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Abstract— There is a worldwide vision for providing high-quality healthcare services to the patients. 

However, dealing with the growing number of chronic disease patients, emergency situations, and 

disaster management pose several challenges on the governments and healthcare sector to maintain 

this vision. Thus, to cope with these challenges while providing the required scalability of healthcare 

systems, we present in this chapter our vision for the advantages of leveraging Edge computing within 

the field of smart health. Incorporating edge computing and advances of wireless networking 

technologies within the next-generation healthcare systems is one of the most promising approaches 

for enabling smart health services. Smart health systems give the patients the opportunity to participate 

in their own treatment by providing them with intuitive, non-intrusive tools that allow them to be 

efficiently monitored and communicate with their caregivers. 

This chapter proposes a multi-access edge computing (MEC) based architecture, named sHealth, for 

enabling reliable and energy-efficient remote health monitoring. In particular, sHealth adopts data-

specific and application-specific approaches for optimizing medical data delivery, leveraging edge 

processing and heterogeneous wireless networks. We envision that sHealth can have a significant 

impact on minimizing energy consumption, data delivery latency, and network bandwidth through 

mapping patient’s context into different delivery modes. This chapter presents three main approaches 

that can be implemented at the sHealth architecture, namely, distributed in-network processing and 

resource optimization, event detection and adaptive data compression at the edge, and dynamic 

networks association. The first approach optimizes medical data transmission from edge nodes to the 

healthcare providers, while considering energy efficiency and application’s Quality of service (QoS) 

requirements. The second approach presents efficient data transfer scheme that maintains high-

reliability and fast emergency response using edge computing capabilities. The third approach 

leverages heterogeneous wireless network within the sHealth architecture to fulfil diverse applications’ 

requirements while optimizing energy consumption and medical data delivery. 



I. Introduction 
Healthcare has gained a significant interest all over the world because of its importance in promoting 

human development, and the well-being of countries' citizens. The growing number of patients with 

chronic disease, disaster management, and emerging epidemiological threats pose great challenges for 

governments and public sectors. They motivate such entities to welcome, adopt, and support the 

development of increasingly innovative healthcare approaches and initiatives [1]. However, traditional 

healthcare systems cannot support the scalability required to meet the rising number of patients as they 

require one-to-one relationships between the caregiver and the patient. One of the key concepts for 

mitigating healthcare scalability is to have patients participate in their own treatment by providing 

them with intuitive, non-intrusive tools that allow them to efficiently communicate with their 

caregivers.  

The rapid development of intelligent systems and Wearable Internet of Things (WIoT) devices, in 

addition to the advances in mobile communication technologies, have fostered the evolution of 

traditional healthcare systems into smart health systems. At the beginning, the concept of Remote 

Health, also referred to as tele-health, has been appeared as a new concept where patients and/or 

caregivers would be able to utilize mobile technologies to remotely deliver health information. This 

could potentially help reduce hospitalization and deliver timely healthcare to remote societies at low 

cost [2]. Then, Mobile-Health (mHealth) systems have manifested to provide new ways of acquiring, 

processing, and transferring processed data to deliver meaningful results. 

Smart-health (sHealth) represents the context-aware development of mHealth, exploiting 

communication technology to equip healthcare stakeholders with innovative solutions and tools that 

can revolutionize healthcare industry. SHealth systems comprises various wireless medical devices, 

sensors, cameras, and WIoT devices that play a significant role in real-time biosignals monitoring, 

enabling automatic tracking of the patients, and controlling patients' drugs usage. Hence, they allows 

for early detection of clinical deterioration, such as seizure detection, heart failure, etc. However, all 

these devices generate an enormous amount of information that require processing, readily 

transferring, and storing, while maintaining security and privacy protection. Such requirements turn 

the classic cloud computing framework inadequate for sHealth, because the centralized management 

of such amount of data cannot provide the required level of scalability and high responsiveness needed 

for sHealth applications. 

