaining two feedbacks, from the knee angle and trunk attitude measures θ2m , θtrunkm , are simply
proportional feedbacks, the last measure being obtained from an inertial sensor:[

uθ2

uθtrunk

]
=

[
kknee · (θ2re f − θ2m)

ktrunk · (θtrunkre f
− θtrunkm)

]
, (7)

where θ2re f and θtrunkre f
are the references chosen according to the desired postural exercise.
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Figure 8. A small-scale 3 degrees of freedom (DOF) leg of the exoskeleton.

4.1. Joint Angles–COGm Map Fitting and Control

In order to apply the results of the previous section to a biped device, it is necessary to have a
reliable evaluation of the COG from the joint angles, consistent with the CoP. Its value depends on the
position of the center of masses and weights of each link of the chain. Those data are scarcely known
in advance but can be identified with a series of a priori experiments. This approach is called statically
equivalent serial chain (SESC) modeling [9] (see also [16,17] for applications to rehabilitation).

Espiau et al., in [9], showed from experiments measuring the projection of the COG on a force
table that the physical parameters of a kinematic chain cannot be identified uniquely. What can
be identified is only a set of expressions of them, representing classes of equivalent (with respect
to the COG) chains. These expressions appear in linear form in the SESC model. Considering a
three-joint kinematic model composed of feet, leg, thigh, and HAT (head, arms, trunk) for motions in
the sagittal plane, the parameters of the SESC model can be identified using least squares with two
equations and two sets of experiments: collecting and recording a series of joint-angle positions with
the corresponding measures of the CoP in the steady state and a set of samples of joint angles and
CoP trajectories in motion spanning the operating area at random. A slight modification of the model
presented in [16] is proposed here, where the first equation, expressing explicitly COGx, refers to
steady-state experiments, while the second equation, expressing COGz indirectly (Equations (1) and (2)
can be rewritten as COGx − ZMPx = CÖGx/9.81 · COGz ), refers to dynamical ones.

The equations are: [
COGx

COGx − ZMPx

]
=

[
1 0
0 CÖGx/9.81

]
·

[
1 0 sin(θ1) sin(θ1 + θ2) sin(θ1 + θ2 + θ3)

0 1 cos(θ1) · b cos(θ1 + θ2) · b cos(θ1 + θ2 + θ3) · b

]
·


r1x
r1z
r2

r3

r4

 , (8)
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with
r1x = (m0 · x0 + (m1 + m2 + m3) · x1)/mtot,

r1z = (m1 + m2 + m3) · z1/(m1 + m2 + m3),

r2 = (m1 l̇10 + (m2 + m3) · l1)/mtot,

r3 = (m2 · l20 + m3 · l2)/mtot,

r4 = m3 · l30/mtot,

b = mtot/(m1 + m2 + m3),

(9)

where l1, l2 are the length of legs and thighs, m0, m1, m2, m3 are the masses of feet, legs, thighs, and trunk
(HAT), (mtot = m1 + m2 + m3 + m4), x0 is the center of mass of the feet, x1, z1 are the coordinates
of the ankle, and l10, l20, l30 are the distances from the center of mass to the distal joints for the leg,
thigh, and proximal joint for HAT. Coefficient b accounts for the difference (the feet do not move
during the dynamical experiments) in sensing the COG statically and dynamically. From this model,
the six parameters of (9) are identified recursively with a non-linear least squares technique such
as Levenberg–Marquardt, where CÖG is obtained approximately from numerical differentiation of
COG. The actual small-scale leg was first identified, with results (statical and dynamical) contained in
Figures 9 and 10.

Figure 9. Results of estimating the statically equivalent serial chain (SESC) model in static experiments.

Then a control exercise was carried out, maintaining the CoP position fixed and the posture erect
while performing an up-and-down motion (such as sit-to-stand) of the body. The results (CoPx and
COGx), based on the identified model and the proposed control scheme, when a disturbing force
is applied in the sagittal plane are shown in Figure 11. The action of the feedback on the COG to
compensate the disturbance is clear.



Robotics 2019, 8, 89 12 of 17

Figure 10. Results of estimating the SESC in dynamic experiments.

