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Abstract: This paper deals with the control of the sit-to-stand transfer of a biped robotic device
(either an autonomous biped robot or a haptic assistive exoskeleton for postural rehabilitation).
The control has been synthesized, instead of considering the physiology, analyzing the basic laws
of dynamics. The transfer of a human from sitting on a chair to an erect posture is an interesting
case study, because it treats biped balance in a two-phase dynamic setting, with an external force
disturbance (the chair–pelvis contact) affecting the center of pressure under the feet. At the beginning,
a body is sitting, with a fixed pelvis moving with the hips going toward the supporting feet and,
contemporaneously, releasing the load from the chair with ankles and knee torques. Then, after
lift-off, it reaches and maintains an erect posture. The paper objectives are threefold: identifying the
major dynamical determinants of the exercise; sythesizing an automatic control for an autonomous
device; proposing an innovative approach for the rehabilitation process with an exoskeleton. For this
last objective, the paper extends the idea of the authors of a haptic exoskeleton for rehabilitation. It is
driven to control the joints by electromiographical signals from the patient. The two spaces, cartesian
(world) and joint, where, respectively, the automatic control and the patient operate, are considered
and a technique to blend the two actions is proposed. The exoskeleton is programed to perform the
exercise autonomously. Then, during the evolution of the phases of rehabilitation, we postulated to
seamlessly move the control from one space (purely autonomous) to another (completely driven by
the patient), choosing and keeping the postural tasks and joints (heaps, knees, or ankles) on which to
apply each one of the two actions without interaction.

Keywords: exoskeleton; haptics; rehabilitation; postural control; postural balance; multi-chain
dynamical systems

1. Introduction

Robotic rehabilitation started with passive exoskeletons [1], or devices that impose (on the
interested limbs) a forced motion. An early example for lower limbs is Lokomat [2]. It evolved into
systems that create force tunnels to address the motion generated by the patient [3]. These were further
extended with the introduction of a feedback from the patient, to offer cooperative controls (also called
hybrid control) not only to guide but also to contribute to the efforts of the patient [4]. An extensive
state-of-the-art of cooperative exoskeletons for rehabilitation is contained in [5]. Following this line of
approach, we proposed a haptic exoskeleton where the joints are actuated using admittance control
based on the patient’s Electromiographical (EMG) signals [6].
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One classical exercise for postural rehabilitation performed in a fixed position is the “sit-to-stand”.
Then, a haptic exoskeleton able to guide the patient to perform this exercise is highly desirable.
The study of the motion of the body during this apparently simple, but in reality not so
simple, exercise has attracted interest for a long time [7], not only to understand the human
physiological behavior, but also to mimic the control for autonomous biped robots or for actively
cooperating exoskeletons.

The majority of available studies are related to the analysis of the human physiological
behavior [8,9], but also examples of synthesis of the control based on optimization are available [10,11].
A recent comprehensive review can be found in [12]. However, none discussed the key determinants
at the root of the exercise. Here, we follow a different approach. Recognizing that the human motion
in performing the exercise is the direct consequence of the respect of physical laws of dynamics,
these laws are analyzed and a feedback control based on them is synthesized. This also offers an
explanation of well know physiological results such as the “Alexander STS technique” [11].

The exercise is composed of two dynamical phases: phase 1, when still sitting on the chair,
the trunk, through the hips, is moved forward to gain balance on the feet, and phase 2, when the
balance is maintained moving from the chair to an erect posture. In both phases, postural balance
plays a key role, however, in phase 1, the coordination between the motion of the trunk and the torques
on ankles and knees to release the load from the chair are also important. From the understanding
of these dynamics, an automatic control can be synthesized. However, in the case of a lower limb
exoskeleton for rehabilitation, such as in [6], where an automatic postural feedback operates in the
Cartesian space and the patient controls the joints in the joint space, the interaction between the two
players has to be considered. This paper proposes to program the exoskeleton to perform the exercise
autonomously, then, with an innovative approach, to blend the two actions, moving seamlessy during
the evolution of the rehabilitation, under the direction of the physiotherapist, from purely automatic to
completely under the control of the patient. Moreover, according to the needs of the rehabilitation,
some of the components of the coordinates of the Cartesian space, indicated here as elemental postural
tasks, can be actuated by the automatic control and the remaining components, through selected
joints by the patient, keeping the two groups separat from postural tasks without interfering between
each other. Section 2 contains a background on the dynamics of the exercise. Section 3 presents the
problem, describes the general adopted model and the autonomous control. Details of control during
both phases are in Section 3.3. Section 4 applies the approach to a haptic exoskeleton. The results
of a simulation are discussed in Section 5. The conclusions, mentioning future ongoing researches,
in Section 6 complete the paper. Details of the control algorithms are contained in Appendices A–C.

