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Advancements in electronic systems’ design have a notable impact on design verification technologies.
The recent paradigms of Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) assume devices im-
mersed in physical environments, significantly constrained in resources and expected to provide levels
of security, privacy, reliability, performance and low-power features. In recent years, numerous extra-
functional aspects of electronic systems were brought to the front and imply verification of hardware
design models in multidimensional space along with the functional concerns of the target system. How-
ever, different from the software domain such a holistic approach remains underdeveloped. The contribu-
tions of this paper are a taxonomy for multidimensional hardware verification aspects, a state-of-the-art
survey of related research works and trends enabling the multidimensional verification concept. Further,
an initial approach to perform multidimensional verification based on machine learning techniques is
evaluated. The importance and challenge of performing multidimensional verification is illustrated by an
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example case study.
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1. Introduction

Recently, several prominent trends in electronic systems de-
sign can be observed. Safety-critical applications in the automo-
tive domain set stringent requirements for electronics certification,
the Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) de-
vices are immersed in physical environments, significantly con-
strained in resources and expected to provide levels of security
and privacy [1], ultra-low power feature or high performance. Very
complex electronic systems, including those built from the non-
certified for reliability commercial-off-the-shelf components, are
used for safety- and business-critical applications. These trends
along with gigascale integration at nanoscale technology nodes and
multi-/many-processor based systems-on-chip architectures have
ultimately brought to the front various extra-functional aspects of
the electronic systems’ design at the chip design level. The latter
include security, reliability, timing, power consumption, etc. There
exist numerous threats causing an electronic system to violate its
specification. In the hardware part, these are design errors (bugs),
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manufacturing defects and variations, reliability issues, such as soft
errors and aging faults, or malicious faults, such as security attacks.
Withal, there can also be bugs in the software part.

Hardware design model verification detects design errors affect-
ing functional and extra-functional (interchangeably referred as non-
functional) aspects of the target electronic system. Strictly, the sole
task of extra-functional verification of a design model is limited
to detecting deviations that cause violation of extra-functional re-
quirements. In practice, it often intersects with the task of func-
tional verification [2,14], thus establishing a multidimensional space
for verification. A “grey area” in distinction between functional
and extra-functional requirements may appear when an extra-
functional requirement is a part of design’s main functionality. E.g.,
security requirements for some HW design can be split into extra-
functional and functional sets if the design’'s purpose and specified
functionality is a system’s security aspect, e.g. it is a secure cryp-
toprocessor.

The contributions of this paper are a taxonomy for multidi-
mensional hardware verification aspects, a state-of-the-art sur-
vey of related research works towards enabling the multidimen-
sional verification concept. Further, an approach is evaluated which
performs multidimensional verification by using machine learn-

0141-9331/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
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Fig. 1. Taxonomy of multidimensional verification aspects,

ing techniques. The rest of this paper is organized as follows.
Section 2 provides a taxonomy of multidimensional verification
aspects. Sections 3 proposes a state-of-the-art survey with the
key trends in verification for the main extra-functional aspects.
Section 4 discusses the multidimensional verification challenges
and presents a motivational example for the functional and power
verification dimensions. Section 5 proposes adoption of machine
learning techniques for support of design’'s multi-aspect features
extraction and verification. Finally, Section 6 draws the conclusions.

2. Taxonomy of multidimensional verification aspects

In practice, relevance of each functional and extra-functional
aspect strongly depends on the design type, target system ap-
plication and specific user requirements. Following the design
paradigm shifts, a number of extra-functional aspects have re-
cently received significant academic research attention e.g., secu-
rity. At the same time, there already exist established industrial
practices for measuring and maintaining particular design quali-
ties, e.g. the RAS (Reliability-Availability-Serviceability) aspect in-
troduced by IBM [6]. While in the software engineering discipline,
the taxonomy of extra-functional requirements has a comprehen-
sive coverage by the literature [7-12], it cannot be directly re-used
for the HW verification discipline because of significant difference
in the design models.

Fig 1 introduces a taxonomy of multidimensional verification
aspects derived from the performed literature review. The conven-
tional functional concerns are safety and liveness properties, com-
binational and temporal dependencies along with data types, how-
ever this list can be extended for particular designs. The extra-
functional aspects can be strictly categorized into two groups: Sys-
tem Qualities and System Resources and Requirements (in bold). The
main system qualities for extra-functional verification are manu-

facturability of the design, security, in-field safety, reliability dur-
ing the operational lifespan and a set of timing aspects. The sec-
ond group embraces the power and architectural resources as well
as design constraints set by the operational environment.

