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Abstract. Punching shear is a type of failure of reinforced concrete slabs subjected to localized 
forces. This failure has been examined by many researchers experimentally, analytically or 
numerically. Empirical equations based on tests observations are nowadays the basis of the 
existing design codes. The work described herein presents 3D Finite elements method (FEM) 
analysis of three slab-column connections also tested experimentally to investigate the three 
fundamental geometries: central, side and corner column. The sensitivity of the FEM response 
to input parameters such as material constitutive laws is studied. Concrete constitutive models 
are described in detail, including their effects on the accuracy of FEM analysis. The 
comparison between FEM results, experimental tests, code provisions and a new model for 
punching based on the compression chord capacity model is presented. As a conclusion, an 
estimation of the model uncertainties related to FEM analyses of punching failures without 
shear reinforcement is discussed. 

1.  Introduction 
Punching shear failure has occurred several times in these past decades [1], [2], [3]; this type of failure 
is dangerous as it is brittle. 

Punching is one of the most critical issues to consider when determining the thickness of flat slabs 
at the column-slab intersection, so accurate prediction of punching shear strength is a major concern 
for engineers in order to design a safe structure.  

Several researchers have conducted laboratory tests to study the structural behaviour of reinforced 
concrete slabs supported on columns [4], [5], [6]. The structural response of reinforced concrete slabs 
supported on interior columns was experimentally investigated by Kinnunen and Nylander (1960) [7]. 
Their test specimens consisted of circular slab portions supported on circular columns placed in the 
centre and loaded along the circumference. Based on their test results, these researchers developed a 
rational theory for the estimation of the punching shear strength in the early 1960s based on the 
assumption that the punching strength is reached for a given critical rotation ψ. Not only did the model 
agree well with the test results, it was also the first model that thoroughly described the flow of forces. 
Kinnunen [6] continued his research on punching shear in 1971 with an investigation on flat slabs 
supported at their edges. Thus far, this proposal remains one of the best models for the phenomenon of 
punching. Subsequently, some improvements were proposed by Carl Erik Broms (1990) [8] to account 
for size effects and the effect of increasing concrete brittleness. While very elegant and leading to 
good results, Brom’s model was never directly included in codes of practice because its application 
was too complex. Then, Muttoni (2008) [9] gave evidence supporting the role of the shear critical 
crack in the punching shear strength. Muttoni presented a mechanical explanation of the phenomenon 
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of punching shear on the basis of the opening of a critical shear crack, providing a formulation of a 
new failure criterion for punching shear based on the rotation of a slab: the critical shear crack theory. 
This criterion correctly describes punching shear failures observed in experimental testing. Finally, 
with an adaption of a previously existing model (compression chord capacity model) for shear 
strength, authors A. Cladera, et al. [10] incorporate the contribution of the main shear resisting 
mechanisms. For this purpose, the differences between the shear and punching resistant mechanisms 
were identified and accounted in order to develop the failure criterion. In this work this last model is 
not analysed in detail; however, it is validated by comparing laboratory tests on slabs without 
punching reinforcement with the finite element analysis.  

2.  Case studies 
Three slab-column specimens (SB1, R1 and No.2) without shear reinforcement were analysed using 
the program Midas FEA. The first specimen is the test done by Adetifa and Polak on a column placed 
in the centre of a slab in 2005 [4], called SB1. The second specimen is the corner supported slab called 
R1 from the experiments conducted by Ingvarsson in 1977 [5]. The third one is the edge supported 
slab called No.2 by Kinnunen in 1971 [6]. 

2.1.  Case 1: specimen SB1 
A concrete slab with square shape 1800x1800mm and 120mm depth is connected to a central column 
of 150x150mm. This specimen is loaded until failure in displacement control through the column and 
supported along the edges with restraints applied at 1500x1500 mm distance from the column. The 
corners of the slabs are held down to simulate continuous slab construction and avoid the slab edges 
lifting during the test. Details and dimensions are shown in figure 1. For the tension mat, 10M bars at 
100 and 90 mm centres are used for the bottom and top layers, respectively. Concrete compressive 
cylindrical strength, fc, is 44 MPa, and steel yield strength is 455 MPa.  