2. Background on the Dynamical Behaviour of the Exercise

Two main aspects characterize the exercise: balance and coordination, briefly introduced in the
following subsections.

2.1. Balance

The dynamic of a linearized inverted pendulum is a fundamental element to understand the
balance of biped systems. It was introduced by Vukobratovic [13] for controlling exoskeletons,
but actually has been widely exploited in autonomous biped robotics. He argued that balance is
guaranteed if the center of pressure (CoP) of the reaction forces exerted by the ground on the feet
and is maintained in the convex hull containing the surface of the feet. This point is coincident, on a
flat horizontal surface, to a point he called ZMP (zero moment point-where the reaction from the
constraint is a pure force with zero moment), a result from classical equivalence and replacement [14]
in mechanics. Moreover, a linearized inverted pendulum is a really good approximation of the more
complex kinematic chain of a biped, but also, adopting this approximation, and ZMP motion is linked
by a linear relationship to position and acceleration. In a simplified 2D environment, (the paper
considers motion only on the sagittal plane) the relationship is
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ZMPx = COGx − COGz/g · CÖGx (1)

where ZMPx and COGx are the motion coordinates of ZMP and COG on the ground, COGz is the
height of the barycenter and g the gravity acceleration.

Hence, to perform a transition, the COG must be moved controlling the joint angles to which
it is algebraically linked, having as objective the ZMP position. As this requires a certain degree of
anticipation, usually it is achieved by tracking some special pre-computed references of the COG
(preview control [15]). Choi in [16] showed that a closed loop feedback from the measures of COG
and ZMP position is able to track a preview reference signal. This feedback has been improved in [17]
by introducing in the loop a state estimator of COG − ZMP, extended to external disturbance forces.

2.2. Coordination

The biped in the sit-to-stand exercise is a dynamical system with changing non-holonomic
constraints: the contacts of ground–feet are always present and the chair–pelvis is only present in the
first phase only. This has consequences on the number of degrees of freedom of the multibody chain,
and in the role of torque on the joints, that are defined in [18,19] as Position and Auxiliary. The former
contributes to the motion, and the latter only to the reaction forces on the constraints. The balance with
tracking of a preview reference of the COG − ZMP, based on the measures of the center of pressure
under the feet and the pelvis–chair contact, and the coordination of Position and Auxiliary torques for
motion and constraint force control are the elements of a “sit-to-stand” transition.

3. The Process, the Model and the Control

3.1. The Process

The exoskeleton is joined to the patient, moving on the sagittal plane with joint motion of the
pairs of ankles, knees and hips of the two legs; it can be represented as a four-link chain: feet, legs,
thights and trunk. The trunk, comprising head and arms, is also often called hat. The hips are coincident
with the pelvis. In a sitting position, as is represented in Figure 1, the reaction forces transferred from
the chair are applied for simplicity at the pelvis point, without exchange of torque.

Figure 1. A biped sitting on a chair.
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In a stationary posture, with relaxed muscles controlling ankles and knees, and the trunk attitude
maintained by controlling the hips, COGx and ZMPx do not coincide as stated by the classical
relationship (1), due to the presence of the external disturbance (with respect to the feet) represented by
the chair reaction forces. COGx position is well behind the soles of the feet, close to the chair support,
while the ZMPx alone is under the feet. The “sit-to-stand” transition starts by moving the COGx from
its actual position from the chair toward the feet, tracking a preview signal which will be followed,
also, during the second phase of the exercise. A typical behavior of this signal, based on Equation (1),
imposing a step without overshoot of the ZMPx is given in Figure 2. Note that it depends on only one
design parameter, i.e., the value of COGz.

Figure 2. A preview signal for the COGx position and velocity imposing a step forward to the ZMPx.