Several extra-functional aspects such as manufacturability, i.e.
primarily yield and testability against manufacturing defects, fault-
tolerance, reliability (subject to transient, intermittent and perma-
nent hardware faults) and several aspects from the System Re-
sources and Requirements group do not have a direct correspon-
dence in the software engineering discipline because of the distinct
nature of faults and specification violations. Other aspects such as
real-time constraints are very similar between the two domains.

3. Trends in extra-functional verification

Table 1 presents a survey of recent publications targeting extra-
functional and multidimensional verification. Here, along with the
specific extra-functional aspects details about the design model
and verification approach are outlined, i.e., the design under ver-
ification type, verification engine, the level of abstraction, design
representation language, compute model and the tool operated in
the research. We pointed out such key points for all the recent up
to 10-year old studies in this area. Further, in the following sub-
sections, we focus on understanding trends for the extra-functional
aspects that have the strongest attention in the literature, i.e. se-
curity, in-field reliability, timing and power.

3.1. Security aspects

Security is difficult to quantify as today there are no commonly
agreed metrics for this purpose [1]. The key targeted security ser-
vices [16] commonly represented as extra-functional aspects for
verification are confidentiality, integrity and availability. Verifying
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security aspects is highly dependent on the type of attack and the
attacker model assumed.

Many of the existing works in security verification (e.g.
[22,24,26,29,30]) are focusing on the integrity attribute, mostly ad-
dressing hardware trojan detection. There also exist works that
additionally target [19,21,23,25,34] or are exclusively considering
[27,28] the confidentiality aspect. Several solutions in security ver-
ification are restricted to specific target architectures or types of
modules such as Reconfigurable Scan Networks (RSNs) [23,27] or
macro-asynchronous micro-synchronous pipelines [30]. To that
end, for complex hardware architectures (e.g. large IEEE1687 Re-
configurable Scan Networks or MPSoCs) the specific on-chip se-
curity features to be verified also tend to be very sophisticated.
These may include on-chip mechanisms for attack prevention (fire-
walls, user management, communications’ isolation), attack protec-
tion (traffic scrambling, encryption) and attack resilience (checkers
for side-channel attacks, covert channel detection, attack recovery
mechanisms). Several works consider security verification for NoC-
based MPSoCs. [20] proposes a method to formally verify the cor-
rectness and the security properties of a NoC router. Some solu-
tions in the security verification of NoCs do indirectly address reli-
ability due to the fact that they implement hardware monitors that
allow avoiding both, attacks and in-field faults [21,22].

According to recent surveys [37] and [38] cache access driven
side-channel attacks have become a major concern in hardware se-
curity. In modern processors, deep hierarchy of cache memory is
implemented to increase system performance. However, this makes
modern computing systems, including [oT devices, vulnerable to
cache side-channel attacks. There exist several works addressing
verification of the cache security. In [31], the authors propose.

Computation Tree Logic (CTL) based modeling of timing-driven
and access-driven cache attacks. This work concentrates on for-
mally describing the attack types. Zhang and Lee [32] models cache
as a state machine and proposes a metric based on the non-
interference condition to evaluate the access-based cache vulner-
ability. Canones et al. [33] proposes a model to formally analyze
the security of different cache replacement policies. None of the
above-mentioned works consider multiple dimensions, or aspects.

An approach that is designed for modeling a multitude of extra-
functional aspects is the model-based engineering example of Ar-
chitecture Analysis and Design Language (AADL) [19]. While, in
principle, AADL allows representing several extra-functional as-
pects (called quality attributes in AADL), Hansson et al. [19] only
concentrates on analysis of confidentiality as a part of verifying se-
curity in a system with multiple levels of security. The authors in
[36] have targeted a general Uppaal Timed Automata based multi-
view hardware modeling and verification approach taking into con-
sideration of the security view. The survey of related literature
clearly shows that, up to this moment, there is virtually no work
considering security verification in combination with other extra-
functional aspects.