Figure 11. Maintaining the CoP position during a stand-to-sit like exercise in the presence of a
disturbance force.

4.2. Simulation of a Stand-to-Sit Exercise

In order to validate the results on the linearized inverted pendulum of Section 3.3, the proposed
control (with the same estimator and feedback parameters) was applied to the non-linear simulation
of a multi-chain with 3 DOF, having as average the same COGz. It represents a biped in the sagittal
plane emulating the first phase of a stand-to-sit exercise to test the balance control of a future full-scale
exoskeleton with a patient. While the pelvis is lowered from a standing posture to reach the chair
and the trunk attitude assumes a natural bending forward, the COGx is shifted from heels to tips and
a disturbance force is applied, as in the previous experiment of Figures 5 and 6. The animation of
the exercise can be seen in Figure 12. The resulting response of the COG− ZMP in Figure 13 is very
similar to that of the linearized inverted pendulum. Particularly, in the final phase of the exercise,
the reaction of the exoskeleton to preserve equilibrium against the push forward of the disturbing
force is particularly visible.
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Figure 12. Animation of the 3 DOF kinematics during a stand-to-sit exercise.

Figure 13. COG–ZMP during stand-to-sit and shift of CoP in a nonlinear 3 DOF
kinematics-robust control.

Vice versa, Choi’s original feedback with identical COG gain, applied to the nonlinear simulator,
has not been able to guarantee stability.

5. Conclusions

In this paper, Choi’s feedback for postural control of a biped robot, based on a linearized inverted
pendulum model, has been revised. In practical situations, this feedback generates very undamped
closed-loop dynamics. Then, the design problem was reformulated using state estimation and
state feedback control. In fact, closing the loop with a state observer of the COG and exploiting
velocity along with position and acceleration estimates guarantees a greater damping of closed-loop
poles, with identical steady-state gain. However, to be effective in fusing CoP and COM measures,
this observer needs to be extended to also estimate external disturbance forces, and the kinematic
model of the COM needs to be tuned to the actual mass distribution. The former problem was
tackled by a robust estimator based on an extended system embedding into the model unknown force
disturbances, the latter by identifying a priori the SESC model of the mapping between joint angles
and the COM. This a priori identification can also be repeated to maintain the mapping up to date in
cases of changes in the weight distribution of the biped.

Two approaches to design the feedback were pursued: one is numerical, computing the state
feedback for a given observer with a Levenberg–Marquardt algorithm. The second exploits integrally
estimator and feedback obtained from a robust control regulator and adapts it to the tracking of
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the preview signals. The results show similar performances, with good disturbance compensation.
It must be emphasized that the adoption of an extended system with its weighting functions offers a
formal technique to set the observer and feedback characteristics, guaranteeing the desired loop gain
and bandwidth.

Robustness was shown by applying the control designed for a linearized inverted pendulum
to two non-linear systems: a three-DOF kinematic chain of an actual mechanical small-scale leg
and the simulation of an exoskeleton constraining a patient to perform a joint-legged stand-to-sit
exercise in the sagittal plane. The proposed control correctly integrates the COG information, which
is poorly reconstructed from joint measures and kinematics of the chain, with actual CoP measures,
accommodating uncertainties in the model and unknown external force disturbances. Moreover,
an identification procedure of the SESC model was proposed and tested.

COG–ZMP and linearized inverted pendulum models continue to be at the basis of balance
control of bipeds. However, extended systems and SESC models have not yet been proposed in order
to offer robustness to the approach.

The proposed COG−ZMP control was successfully used by the authors for the balance of turning
during walking of biped robots and for a more detailed and complete sit-to-stand exercise described in
the companion paper [8]. In particular, future developments will consider haptic exoskeletons, where
the action of the patient on some joints, through electromiographical signals, controls the motion of
part of the degrees of freedom, while the automatic control discussed here guarantees balance acting
on the ankles or on the hips.

Computing robust estimation and robust control, as well as the block diagrams present in the
paper, were made with the design environment G++ developed by the authors described in [18] and
that can be downloaded from [19]. However, the used technique is fairly standard in the robust control
field and can be found in classical textbooks such as [14].