At the same time during phase 1, two torques are applied to the ankles and the knees to bring the
reaction force under the pelvis to zero. As these torques influence the reaction forces/torques at the
constraints, it is easy to see that this action, without trunk motion, would move the ZMPx back away
from the feet (Figure 3), with obvious consequences on the balance.

Figure 3. The ZMPx on the feet releasing the load from the chair, without moving forward the trunk.
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The physiological behavior through proprioception, sensing the reaction forces under the feet
and the pelvis, coordinates the two actions, so that during phase 1 while the reaction forces under
the pelvis are zeroed, moving the trunk forward the ZMPx is approximately maintained in the
original position under the feet guarateeing balance for the next lift-off. Comparing Figures 2 and 3,
(the comparison is only qualitative, as Figure 2 is generic), with transition from phase 1 to phase 2 at
time 1.5 s, the behaviour of the inverted pendulum and the role of the preview can be better understood:
the motion of the COG must start well in advance of any other action in order to compensate the
negative effect on the ZMPx caused by releasing the load from the chair, moreover, dynamically
postural equilibrium can be reached at the halfway through the transition period, even before the COG
reaches the feet.

The choice of the design parameter COGz for the preview transition of the COG is not irrelevant;
in fact, it can be seen in Figure 4 how the behavior of COGx, CȮGx, ZMPx changes if the design
parameter is chosen below (red plot-with an overshoot) or above (blue plot-smoother response) the
actual value (green plot) of the inverted pendulum. At last, the choice of this design parameter
influences the rotational velocity of the trunk at the time of lift-off from the chair when moving to
phase 2, with consequences on the kinetic energy spent and on efficiency. We argue that it is the main
parameter explaining the Alexander STS technique frequently cited in the STS literature [11].

Phase 1 ends when the reaction forces from the chair become zero. At this point, the biped is in
postural dynamical balance and all three joints now contribute to the motion in phase 2 to complete
the exercise and reach an erect standing posture.

Obviously, these and the following are simplified observations. In reality, physiologically,
through neural plasticity, almost any person who does not know anything about preview control and
inverted pendulum, learns how to control the COG and the torques on the joints during the exercise
optimizing, contemporaneously, the expenditure of energy.

Figure 4. Responses of COGx, ˙COGx and ZMPx for previews with different parameter COGz.

3.2. The Model

The model of the biped device in a standing up position is given in Figure 5. The kinematical
chain has three degrees of freedom (DOF) with configuration variables of angles θankle, θknee, θhip,
representing the joint space, with control torques Tankle, Tknee, Thip. The three coordinates, target
variables representing three elemental postura tasks, in the Cartesian space, as the problem is dealing
with body balance and posture, COGx, the height of the pelvis and the attitude θtrunk of the trunk.
For simplicity, the height of the pelvis is substituted by the knee angle θknee, to which, in balance, it is
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strictly related. This choice also avoids singularity of the Jacobian when the knees are fully stretched.
With reference to Figure 1, reaction forces from the ground to the feet, applied for convention to the
vertical projection on the ground of the ankle Anklex, and torque are Fz f eet , Fx f eet (compensated by the
ground friction, is not further represented, as it has no roles) , Ty f eet . Forces from the chair to the pelvis
(in the sitting position) are Fzhip , Fxhip .

Figure 5. The model of the biped device.

From previous definitions, the displacement of ZMPx, with respect to the position Anklex of the
conventional application of reaction forces is given by

∆ZMPx = −Ty f eet /Fz f eet

i.e.,

ZMPx = Anklex + ∆ZMPx

(2)

This indicates that maintaining ZMPx under the feet means keeping Ty f eet close to zero.
During phase 1, in the presence of the non-holonomic constraint given by the chair–pelvis contact,

the degrees of freedom of the kinematic chain are reduced: the only Position variable controlling the
trunk attitude is the hip angle, while ankle and knee are Auxiliary. The latter torques control the
constraint reaction forces and torques. Their mathematical expressions are composed of three terms:
a nonlinear function of the angular speeds, a term generated by acceleration, and a linear function
of the angular accelerations of the Position joints and of the control torques of the Auxiliary ones.
Obviously, all coefficients are function of the angle values:Ty f oot

Fxhip

Fzhip

 = NL(θhip, θ̇hip) + G(g)+

M11M12M13

M21M22M23

M31M32M33

 ·

Tankle
Tknee
θ̈hip


(3)