3.2. Reliability aspects

The key drivers for the reliability aspect in today's designs
are the recent industrial standards in different application do-
mains such as IEC61508, 1S026262, 1EC61511, IEC62279, IEC62061,
RTCA/DO-254, IEC60601, etc. Integrated circuits used in high-
reliability applications, e.g. complying with high (Automotive)
Safety Integrity Level - (A)SIL, must demonstrate low failure rates
(modelled by FIT - Failures in Time) and high fault coverage (e.g.
Single-Point Failure Metric SPFM and Latent Fault Metric LFM).
These requirements ultimately mandate extra-functional validation
efforts for reliability analysis, such as Failure Mode and Effects
(Criticality) Analysis - FME(C)A and imply generalized use of meth-
ods and features, such as safety mechanisms, for error manage-

ment. Functional safety is a property of the complete system rather
than just a component property because it depends on the in-
tegrated operation of all sensors, actuators, control devices, and
other integrated units. The goal is to reduce the residual risk as-
sociated with a functional failure of the target system below a
threshold given by the assessment of severity, exposure, and con-
trollability.

The dominant threats for reliability are, first, random hardware
faults such as transient faults by radiation-induced single event ef-
fects or soft errors [15], i.e. a subject for Soft-Error Reliability (SER).
Second, these are extreme operating conditions, electronic inter-
ference and intermittent to permanent faults by process or time-
dependent variations, such as aging induced by Bias Temperature
Instability (BTI) [13], where the latter is a subject for Life-Time Reli-
ability (LTR). Reliability verification challenge is emphasized by the
adoption of advanced nanoscale implementation technology nodes
and high complexity of systems, utilizing tens or hundreds of com-
plex microelectronic components and embedding large quantities
of standard logic and memory. Moreover, these designs integrate
IP cores from multiple design teams making reliability evaluation
task to be scattered and complex. Initiatives such as RIIF (Reliabil-
ity Information Interchange Format) [39], allow the formalization,
specification and modeling of extra-functional, reliability proper-
ties for technology, circuits and systems.

Similar to other aspects, reliability in large complex electronic
systems, e.g. safety-critical CPSs, may be tackled starting at high
level of abstraction. System'’s fault tolerance is formally checked
using UPPAAL and timed automata models generated from AADL
specifications [41]. HW design models and tools at such a level also
enable verification of interference of several extra-functional de-
sign aspects [36]. There are research works relying on design soft-
error reliability verification by fault-injection campaigns, e.g. [49],
or formal analysis, e.g. error-correction code (ECC) based mecha-
nisms against single-bit errors in memory elements [48]. Burlyaev
and Fradet [42]| proposes a general approach to verify gate-level
design transformations for reliability against single-event tran-
sients by soft errors that combines formal reasoning on execu-
tion traces. Thompto and Hoppe [43] and Kan et al. [44] focus
on the RAS (Reliability, Availability and Serviceability) group of
extra-functional aspects outlined by IBM for complex processor de-
signs where embedded error protection mechanisms and designs
intrinsic immunity (due to various masking) to errors is evaluated
by fault injection. Vinco et al. [45,46] propose extensions to sys-
tem descriptions in the IP-EXACT format to enable multi-layer rep-
resentation and simulation of several mutually influencing extra-
functional aspects of smart system designs such as lifetime reli-
ability, power and temperature. A complex approach to verifica-
tion of multiple reliability concerns (soft errors, BTI, etc.) across
layers in industrial CPS designs is proposed in [47] as a collabo-
rative research result in the IMMORTAL project. Last but not least,
addressing the need for reliability verification automation tools, in
[50], authors propose a fully automated tool INFORMER to estimate
memory reliability metrics by circuit-level simulations of failure
mechanisms such as soft-errors and parametric failures.

The survey clearly shows that currently there is a very small
number of works considering verification of reliability together
with other aspects.

3.3. Timing aspects

Functional temporal properties are essential part of sequential
designs’ specification that are often modelled for functional veri-
fication by Computational Tree Logic (CTL), applied for formal ap-
proaches, and Linear Temporal Logic (LTL) temporal assertions ex-
pressed arbitrarily, e.g. in Property Specification Language (PSL),
System Verilog Assertions (SVA) or systematically, e.g. in Universal
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Verification Methodology (UVM). In the extra-functional context,
these can be extended to specific requirements and properties such
as: real-time (RT), performance, throughput, latency, on-chip commu-
nication time constraint, worst-case execution time constraints, etc.
Several works have been widely studying these timing properties.
Some researchers are mainly focused on generating timing proper-
ties to reduce the verification effort, for example, state space and
cost [54,56,65]. Other works instead use the timing properties to
assess whether the system under verification is correctly function-
ing or not [55,62,64]. In the following, we discuss state of the art
for each timing aspect.