2.2.  Case 2: specimen No.2 
A rectangular slab 3000x1800mm and 130mm depth is supported in the middle of its opposite short 
edges by square concrete columns (see figure 2) and it is unsupported along its longer edges. Also in 
this case double symmetry was considered, and only ¼ of slab has been modelled. Eight concentrated 
loads were placed on the slab with regular spacing to simulate uniformly distributed load. Concrete 
cylindrical compressive strength, fc, is 26 MPa, and steel yield strength is 420 MPa. 

2.3.  Case 3: specimen R1 
A rectangular slab 1855x2145mm and 120 mm depth is supported on its 4 corners by rectangular 
concrete columns 145x215mm (see figure 3). This specimen was loaded, with a distributed load 
applied on the slab, simulated by 16 concentrated loads on a regular path. Concrete compressive 
strength, fc, is 28 MPa, and steel yield strength is 470 MPa. Only ¼ of this specimen has been modelled 
in the FEM analyses because of double axis symmetry. 

3.  Finite element parametric analyses 
The aim of the present paper is to study the sensitivity of finite element analyses simulating punching 
failures to some model parameters like the concrete constitutive law, the level of ductility available 
both after tensile cracking (tension softening) and after peak compression (compression softening), 
and the effect of confinement and lateral cracking on compression law. Three experimental tests 
representing the three most common configurations for column-slab connection (central, edge and 
corner column) have been modelled with 15 analyses each. Results are compared with experimental 
ones and with most diffused code provisions. 
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Figure 1. Specimen SB1, dimensions and reinforcements 

 
Figure 2. Specimen No.2, dimensions and reinforcements 

 

Figure 3. Specimen R1, dimensions and reinforcements 

  



WMCAUS 2018

IOP Conf. Series: Materials Science and Engineering 471 (2019) 052003

IOP Publishing

doi:10.1088/1757-899X/471/5/052003

4

 
 
 
 
 
 

 

4.  Material models for concrete 
Nonlinear finite element analyses of reinforced concrete structures require proper and adequate 
definitions of material models. In this work, the “total strain crack model” is used for concrete with the 
hypothesis of smeared cracking and fixed crack direction. Three constitutive laws are used for 
concrete compression and one for tension. In addition, the effect of lateral confinement [11] and 
cracking is taken into account to modify compressive strength and ductility, increasing them with 
increasing isotropic stress [12] or decreasing them because of lateral cracking [13].  

4.1.  Constitutive laws for concrete compression 
The first constitutive law for concrete compression behaviour is the Thorenfeldt one [12], as given by 
equation 1. 
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The second constitutive law for concrete compression behaviour is the parabolic model suggested 
by Feenstra [14], and given by equation 2. It is characterized by three parameters: compressive 
strength fc, compressive fracture energy Gc, and crack bandwidth h. 
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The third constitutive law for concrete compressive behaviour used in this work is the parabolic-
rectangle as described in Eurocode 2 [15]. This model depends only on the compressive strength fc, the 
peak strain 2 2‰cε = , and the ultimate strain 3.5‰cuε = . 
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4.2.  Constitutive law for concrete tension 
Hordijk, Cornelissen and Reinhardt [16] proposed an expression for the tension softening behaviour of 
concrete defined by equation (4). 
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where ε’= ε - εcr is the strain in cracked field, c1=3, c2=6.93 and the ultimate strain is εult = Gf/(h⋅ft), 
where Gf is the tensile fracture energy, ft is the mean tensile strength, and h is the crack bandwidth as 
seen in the previous paragraphs.  

4.3.  Constitutive law for concrete in shear 
Shear stiffness can be reduced after cracking in fixed crack models. A constant shear stiffness 
reduction is chosen: Gcr = β⋅ G, with β=1 after cracking. 

4.4.  Calculation of the crack bandwidth h 
The influence of the parameter h on the analysis has been studied as it is used in both Feenstra and 
Hordijk models. For 3D elements the crack bandwidth is suggested to be set equal to the cubic root of 
the element’s volume [17]. The mesh was formed by tetrahedral elements, so initially h has been 
calculated as 15h V mm= = . Then, using code provisions from EN 1992-1-1[13], all the models were 
studied using h= Sr,max and h= Sr,max/2 where Sr,max is the maximum crack spacing, given by equation 
(5). 