In the right hand side of expression (3), only the linear relationships of the control torques are
of interest, which coefficients Mij are basically Jacobians. Target velocities in the Cartesian space are
linked to the joint angle velocities by the Jacobian matrix J:
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CȮGx

θ̇knee
θ̇trunk

 = J ·

θ̇ankle
θ̇knee
θ̇hip

 (4)

with J given by

J =

J11 J12 J13

0 1 0
1 1 1

 . (5)

The Jacobians of COGx, present in the Jacobian matrix with embedded knee and trunk motion (5)
and the coefficients Mij in (3) can be generated in real time from the joint angles using expressions,
which in our case, were obtained by the symbolic computational environment AutoLev [20]
implementing Kane’s method [14], when the kinematics is known, or better, for the COGx, they can be
derived from a SESC model [21] identified by a priori experiments. For details see [17].

3.3. The Control

Depending on the transition phase, the joint motor drivers are configured to be controlled either
in velocity or in torque. The control is obtained by closing the loop using the measures of the center of
pressure under the feet and the reaction forces under the pelvis, obtained from appropiate loading
cells mounted on the chair and on the floor. Moreover, the position/velocities of the joints angles from
the motor drivers, torques on the joints, and inertial datas from the trunk are available.

3.3.1. Velocity Control

When the joints are configured for velocity control, the inverse of the Jacobian matrix (4) of the
previous section is used to generate the inputs of the motor drivers in the joint space to track the
desired reference preview signals of the COGx, of the trunk attitude and of the knee angle in the
Cartesian space. These, during phase 2, are

θ̇re f (t) = J−1 · u(t) (6)

where

θ̇re f (t) =

θ̇anklere f

θ̇kneere f

θ̇hipre f

 (7)

is the vector of speed reference in the joint space and

u(t) =

uCOG(t)
uhat(t)
uknee(t)

 (8)

is the vector of the return difference signals of the feedback in the Cartesian space derived in the
Appendix A. During phase 1, as only the hip is controlled in velocity, (6) simplifies to

θ̇hipre f
(t) = J13

−1 · uCOG(t). (9)
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3.3.2. Torque Control

For the drivers of ankles and knees configured to torque control during phase 1, Equation (3)
are used to bring to zero the chair reaction forces, based on a recursive weighted least square scheme
(described in details in Appendix B):

uT(t + ∆) = uT(t)+

αM+ · (Freactre f (t)− Freact(t))
(10)

where ∆ is the sampling time, uT(t) is the vector of reference inputs to the torque control drivers of
the motors

uT(t) =

[
Tanklere f

(t)
Tkneere f

(t)

]
(11)

α is a coefficient to guarantee convergence, M+ is the solution of the least square problem (A5),
and Freactre f (t) and Freact(t) are the vectors of reference to track and measured reaction force/torques :

Freactre f (t) =


Ty f ootre f

Fxhipre f

Fzhipre f

 , Freact(t) =

Ty f oot

Fxhip

Fzhip

 (12)

Fxhipre f
, Fzhipre f

are chosen to send the reaction forces on the chair from their starting value to zero,

and Ty f ootre f
is kept equal to 0. The measure of Ty f oot is not avilable, however it can be inferred by the

distance of ZMPx from Anklex.
The choice of the weighted least square allows to blend torque transition with the need to control

the ZMPx. In fact, with Ty f ootre f
close to zero ZMPx becomes fairly insensitive to the choice of the other

references signals.

3.3.3. Lift off Transition

The control switches from phase 1 to phase 2 when the module of the reaction forces reaches a
neighbourhood of zero. At that moment, a smooth transition must be imposed on the control of knees
and ankles to avoid torque spikes. The simplest approach, adopted here, is to maintain (for a fraction
of time at the joints) the value of torques that is reached at the end of phase 1 while the velocity control
of phase 2 goes into action with a loop gain increasing from zero to the design value.

4. A Haptic Exoskeleton

The control described in the previous sections refers to an autonomous behavior, and it can be
used to program the exercise into a biped robot, or applied in an exoskeleton in the first phase of the
reabilitation when a patient is completely unable to operate.