A real-time system describes hardware and software systems
subject to a real-time constraint, that ensures response within a
specified time. The correctness of the function depends both on
the correctness of the result and also the timeliness of the peri-
ods. In [54], an approach to verify the timed Petri-Net model is
proposed. A non-instantaneous model is abstracted from the timed
Petri-Net model in a hierarchical structure. The non-instantaneous
model which is verified with a model-checking tool is used to re-
duce the state space of the timed Petri-Net model for verifica-
tion with a satisfiability modulo theories solvers [76,77]. The timed
Petri-Net is used to model the interacting relations of the software
components and the binding relations between software and hard-
ware in a certain period of time. Gorgen et al. [65] introduces a
tool called CONTREX to complement current activities in the area
of predictable computing platforms and segregation mechanisms
with techniques to compute real-time properties. CONTREX en-
ables energy-efficient and cost-aware design through analysis and
optimization of real-time constraint. The authors in [62] proposed
a method to combine real-rime constraint aspect of a model with
energy-aware real-time (ERT) behaviors of the model into UPPAAL
for formal verification.

Throughput is a measure of how many units of information a
system can process in a given amount of time. In [66], a verifica-
tion environment has been proposed to estimate the throughput
of a SoC. The intention of the paper is to judge whether the veri-
fication system can handle SOC verification and provide the neces-
sary performance in terms of speed and throughput. Khamis et al.
[67] introduced a Universal Verification Methodology (UVM) envi-
ronment to measure throughput of a NoC. UVM is a SystemVerilog
class library explicitly designed to help and build modular reusable
verification components and test-benches. It is an industry stan-
dard, so it is possible to acquire UVM IP from other sources and
reuse them.

Performance refers to the amount of work which is done dur-
ing a process, for instance, executing instructions per second. In
[56], a framework has been developed to analyze performance of
a system design. The framework is based on stochastic modeling
and simulation and it is applied on a set of NoC topologies. The
methodology uses a selective abstraction concept to reduce com-
plexity.

When referring to hardware, latency is the time required for
a hardware component to respond to a request made by another
component. However, in the cast of hardware, latency is sometimes
referred to as the access time. In [55], an analysis tool is developed
to work with the AADL models [78] to assure the correctness of a
scheduling model that binds the relation of different components
in a model.

On-chip communication time constraints refer to the require-
ments on the start and end times of each task in a system crit-
ical path, which is the sequence of tasks that cannot be delayed
without delaying the entire system. For instance, in [51] and [52] a
framework has been proposed, which is based on a set of quality
of service aware NoC architectures along with the analysis method-
ology including selected relevant metrics that enable an efficient
trade-off between guarantees and overheads in mixed-criticality

application scenarios. These architectures overcome the notion of
strictly divided regions by allowing non-critical communication
pass through the critical region, providing they do not utilize com-
mon router resources. Such problem formulation is relevant to fa-
cilitate the usage of NoC technology by safety-critical industries
such as avionics.

The worst-case execution time of a computational task is the
maximum length of time the task could take to execute on a
specific hardware platform. The designer of a system can employ
techniques such as schedulability analysis to verify that the sys-
tem responds fast enough [40]. For instance, Zimmermann et al.
[64] presents an approach to generate a virtual execution platform
in SystemC to advance the development real-time embedded sys-
tems including early validation and verification. These virtual ex-
ecution platforms allow the execution of embedded software with
strict consideration of the underlying hardware platform configura-
tion in order to reduce subsequent development costs and to allow
a short time-to-market by tailoring and exploring distributed em-
bedded hardware and software architectures.

Last but not least, a few works also take into account depen-
dencies between several extra-functional aspects. For instance, the
work in [62,65] and [56] present the effect of optimizing timing
properties (performance and latency) on power consumption or
the study in [64] performs the effect of decreasing execution time
on power consumption. Such analysis is mostly limited to two ex-
tra functional aspects or neglected at all [53-55,69], while design
timing constraints can strongly influence not only power consump-
tion but reliability, security, availability, etc. as well as functional
properties.