Author Contributions: Methodology, G.M. and M.G.; writing—original draft, G.M.; writing—review &
editing, M.G.

Funding: This research has been partially supported by MIUR, the Italian Ministry of Instruction, University and
Research through project ESOPO, and the Piedmont Region through project ESROB.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Choi’s Feedback Limitations

This appendix is devoted to showing that, in spite of stability, Choi’s original feedback has a
poor damping of the closed-loop dynamics in practical operating conditions. Applying the control
strategy of Equation (4) to the model of Figure 1, we obtain a closed-loop system with three design
gains kv, kc, kp and one coefficient wn, as depicted in Figure A1. In classical linear control theory, it is
customary to introduce disturbances in the input and output of the system and to study the closed-loop
performance, analyzing the open-loop transfer function (t.f.), and the related closed-loop sensitivity
functions linking the output to the input and output noises. The block diagram presents two partial
feedback loops, on COG and on ZMP, that can be analyzed separately by opening (indicated with an
X in the block diagram) the two feedbacks one at a time and considering the other part of the system.
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Figure A1. The COG–ZMP model of the linearized inverted pendulum with Choi’s feedback control.

The functions related to the ZMP loop are not particularly interesting: the feedback of the ZMP,
although important for stability reasons, does not play any role in disturbance rejection and tracking
error because its steady-state loop gain is always lower than 1. In fact, it is given by

Gazmp(s) =
kvkp(1− s2/w2

n)

s3 + kvs + kvkc
, (A1)

where kp < kc always holds.
Vice versa, the following t.f.s of the COG loop are noteworthy: the open-loop transfer

function Ga(s), the output tracking error sensitivity S(s), and the output sensitivity to input
disturbances Geqε−COG (s).

Ga(s) =
kvkc

s3 + kvkp/w2
ns2 + kvs− kvkp

(A2)

S(s) =
s3 + kvkp/w2

ns2 + kvs− kvkp

s3 + kvkp/w2
ns2 + kvs + kv(kc − kp)

(A3)

Geqε−COG (s) =
kv

s3 + kvkp/w2
ns2 + kvs + kv(kc − kp)

(A4)

In order to guarantee stability (negative real part of the roots of the third-order, closed-loop,
characteristic polynomial appearing as denominator in Equations (A3) and (A4)), the following
condition on the parameter kp must be satisfied:

w2
n

w2
n + kv

kc < kp < kc , (A5)

Note that condition (A5) is slightly different from Choi’s result.
In order to have more insights about the closed-loop poles of Equations (A3) and (A4), consider

the root locus, function of kv, of the following open-loop transfer function:

Gakv
(s) =

kv(kp/w2
ns2 + s + kc − kp)

s3 . (A6)
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Note that the numerator of 1 + Gakv
(s) is exactly the characteric polynomial of (A3) and (A4).

When kv → ∞, one real closed-loop pole→ −∞, but the dominant closed-loop poles are complex
conjugate and approach asymptotically the zeroes of the t.f. (A6), i.e., the root of the polynomial

s2 + w2
n/kps + w2

n(kc − kp)/kp, (A7)

having the damping ratio

ζ =
wn

2

√
1

kp(kc − kp)
. (A8)

Moreover, the root locus shows that for any value of kv < ∞, the damping ratio of the pair of
dominant complex conjugate poles is always lower than that of these zeroes. From previous results,
the following observations can be made:

• with high values of the kv gain, the dominant closed-loop poles depend on the pair kc, kp only,
as they are highly insensitive to kv;

• the steady-state COG loop gain (A2) is proportional to the rate kc/kp (independent from kv);
• the steady-state gain of both sensitivities related to COG are inversely proportional to kc − kp;
• however, if the gain kc, or more precisely, the difference kc − kp, increases, then the damping ratio

of the dominant closed-loop poles decreases.

In conclusion, if a sufficiently high loop gain in the COG − ZMP control system is imposed,
with the feedback proposed by Choi, even if the closed loop remains stable, its behavior becomes
highly undamped. However, a high loop gain, and hence a high value of kc is needed when a robust
control has to be used in exoskeletons to improve postural equilibrium for ill or elderly people, in order
to cope with uncertainties.
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