In the case of a haptic exoskeleton partially or totally controlled by the patient, two different
aspects have to be considered: the joints controlled in torque and the jonts controlled in velocity.
For both aspects, EMG signals that are measured on the appropriate muscles offer approximate
information of the torques applied by the patient to his joints. For the torque control, the contribution
to the patient’s effort is achieved with a classical technique as described in [22].

For the motion, admittance control is adopted as described in [6]. The EMG signals, processed by
an admittance filter, are translated into motion information that is used as reference velocity of the
corresponding joint speed drivers of the exoskeleton.

Torque control applies to phase 1 of the exercise, the contribution of the exoskeleton is to help the
patient to coordinate the two actions; motion with the rotation of the trunk and contemporaneously
torque for the release of the load from the chair. This can be achieved by plotting on a display in front
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of the patient the position of the center of pressure in relation to the feet, with total or partial automatic
support of the exoskeleton. Two options are available: automatic motion tracking a preview (different
previews can be tested), and torques supported by the patient, or vice versa.

After transition to phase 2, only motion is involved, with three postural tasks, described in (4),
to execute, and three joints to control. Let indicate the motion references driven by the patient’s efforts,
as output of the admittance filters, for ankle, knee and hip as

θ̇p(t) =

θ̇anklep(t)
θ̇kneep(t)
θ̇hipp(t)

 . (13)

In a training program, it is desirable that the patient progressively takes control, in number
and strength, of the joints of the exoskeleton, and in so doing assumes responsibility of one or
more of the postural tasks, without affecting the remaining tasks performed autonomously by the
feedback. For this, the concept of tutoring-cooperation-coordination is introduced, where some of the
elemental postural tasks, under the control of the patient, and the complementary tasks, under the
automatic postural loop, can be completely decupled. This is a variant of whole body coordination
(WBC) discussed in [16] and introduced in [23]. Tutoring means that all tasks are performed fully
automatically, without intervention of the patient that is completely tutored, it is equivalent to the
WBC. Coordination is when the patient takes complete control, through some joints, of one or more
elemental postural tasks of the exercise, without interfering with the complementary tasks controlled
by the automatic postural loop and, hence, he must perform coordinate motions. In between of the
two extreme situations with cooperation, the two players can operate jointly on some tasks and their
actions are overlapped. Through a modulation parameter β the patient takes partial control and must
cooperate with the automatic tasks, as depicted in Figure 6. The approach is based on two aspects:
the separation of the elemental postural tasks operated by the two players, and for the tasks operated
jointly, on the modulation of the two actions.

Figure 6. Mixing cartesian postural and patient joint controls.

Let Ru represents the 3 × 3 selection matrix, with ones and zeros on the diagonal covering the
range of the elemental tasks performed exclusively by the autonomous feedback and Nu its nullspace
with tasks controlled partially or totally by the patient through the joints in the range of Rp. As an
example, when autonomous processes control COGx and trunk attitude and the patient controls the
height of the pelvis through the knee, the matrices Ru and Rp are:

Ru =

1 0 0
0 0 0
0 0 1

 , Rp =

0 0 0
0 1 0
0 0 0

 , (14)
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or, the patient, through knees and hips, controls height and attitude of the trunk, with the balance,
through COGx, guarateed automatically, the matrices Ru and Rp are:

Ru =

1 0 0
0 0 0
0 0 0

 , Rp =

0 0 0
0 1 0
0 0 1

 . (15)

The postural tasks in the range of Ru are completely controlled by the postural feedback, while
the complementary tasks in its null-space Nu are jointly controlled by the feedback and by the patient,
through the joints in the range of Rp, according to the value of a coefficient 0 0 β 0 1. β indicates the
level of the patient’s involvement in the control: tutoring is when β = 0, coordination is when β = 1,
cooperation is when β > 0 and β < 1. As the coefficient β modifies the admittance filter gain, it has,
also, influence on the compliance felt by the patient on the joints in the range of Rp (in fact, the joints
in its null-space, not being controlled by the patient, don’t offer any compliance): β = 0 completely
stiff joints, β = 1 fully compliant.