3.4. Power aspects

In commercial flows, verification of the power aspect can be
addressed relatively independently from the functional verification
dimension. The power intent and detailed power modelling can be
done starting at TLM or RTL with minimal interference with the
HDL functional description, e.g. using the Accellera introduced Uni-
fied Power Format (UPF) employed for power-aware design verifi-
cation automation by commercial tools especially with the latest
UPF3.0 [60] or Cadence/Si2 Common Power Format CPF [61]. For
the advanced device implementation technologies, power specifi-
cation implies multi-voltage design with up to tens of power do-
mains and may consider dynamic and adaptive voltage scaling.

In the recent research works, design verification against the
power aspect is performed at different abstraction levels with
a trade-off between speed and accuracy. Some works such as
[58,59,74,75] perform power analysis at system level targeting high
simulation speed and low power optimization flexibility similar to
the accuracy achievable at lower levels. In [58], the authors ap-
plied their approach to SRAM and AES encryption IPs and obtained
a significant simulation speed-up in comparison to gate-level sim-
ulation with a high fidelity of the system-level power simulation. A
promising software tool for power simulation in SystemC designs
is the Powersim framework [59,75]. In [59], a methodology to es-
timate the dissipation of energy in hardware at any level of ab-
straction is proposed. In [75], the authors propose a SystemC class
library aimed at calculation of energy consumption of hardware
described at system level. The work in [73] introduces a series
of tools (PowerBrick (construct power library for standard cell li-
brary), PowerMixer (for RTL/gate-level estimator), PoweMixeriP (IP-
based model builder), PowerDepot (estimate system-level power
consumption)) which can be tightly linked and enable the power
analysis from layout, gate-, RT-, IP- to system level with a good
simulation speed while retaining high accuracy. The power aspect
verification could benefit from a holistic multi-level modelling,
such as e.g. [17] available for functional verification. Rafiev et al.
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[56], Vinco et al. [45,46], Kang et al. [62], Zimmermann et al. [64],
Gorgen et al. [65], are aimed at methodologies suitable for specific
applications (such as cyber-physical system [62]) that assume ver-
ification of extra-functional aspects such as power, timing, thermal
at the system level.

This extra-functional aspect has a tight relation to the imple-
mentation technology assumed for the synthesis of the design
model under verification. With planar bulk MOSFET technology
known for exponential growth of the static leakage power for
smaller device geometries and employment of FinFET and Tri-Gate-
Transistors in the advanced technology nodes, the CMOS device pa-
rameters are essential for this analysis [57].

3.5. Machine learning based techniques

The complex problem of multidimensional verification can be
assisted by the recent advances in the machine learning discipline.
This type of approaches (along with e.g. evolutionary algorithms) is
particularly suitable for multi-aspect optimization problems where
formal deterministic approaches may lack scalability.

Machine Learning (ML) is the concept of a machine learning
from examples and making predictions based on its experience,
without being explicitly programmed [82]. Previous works have
shown that ML can be used for verification purposes at different
levels. In [83], machine learning was introduced in physical de-
sign analysis. The feasibility of ML in physical design verification
(e.g., lithography hotspot detection) was investigated, and a ref-
erence model for application was presented. Based on this work
[84] used ML to increase the speed of the performance evaluation
(power and area) of a circuit design after physical design by a fac-
tor of 40 as well as performing a Design Rule Check. In [85], ML
was used to predict the timing behavior of the final floorplan of a
circuit during the Place & Route routine and thus, shifting the anal-
ysis to an earlier design stage. In [79], the analysis is moved even
to higher abstraction level. The high-level synthesis (HLS) resource
usage and timing estimation was improved by train ML models
with data from real implementations. Thus, the design flow can be
assisted with machine learning and predict accurate values even
in very early design stages. Machine learning was further applied
for Security Verification in [80,81,86], where it was used to detect
Hardware Trojans based on features from the Gate Level Netlist. In
Section 5, we propose an approach to assist the multidimensional
verification flow by using machine learning techniques to estimate
a reliability metric, as well as timing metric.

4. The challenges of multidimensional verification

The performed analysis of the state of the art has outlined a
gap in methodologies and tools for holistic multidimensional veri-
fication of hardware design models.