,max 3 1 2 4
,

r
p eff

S k c k k k φ
ρ

= ⋅ + ⋅ ⋅ ⋅  (5) 

4.5.  Reinforcement model 
Embedded reinforcement approach has been used: the stiffness of the reinforcements is added to the 
stiffness of the continuum elements in which the reinforcements are located. Steel for reinforcement is 
modelled according to Von Mises law with perfect plasticity option.  

5.  Finite elements analysis 
The three concrete slabs were modelled with Midas FEA. The mesh of all models was formed by solid 
tetrahedral elements. Meshed models can be seen in figure 4: specimen SB1, R1 and No.2 count 
respectively 73468, 309502 and 350621 finite elements. Boundary conditions were created 
considering double axis symmetry for No.2 and R1.  

Reported concrete and steel strengths, for the compared specimens, are presented in table 1. The 
measured value for comparison between numerical and experimental results is the vertical 
displacement of the column for SB1 and of the centre of the slabs in models No.2 and R1. The chosen 
mesh was evaluated to be fairly accurate, as the response from the FE-analyses showed very good 
agreement with the reported observations. Newton-Raphson iteration method was used, but even if it 
needed only a few iterations at each load step, it resulted to be relatively time-consuming because of 
the dimension of the mesh. 

 
     specimen SB1   specimen No.2       specimen R1 

 

Figure 4. Mesh configurations of specimens 
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Table 1. Material data used in FEM analysis for each specimen 
 fc 

[MPa] 
ft 

[MPa] 
υ 

[ - ] 
Gc 

[N/mm]
Gf 

[N/mm]
Ec 

[MPa] 

fy 
[MPa]

fu 
[MPa] 

εsy 
[ - ] 

εsu 
[ - ] 

SB1 44 2.2 0.15 7.00 7.00E-2 28000 455 650 2.28E-3 5% 
R1 28 2 0.15 7.25 7.25E-2 29030 470 470 2.35E-3 5% 
No.2 26 1.86 0.15 6.91 6.91E-2 28432 420 420 2.10E-3 5% 

6.  Results and discussions 
Each structure has been modelled three times with each compression law (Thorenfeldt, Feenstra and 
parabolic-rectangle). Three values of crack bandwidth were used for each compression law as 
described in 4.4 for a total of nine analyses for specimen. The models with Feenstra and Thorenfeldt 
laws were then run again including confinement and lateral cracking effect (that were not available in 
the FEM for the parabolic-rectangle law), generating six new outputs for specimen. A total of 15 
analyses for specimen was therefore performed.  

Numerical results are classified with a code like XX-hYYY-ZZZ where: XX can be Th or Fe or PR 
respectively for Thorenfeldt, Feenstra or parabolic-rectangle compression curves, h is the crack 
bandwidth, YYY is its value calculated according 4.4, ZZZ can be NCC for analyses where the effect 
of lateral compression and lateral cracking is not taken into account or YCC when these two effects 
are taken into account. The comparison between numerical outputs and experimental ones in term of 
ultimate load, Pu, and displacement of the reference point, δu, is presented in table 2. 

 
Table 2. Results comparison 

Specimen SB1 R1 No.2 

Test 
No. 

Description Pu 
[kN] 

δu 
[mm]

Pu 
[kN] 

δu 
[mm] 

Pu 
[kN] 

δu 
[mm] 

 Experimental 253 11.90 106.8 20.95 123.3 20.11 
1 Th-h=√V-NCC 258.7 15.16 120.6 23.37 143.3 18.44 
2 Th-h=Sr,max/2-NCC 253.5 15.56 120.6 28.39 148.4 20.36 
3 Th-h=Sr,max-NCC 269.1 15.85 133.1 30.00 153.6 21.10 
4 Fe-h=√V -NCC 258.7 13.27 120.6 19.05 138.2 19.52 
5 Fe-h=Sr,max/2-NCC 253.5 15.48 120.6 20.13 148.4 20.17 
6 Fe-h=Sr,max -NCC 269.1 16.74 124.8 21.12 153.6 22.12 
7 Th-h=√V -YCC 258.7 14.28 116.4 17.89 138.2 16.82 
8 Th-h= Sr,max/2-YCC 144.9 5.71 120.6 19.77 158.7 21.36 
9 Th-h=Sr,max -YCC 181.1 8.79 124.8 20.41 133.1 21.83 