The general expression for the references of the speed control of the actuators, merging
automatic postural control and patient action through EMG signals, according to tutoring-cooperation-
coordination is:

θ̇re f (t) = J−1 · up(t) + Rp · θ̇p(t) · β

up = (Ru + Nu · (1 − β)) · u − F · Rp · θ̇p · β
(16)

where F = Ru · J, and with the condition

range(Nu) ⊂ range(J · Rp). (17)

The proof of Equation (16) is presented in Appendix C.
During phase 1, while the torque control operates on ankle and knee, the COG tracking (9) is

modified as follows
θ̇hipre f

(t) = J13
−1 · uCOG(t) · (1 − β) + θ̇hipp(t) · β. (18)

Moving β from 0 to 1, the physiotherapist increases the admittance of the joints, so that the
patient gains more and more control of them. Changing Ru to the zero matrix, and Rp to the identity,
with β = 1, the patient assumes complete control of the exoskeleton. In this condition, the autonomous
control can continue to monitor the postural balance, and eventually, it inhibits incorrect patient
postures, by automatically returning β to 0.

5. A Simulation Example and Comparisons

In this section the simulation of the automatic control is offered. The test of the complete exercise
on the exoskeleton of Figure 7 has not been performed yet. However, in [6] several examples (phase 2
only) of the transition with the cooperation of the patient using this control have been reported.

The simulation uses the same data of a patient of 75 kg, 1.8 m tall wearing an exoskeleton of 35 kg
presented in [6]. The model considers only one leg and the weight of the trunk (hat) is divided by
2. So that the magnitudes of forces (N) and torques (Nm) are referred to each leg. The exercise lasts
3 s. Approximately at 1.5 s the transition from phase 1 to phase 2 occurs, with the lift off. The COM
preview for a step transiton of the ZMP of Figure 2 has been chosen, testing different values of the
parameter COGz. Different experiments, with different degrees of difficulty, obtained with the feet in
different positions with respect to the initial value of COGx, i.e., to the chair, have been performed.
Each position is characterized by the angle of the ankles from 10◦ to 45◦ when sitting, (i.e., feet far away
from the chair and exercise more difficult, in the first case, or feet under the chair and easier exercise,
in the second case). The lift-off time and transition from phase 1 to phase 2 is triggered when the
module of the reaction forces on the pelvis enter into a neighbour of few Newtons of the zero. During
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phase 2, simple transition functions drive knees and trunk attitude angle positions and velocities from
their initial values, left from phase 1, to zero in 1.5 s. The next figures represent the most difficult
experiment (experiment 1) that can be performed using this control with ankle angle of 10◦. With a
lower angle, e.g., 5◦, the CoP cannot be guaranteed to remain inside the foot print. The behavior of
reaction forces and torques are shown in Figure 8.

Figure 7. The prototype exoskeleton for the sit-to-stand exercise.

Figure 8. The behavior of reaction force on the hip and torque on the foot: experiment 1.

The behavior of COGx and ZMPx during the transition is given in Figure 9. The position of Anklex is 0.
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Figure 9. The behavior of COGx and ZMPx during the transition: experiment 1.

The torques at the joints are in Figure 10.

Figure 10. The torques at the joints: experiment 1.

Figure 11 shows the animation of the exercise.

Figure 11. The animation of the exercise: experiment 1.
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Figure 12 shows how the hat and knee angles track the references.
It is interesting to see the estimates CÔGx, ZM̂Px theoretical assuming no disturbances and ZM̂Px

actual (i.e., the CoP), along with the estimate of the disturbances, i.e., the reaction forces on the chair,
obtained by the extended estimator [17]. These are given in Figure 13.

The performance of the exercise, expressed as the ratio between the change in potential energy
and the total work consumed to complete the motion, as defined in [11] is 60%, and the maximum
angle reached by the trunk is 79◦. As oppose, the remaining figures, from Figures 14–18, show a
relatively easy exercise (experiment 2) with an ankle angle of 45◦. The performance here is 95% with a
maximum trunk angle value of 11◦. To show the robustness of the control this exercise was performed
with the identical control parameters of the previous experiment.

Figure 12. The tracking of hat and knee angles: experiment 1.

Figure 13. Estimates of COG and ZMP resulting from the extended estimator accounting for the
pelvis-chair disturbances: experiment 1.
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Figure 14. The behavior of reaction force on the hip and torque on the foot: experiment 2.

The behavior of COGx and ZMPx during the transition is given in Figure 15.

Figure 15. The behavior of COGx and ZMPx during the transition: experiment 2.