Different from functional verification, approaches for extra-
functional hardware design aspects’ verification remain underde-
veloped even when tackled in isolation. Here, one of the key is-
sues is a lack of established metrics for verification confidence.
For a particular functional verification plan, the functional dimen-
sion usually includes conventional structural (code) coverage met-
rics, functional coverage [3] in form of asserted and assumed prop-
erties and design parameters along with stimuli quality assess-
ment by model mutations [18]. The metrics for confidence in extra-
functional dimension verification results may be challenging as in
practice the requirements are subjective and can be specified as a
mixture of quantitative and qualitative constraints. Accurate hard-
ware verification in a particular dimension requires both sufficient
extra-functional design modeling and the extra-functional aspects
target modeling [36]. There is a limited number of dedicated com-
mercial tools and common standards for extra-functional verifica-

Functionality
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Fig. 2. Multidimensional verification campaigns (Radar-chart n-dimensional visual-
ization).

tion flows. In particular, for the security dimension the JasperGold
SPV [35] is one of the few such commercial tools that stand out
from the academic research frameworks. Finally, the issue of elic-
iting the extra-functional requirements [4,5] is a challenging task
as ambiguity and (sometimes conflicting) interdependency of the
extra-functional aspects in the specifications increases complexity
and may leave gaps in the multidimensional verification plans.

Unfortunately, there is no established hardware design method-
ology supporting multidimensional verification plans for mutually
influencing functional and extra-functional aspects. There is a very
limited number of research works going beyond analysis of one
extra-functional verification aspect under constraints of another
as the complexity of the problem grows extremely fast with the
number of dimensions (interdependent constraints) and the elec-
tronic system size. The first works in this direction are, for exam-
ple, Vinco et al. [46] and Vain et al. [36].

Ultimately, results of multidimensional verification campaigns
proposed in this work are subject to be represented in a multi-
dimensional space, as illustrated in Fig. 2a. Here is shown an il-
lustration of six hypothetical independent verification campaigns
in a three-dimensional verification space. A verification campaign
in this example shows the level of confidence in the different di-
mensions - (F)unctionality, (P)ower and (S)ecurity. In this illustra-
tive example, only three aspects are taken into consideration. Ob-
viously, on the demand the verification engineers can involve dif-
ferent dimensions. Here, the different colors of the lines repre-
sent different multi-dimensional spaces e.g. as Campaign_1 in blue
lines stand for the verification result considering three extra func-
tional aspects i.e., functional, power and security aspects at the
same time. The figure shows the interdependency of these three
requirements and thus can help the designers to choose the most
suitable design combination. Subsequently, Compaign_2 represents
the combination of functional and security aspects, Compaign_3
demonstrates the combination of functional and power aspect, etc.
Thus the Radar-charts, as shown in Fig. 2b, are an instrument for
summarizing multidimensional verification results for a large num-
ber of dimensions, (where the dimensions can be ordered to em-
phasize correlation or interdependencies between adjacent dimen-
sions).

4.1. Motivational example

Single-dimension verification campaigns ignoring interdepen-
dencies between the dimensions may lead to gaps in the overall
electronic system quality. As an example to show the importance
of multidimensional verification, let us consider an actual verifica-
tion campaign of an open-source NoC framework Bonfire [71,72].



X. Lai, A. Balakrishnan and T. Lange et al./Microprocessors and Microsystems 71 (2019) 102867

process (write_en, write_pointer) begin --write pointer bug

if write en = 'l' then
write_pointer_in <= wr
else
write pointer in <=
end if;
end process;

process (read en, empty,
if (read en '1' and
read_pointer_in <= r
else
read pointer_in <= r
end if;
end process;

ite_pointer(0)&write pointer(3 downto 1);

write pointer;

read peinter) begin read p
empty '0') then

ead peointer (0) &read_pointer (3 downto 1);

ointer bug

ead_pointer;

process (write en, write pointer )begin --write

if write en = '1' then
write peointer in <= wr

else

e pointer

ite pointer (2 downto 0)&write_ pointer(3):;

write_pointer_in <= write_ pointer;

end if;
end process;

process (read en, empty,
if (read_en '1' and
read pointer_in <= r
else
read_pointer_in <= r
end if;
end process;

read pointer) begin
empty '0'") then
ead pointer (2 downto 0)&read pointer(3);

read pointer

ead_peinter;