10 Fe-h=√V -YCC 258.7 13.27 124.8 20.22 140.8 15.99 
11 Fe-h= Sr,max/2-YCC 248.4 15.41 108.1 20.34 158.7 22.61 
12 Fe-h=Sr,max -YCC 263.9 17.12 108.1 22.00 168.9 25.02 
13 PR-h=√V -NCC 258.7 12.34 116.4 20.87 133.1 19.06 
14 PR-h= Sr,max/2-NCC 269.1 13.92 120.6 22.76 148.4 22.44 
15 PR-h=Sr,max -NCC 263.9 14.57 120.6 23.29 148.4 23.45 

 
A more detailed comparison is presented for each specimen in the following paragraphs. Some 

general considerations common to all results follow hereafter. The effect of the bandwidth is common 
to all models: small values of h lead to higher tension stiffening behaviour after cracking: a significant 
difference is seen between h=√V and h= Sr,max/2, whereas small difference is seen between h=Sr,max/2 
and h= Sr,max. 
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The model that provides the best accuracy in predicting both the ultimate load and displacement of all 
the specimens is the parabolic-rectangle.  

6.1.  SB1 results 
All models provide good solutions in term of load-displacement curves. The effect of confinement and 
lateral cracking seems not to affect Feenstra model, whereas it leads to premature failure with 
Thorenfeldt one in association with higher bandwidths. The model that provides the best accuracy is 
the parabolic-rectangle in combination with a crack bandwidth equal to h=√𝑉=15mm (Pu,fem / Pu,exp 
=1.022, δu,fem / δu,exp = 1.036). Nevertheless, it overestimates the stiffness after first cracking, whereas 
the same model with h = Sr,max/2 = 123mm underestimates it. A more correct approximation may be 
reached with a crack bandwidth 15<h<123mm. 

6.2.  No.2 results 
All models provide good solutions in term of ultimate load, but relevant differences can be seen in 
term of ultimate displacements. The effect of confinement and lateral cracking seems to affect neither 
Feenstra nor Thorenfeldt model. The model that provides the best accuracy (Pu,fem / Pu,exp =1.079, δu,fem 
/ δu,exp =0.947) is the parabolic-rectangle in combination with a crack bandwidth equal to h=15mm that 
is the cubic root of the element’s volume. Nevertheless, it underestimates the stiffness after first 
cracking, and overestimates it before failure.  A more correct approximation may be reached with a 
crack bandwidth Sr,max /2 <h< Sr,max .  

6.3.  R1 results 
All models provide good solutions in term of ultimate load but tend to underestimate the ultimate 
displacement. The effect of confinement and lateral cracking seems to have nil effect on Feenstra 
model and very little on Thorenfeldt one. The model that provides the best accuracy (Pu,fem / Pu,exp 
=1.089, δu,fem / δu,exp =0.996) is the parabolic-rectangle in combination with a crack bandwidth equal to 
h=15mm that is the cubic root of the element’s volume. Nevertheless, it underestimates the stiffness 
after first cracking, and the ultimate displacement. 

7.  Comparison between experimental results and the one obtained with design codes, CCCM 
and FEA 
The results from the FEA presented in the previous paragraphs are compared to current code 
provisions (EC2 2004 [18]; ACI 318-2008 [19]; Model Code 2010 [20]) and finally with the 
Compression Chord Capacity Model (CCCM) proposed by Caldera et al. [10]. Figure 5 shows the 
ratio of the punching strength predicted by code provisions, FEA and Caldera to the one measured 
during laboratory tests. 