The torques at the joints are in Figure 16.

Figure 16. The Torques at the joints: experiment 2.
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Figure 17 shows the animation of the exercise, while Figure 18 shows how the hat and knee angles
track the references.

Figure 17. The animation of the exercise: experiment 2.

Figure 18. The tracking of hat and knee angles: experiment 2.

6. Conclusions

The paper approaches the sit-to-stand exercise under two aspects: analysis of the dynamics of
the exercise/design of the feedback control of an autonomous biped device, and its application to an
haptic exoskeleton with the cooperation of a patient.

In regard to the autonomous execution of the exercise, several authors have argued that two
components are involved in solving the control problem in the humanoid STS motion: (1) phase and
trajectory planning, and (2) feedback control.

With respect to the former, the most significant are the COM preview to follow in the transition,
and the time coordination between motion of the hips and torques on ankles and knees in phase 1.
From the experiments, the chair reaction forces, the knee angle and trunk attitude to reach an erect
posture are not critical. The COM preview can be synthesized by exploiting the linearized inverted
pendulum model, with basis the step transition of the ZMP, and selecting the appropiate parameter
COGz. The value of this parameter is not necessarily identical to the real height of the COG of the
biped, but it is chosen according to the difficulty of the exercise. This difficulty here is represented by
the distance of COGx, i.e., the chair, from the feet when sitting. The design parameter COGz can explain
the Alexander STS technique. If its value is lower or equal than the height of the COG, the transition is
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steep, the lift off is early, the biped will be in dynamical balance, with the COGx still far from the feet,
and with a relatively high trunk angular velocity to be conveyed in the successive lift motion, on the
contrary if the transistion is slower, the balance will be almost statical with the COGx already under
the feet, and the trunk attitude almost stationary. Based on these elements, the final trajectories can
easily be planned to reduce maximum torque on the joints and energy expenditure. In the simulated
experiments, two examples are considered: one is difficult with a performance, expressed as the ratio
between the change in potential energy and the total work consumed to complete the motion of 60%,
with the trunk reaching a maximum angle of 79◦; the other is relatively easy with a performance of
95% and a maximum trunk angle of 11◦.

With respect to the latter, exploiting the inverse or pseudo-inverse of Jacobian matrices and a
linearized inverted pendulum model of a simple linear feedback, based on feet and chair pressure
sensors, and position/velocity measures of the joint angles, can be obtained either for joint velocity
or torque controls. This feedback requires a limited number of model parameters and design gains
without the need to perform cumbersome inverse kinematics or dynamics. Symbolic environments
such as Autolev can offer efficient expressions for the necessary Jacobians that can be computed in
real time.

When the postural control is applied to an exoskeleton interacting with a patient, the paper
proposes an innovative approach to blend the patient’s actions with the automatic execution of
the exercise. Several options are offered by the approach for proposing protocols of physiotherapy
tracking the evolution of the process of rehabilitation, in terms of strenght of the support offered by
the exoskeleton, and specific joints and postural tasks to be controlled by the patient. The process
of rehabilitation can start with a complete tutoring of the patient, evolving to a cooperation between
automatic control and patient on the same postural tasks and jonts, e.g., reaching an erect posture
moving the knees, or a coordination between the two players operating on different tasks, e.g., the patient
raises the pelvis and rotates the trunk through knees and hips while an automatic balance is guaranteed
with a feedback on the ankles.

An exoskeleton for this specific exercise has been built, and some preliminary tests of phase 2
have been documented in a previous paper. However, more work is needed in future research: testing
a complete exercise using the exoskeleton, not only during phase 2; decoupling the interaction not only
from joints to elemental postural tasks, but also vice versa; generalizing the admittance filters from
single joints and related muscles to multivariable filters processing the vector of the available EMG
signals to collectively control all joints. This will be obtained exploiting muscle synergies, and training
artificial neural networks that directly link EMG patterns to motion.