Fig. 3. Bug f1 and its correction.

process (Healthy packet,
if reset counters
healthy counter_in
elsif Healthy_packet
healthy counter in
else
healthy counter in
end if; B
end process;

reset counters,
1' then

<= (others => '0");
'l' then

<= healthy counter out + 1;

healthy counter out) begin

<= healthy_counter_out;

process (Healthy packet,
if reset_counters
healthy counter in
elsif Healthy packet
healthy_counter_in

else
healthy_counter in

reset_counters,
1' then

<= (others => '0');

'1' and faulty counter_out /= std logic_vector (to_unsigned(0, faulty counter_out'length)) then
<= healthy_counter_out + 1;

healthy counter out, faulty counter out) begin

<= healthy counter out;

end if;

end process;

Fig. 4. Bug p1 and

The design under verification is in RTL VHDL and implements a
2 x 2 NoC infrastructure (processing elements excluded). The ver-
ification plan considered 2-dimensional verification campaign tar-
geting functionality and power consumption requirements. For the
former, assertion-based functional verification by simulation was
employed targeting statement, branch, condition and toggle cover-
age metrics and satisfaction of a set of temporal simple-subset PSL
assertions. For the latter, a set of power targets were extracted for
the targeted silicon implementation assuming a particular switch-
ing activity (set to 12mW in this example).

Among documented design errors in the Bonfire project, the
bug f1, as shown in Fig. 3, is an example of a functional misbehav-
ior due to improper usage of write and read pointers in the FIFO.
The figure represents the code errors in the red line and the cor-
rected versions of the code lines in blue. The bug f1 and the bug
p1 demonstrate the error in Figs. 3 and 4, respectively. The bug p1
causes violations of specified power consumption targets because
of unnecessary excessive use of a fault-tolerance structure related
counter. The report of such a power consumption is described in
Table 2. The power consumption is shown in the cell Total Power
which is composed of the dynamic power, i.e. the Switching Power
in the interconnects and the Internal Power in the logic cells,
and the insignificant (for the target technology) static leakage
power Leak Power. As summarized in the first row, for the bug
f1 the Total Power is equal to 10.211 (consistence with the power
consumption requirement). Similarly, in the third row, which rep-

its correction.

resents the power consumption for the correct version of the code,
the total power is equal to 10.184. This report prove that even if
there is a bug (bug f1) in the code but still the power consumption
requirement is met. In contrary, for the bug p1, even though there
is no functional errors, the Total Power consumption is reported
which is equal to 22.137. Thus the bug p1 results in a double
power consumption compared to the correct implementation and
violates the power targets in the specification. This fact prove that
it is critical to know how and where the code should be modified
in order to reduce the power consumption as well as maintain
functional correctness. In general, the above simple motivation
example demonstrates the challenge of interdependency of differ-
ent aspects when requirements in more than one dimension are
present.

5. Machine learning to tackle the challenges of
multidimensional verification

As it can be seen in the previous sections, multidimensional
verification is a complex multi-aspect optimization problem. Ma-
chine learning algorithms are known to be able to learn com-
plex relationships and have been used for several optimization
problems. Section 3.5 has shown that machine learning techniques
were already successfully used for estimating several different sin-
gle verification metrics. This suggests that machine learning can be
also used for solving multidimensional verification problem. There-
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Table 2

Power consumption of the Bonfire system implementation: corrected and with bugs f1 and p1.

Bonfire system Implementation  Switching Power (mW)

Internal Power (mW)  Leak Power (pW)  Total Power (mW)

with f1 bug 0.783 9427 7.50e+05 10211
with p1 bug 0.757 21.379 6.93e+05 22.137
corrected 0.666 9.518 7.43e+05 10.184
12
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Fig. 5. Prediction of Functional De-Rating factors of the test data set by using a Support Vector Machine regression model (Training Size =50%, Coefficient of Determination
R? =0.844).
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Fig. 6. Learning Curve for the Functional De-Rating prediction by using a Support Vector Machine regression model with different training sizes.

fore, an initial approach is proposed which is based on machine
learning techniques in order to tackle this multidimensional verifi-
cation challenge.