The mean punching shear resistance may be calculated modifying the EC2 provision (6.47) for the 
design one as follows: 

( )1/3
,c , 1 min 1100R R c l cm cp cpv C k f k v kρ σ σ= ⋅ ⋅ ⋅ + ⋅ ≥ + ⋅  (6) 

,c ,cR RV v d u= ⋅ ⋅  (7) 

The mean punching shear resistance may be calculated modifying the MC2010 provision (7.3-61) 
for the design one as follows: 

, 0
cm

Rd c
c

f
V k b dψ γ

=  (8) 

where the parameter  kψ depends on the deformability of the slab to column joint expressed by means 
of the rotation ψ as follows: 
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( )1 1.5 0.9 0.6dgk k dψ ψ= + ⋅ ⋅ ≤  (9) 

And the rotation ψ has been calculated according to level one of approximation with the 
expression: 

1.5 ys

s

fr
d E

ψ =  (10) 

The mean punching shear resistance according to ACI 318-2008 may be calculated as the smallest 
of the following three values (in US customary units): 

1, 1, 1,
0

4min 2 ; 2 ; 4s
c cm red cm red cm red

dV f b d f b d f b d
b

αλ λ λ
β

    = + +   
     

 (11) 

The mean punching shear resistance according to CCCM [10] can be written as: 

,min

min y

cu c

V
V v

 ≥

 (12) 

where Vy  is the strength corresponding to steel yielding and Vcu is the strength on concrete side. Their 
values are given by: 

22 1
2

ym
y l ym

cm

f
V f d

f
ρ

π ρ
 

= − 
 

 (13) 

1,1.125 0.425cu ctm red
xV f b d
d

ξ  = + 
 

 (14) 

The numeric values of the key parameters involved in code equations are presented in table 3. 
In figure 5 the results of the FEA are plotted as coloured points and the prediction obtained using the 
four theoretical models cited above are shown with coloured lines. The ratio between the predicted 
failure load and the experimental one is plotted for each solution. 

 
Figure 5. Ratio of the predicted (numerical or analytical) punching strength to experimental one 

  



WMCAUS 2018

IOP Conf. Series: Materials Science and Engineering 471 (2019) 052003

IOP Publishing

doi:10.1088/1757-899X/471/5/052003

9

 
 
 
 
 
 

 

The three codes and the CCCM theory present the same behaviour, showing for specimen No.2 a 
higher ratio Pu,pred/Pu,exp than for the other two specimens. CCCM theory shows a better overall 
behaviour, but it strongly overestimates the failure load of specimen No.2. EC2 model is always on the 
safe side, but it underestimates the failure load of specimen R1. ACI shows almost the same response 
of EC2, but it gives a lower prediction of the failure load of specimen SB1. MC 2010 with Level 1 
approach heavily underestimates all the tests, and therefore provides the worst performance. This 
result may be due to the approximation related to LV1, but it is nevertheless an important remark. 
Last, but not least, the dispersion of the results obtained using four different theories is incredibly 
high. 

Table 3. Punching resistance parameters 

 fcm 
[MPa] 

d 
[mm] 

ρl 
[%] 

u 
[ mm ]

b1,red 
[ mm ]

b0 
[ mm ]

rs 
[ mm ]

ψLV1 
[rad] 

SB1 44 90 1.3 1731 883 794 330 2.84E-2 
No.2 28 100 1.1 1228 757 530 616 2.21E-2 
R1 26 90 2.0 553 431 280 220 0.98E-2 

8.  Conclusions 
The present paper studies the sensitivity of finite element analyses simulating punching failures to 
some model parameters like the constitutive law of concrete, the level of ductility available both after 
tensile cracking (tension softening) and after peak compression (compression softening), the effect of 
confinement and lateral cracking on compression law. Three experimental tests representing the three 
most common configurations for column-slab connection (central, edge and corner column) have been 
modelled with 15 analyses each. Quite good accuracy and small scattering of the results have been 
achieved on the prediction of ultimate punching load, whereas wider scattering has been observed on 
ultimate displacement.  

The amount of available ductility in tensile and compressive behaviour related to the crack 
bandwidth value is a key parameter, as already observed by the same authors on other types of 
reinforced concrete failures such as deep beams and concrete walls [21], [22], [23], [24]. The results 
confirm the possibility to predict with accuracy punching failure without shear reinforcement using 
nonlinear FEM models. The presented analyses indicate that the proposed model can be used in future 
parametric studies on different aspects influencing punching shear in concrete slabs. 
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