Author Contributions: Methodology, G.M. and M.G.; writing—original draft, G.M.; writing—review & editing,
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Appendix A. Derivation of the Velocity Controls of Section 3.3.1

The COG tracking requires a preliminary disussion of the COG − ZMP estimator. Evaluations
of COGx and CȮGx are obtained from the joint angle measures through a SESC model [21], while
ZMPx is given by measuring the center of pressure under the feet (CoP). These outputs, using the
state estimator based on an extended inverted pendulum described in the parent paper [17], generate
in real time the estimates needed to close the loop: CÔGx, C ˆ̇OGx, ZM̂Px (the theoretical value in the
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assumption of no disturbances) and δ̂, the difference between ZMPx and CoP, needed to take into
account the chair-pelvis contact. Then, the feedback return difference signals, at each sampling time, is:

u(t) =

uCOG(t)
uhat(t)
uknee(t)

 (A1)

where uCOG(t) refers to to the COG tracking

uCOG(t) = CȮGxre f (t)+

kp1 · (COGxre f (t)− CÔGx(t)− δ̂)

+kv1 · (CȮGxre f (t)− CÔGx(t))

−kz · (ZMPxre f (t)− ZM̂Px(y)− δ̂)

(A2)

uhat(t) refers to to the trunk attitude tracking

uhat(t) = θ̇hatre f
(t) + kp2 · (θhatre f

(t)− θ̂hat(t))

+kv2 · (θ̇hatre f
(t)− ˆ̇θhat(t))

(A3)

and uknee(t) refers to the knee angle tracking

uknee(t) = θ̇kneere f
(t) + kp3 · (θkneere f

(t)− θ̂knee(t))

+kv3 · (θ̇kneere f
(t)− ˆ̇θknee(t))

(A4)

Equation (A2) was originally suggested by Choi in [16] and extended in [17], while (A3) and (A4)
are basically a proportional-derivative feedback with a feedforward contribution.

During both phase 1 and 2 a preview COGxre f of the type of those in Figure 4 has been chosen,
specifically the one of Figure A1, to transfer COGx from the starting position during sitting to Anklex.

Figure A1. The COG preview signal for the sit-to-stand transition adopted in the examples.

For phase 2 θhatre f
, θkneere f

are the references to bring the patient to a standing posture. θkneere f
has

no special characteristics, it simply imposes a transition to the knee angle during the desired period
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from sitting to standing, vice versa, θhatre f
is chosen to take trunk attitude position and velocity from

lift-off values at the end of phase 1 to zero (Figure 12).
kpi , kvi , i = 1 − 3, kz are the feedback gains.

Appendix B. Derivation of Torque Controls of Section 3.3.2

For torque control during phase 1, Equations (3) are used to solve the following weighted least
square scheme:

Λ ·


Ty f ootre f

− Ty f oot

Fxhipre f
− Fxhip

Fzhipre f
− Fzhip

 ≈ Λ · M ·
[

Tankle
Tknee

]
(A5)

and

M =

M11M12

M21M22

M31M32

 (A6)

where Λ is a diagonal matrix of weighting factors, with solution

[
T∗

ankle
T∗

knee

]
= M+ ·


Ty f ootre f

− Ty f oot

Fxhipre f
− Fxhip

Fzhipre f
− Fzhip

 (A7)

M+ = (MTΛ2M)−1Λ2MT , (A8)

Appendix C. Proof of Equation (16)

Consider the building block diagram Figure A2. It implements Equation (16), and shows the
generation of the θ̇re f with both autonomous control and patient’s contribution. With block diagram
manipulations advance the patient’s contribution θ̇p before J−1 from joint to Cartesian space.

The speed signals in the Cartesian space result as

(Ru + Nu · (1 − β)) · u + (I − Ru) · J · Rp · θ̇p · β (A9)

It should be noted that I − Ru = Nu, then

(Ru + Nu · (1 − β)) · u + Nu · J · Rp · θ̇p · β (A10)

Condition (17) assures that the action of the patient on the joints in the range of Rp encompasses
all postural tasks not covered by the automatic control.

Equation (A10) can be interpreted as follows:

• If β = 0, all tasks are controlled by the feedback loop;
• If β = 1, tasks in Ru are controlled by the feedback loop, while tasks in Nu are controlled by the

patient, that, obviously must coordinate his action with the other tasks;
• If 0 < β < 1, tasks in Ru are controlled by the feedback loop, while tasks in Nu are jointly

controlled by the feedback loop and by the patient, blended by the coefficient β.
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Figure A2. Integrating autonomuos control and patient action in controlling the joints of
the exoskeleton.
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