5.1. Proposed methodology

The proposed approach targets to predict two different verifi-
cation metrics based on the same feature set extracted from the
gate-level netlist of a given circuit. These two different metrics are
Prediction of De-Rating and Path delay. The first metric to predict

is the De-Rating or Vulnerability Factor, which are related to the
reliability verification flow and a major metric of the failure analy-
sis. The second metric is the path delay and related to the timing
analysis. This metric is usually obtained during the synthesis or
place and route stage of the design development. Therefore, ma-
chine learning can help to shift the analysis to an earlier design
stage.

A possible application scenario consists in extracting a list of
circuit feature and training a ML tool with a limited set of ref-
erence inputs (the values of the selected circuit features) and
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Fig. 7. Prediction of Path Delays of the test data set by using a Support Vector Machine regression model (Training Size = 50%, Coefficient of Determination R? =0.975).
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Fig. 8. Learning Curve for the Path Delay prediction by using a Support Vector Machine regression model with different training sizes.

expected outputs (reliability and timing metrics). Depending on
the exhaustiveness of the training campaign, the trained ML tool
can provide actual reliability metrics from a limited list of circuit
features while spending far less resources (CPU time, EDA tools li-
censes, man-power) than using classical methods.

5.2. Prediction results

The proposed idea was implemented and evaluated on a prac-
tical example. Therefore, a set of features is defined which charac-
terizes each flip-flop instance in the circuit. The feature set is com-
posed of static elements (cell properties, circuit structure, synthe-
sis attributes) and dynamic elements (signal activity). After extract-
ing the features for the full list of circuit instances, reference data
was obtained. The Functional De-Rating per flip-flop was deter-
mined through first-principles fault simulation approaches and the
path delay was extracted by a classical static timing analysis. One

part of the reference dataset is used to train the machine learning
model and the remaining data is used to validate and benchmark
the accuracy of the trained tool.

As a circuit under test, the Ethernet 10GE MAC Core was used
which is available as RTL description from OpenCores. The circuit
consists of control logic, state machines, FIFO controllers and mem-
ory interfaces. By synthesizing the design with NanGate FreePDK45
Open Cell Library, 1054 flip-flops have been identified and the cor-
responding features have been extracted.

Several machine learning models have been evaluated, such as
the Linear Least Squares, Ridge (with linear and non-kernels), k-
Nearest Neighbors (k-NN), Decision Tree (CART) and Support Vec-
tor regression (SVR, with linear and non-linear kernels). It has
been noted that especially the linear models are not very suitable
to predict the reliability metrics. The non-linear models perform
much better and the Support Vector regression with Radial Ba-
sis Function (RBF) as kernel functions is among the best. There-
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fore, the SVR model with RBF kernel function is used for the fol-
lowing presentation of the prediction results. Figs. 5 and 7 show
the prediction of the two metrics. When 50% (527 flip-flops) of
the data are used to train the model and the remaining 50% was
used to evaluate the model. The performance of regression mod-
els is usually evaluated by using the Coefficient of Determination
(R?) score and the model reaches a score of R2=0.844 to predict
the Functional De-Rating and R? =0.975 to predict the path delay.
Figs. 6 and 8 show the learning curve of the model. This curve de-
scribes the performance of the model for different sizes of the data
set used for training and the remaining data set used for the eval-
uation. The learning curves suggest that by using more than 50%
of the available data for training doesn’t significantly improve the
prediction performance. However, it can also be seen that by using
less than 50% still a valuable prediction can be performed. Thus,
by allowing a slight reduction of accuracy, the cost of an exhaus-
tive analysis can still be reduced.

The practical example has shown that machine learning can be
successfully applied for different verification purposes. In order use
ML to support the multidimensional verification problem, features
from different design stages need to be extracted and used to train
a unified model or several separated models. These can be used to
predict the required verification metrics.

6. Conclusion

In the recent years, numerous extra-functional aspects of elec-
tronic systems were brought to the front and imply verification of
hardware design models in multidimensional space along with the
functional concerns of the target system. Targeting at understand-
ing of this new verification paradigm, we have performed a com-
prehensive analysis of the state of the art and presented a taxon-
omy for multidimensional hardware verification aspects, an up-to-
date survey of related research works and trends towards enabling
the multidimensional verification concept and investigated the po-
tential of machine learning based techniques to support the con-
cept. As the result of the performed analysis of the state of the
art we have outlined a gap in methodologies and tools for holistic
multidimensional verification of hardware design models and the
key challenges.
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