Accordingly, Mobile or Multi-access Edge Computing (MEC) has recently emerged in order to 

provide the capabilities needed for processing and managing the acquired data at the proximity of the 



data sources (i.e., at the network edge) [3], [4]. Thus, given the aforementioned characteristics and 

requirements of sHealth, we envision that Edge computing can significantly benefit the healthcare 

evolution to smart healthcare through enabling better insight of heterogeneous healthcare media 

content in order to provide affordable and high-quality patient care. Edge computing along with the 

next-generation networking technologies can be the technical-driven factors for realizing the vision of 

smart healthcare services since they will accelerate data generation and processing, while allowing the 

resource constrained devices to communicate efficiently with the healthcare stakeholders. In particular, 

the main benefits of MEC in a smart-heath environment can be highlighted as follows:  

1. Enabling short response time and fast emergency prediction and detection response. 

2. Decreasing power consumption for battery-operated IoT devices. 

3. Optimizing network bandwidth utilization. 

4. Providing secure medical data transmission and privacy protection.   

This chapter presents an edge-based sHealth system architecture for reliable, scalable, and effective 

patient monitoring. The proposed architecture leverages sensors and wireless networking technologies 

for connecting patients with medical healthcare providers to enable early diagnosis, remote 

monitoring, and fast emergency response for the elderly and chronic disease patients. In contrast to the 

previous work in this domain, the adopted framework considers context-aware approaches by focusing 

on applications' requirements and patients’ data characteristics, leveraging heterogeneous wireless 

networks for optimizing medical data delivery. Accordingly, we focus in this chapter on answering the 

following questions:   

1. How to decrease transmitted data size, while maintaining reliable real-time healthcare 

services? 

2. How to incorporate wireless network components with application's characteristics to 

develop energy-efficient sHealth system? 

3. How to utilize the spectrum across multiple radio access technologies to fulfil 

applications' QoS? 

 In this chapter, Section II presents the proposed MEC-based system architecture that satisfies the 

sHealth requirements, highlighting the advantages of implementing intelligent data processing 

techniques at the network edge.  Section III introduces some of these edge computing techniques 

including adaptive in-network compression, event-detection, and network-aware optimization, which 

enable MEC-based system architecture to fulfil all sHealth requirements. Section IV then discusses 

the challenges and open issues for utilizing MEC paradigm in sHealth, including the use of cooperative 



edges for improved energy and spectrum efficiency, as well as the need and benefit of combining 

heterogeneous data sources at the edge. Finally, Section V concludes the chapter. 

II. Smart Health System Architecture 
This section introduces a brief description of the proposed sHealth architecture and investigates the 

benefits of incorporating the MEC within sHealth system. 

A. SHealth system architecture 
The proposed architecture in Figure 1 considering the end-to-end healthcare system starting from the 

data sources attached or near to patients till ending with the healthcare providers. It includes the 

following main components:  

Hybrid monitoring devices: It represents the set of data sources located on or around the patients for 

continuous monitoring of the patient's state. These sensing sources may include medical/non-medical 

devices, such as implantable or wearable sensors, smartphones, digital cameras, etc. These hybrid 

sources of information are utilized within the automated-smart environment for enabling continuous-

remote monitoring and fast prediction/detection of emergency circumstances. Such IoT devices can be 

connected either with a mobile/infrastructure edge node, to process the acquired data locally, or 

directly with the network infrastructure (see Figure 1). 

Mobile or infrastructure edge: Here, we refer to the mobile edge node as a Patient Data Aggregator 

(PDA) that implements the in-network processing mechanisms before forwarding the data to the cloud. 

 

Figure 1: Proposed sHealth system architecture. 
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The PDA can be a smartphone that fuses the medical and non-medical data from various monitoring 

devices, executes in-network processing on the acquired data, event-detection, emergency notification, 

and transfers the important data or extracted features of interest to the cloud. Furthermore, the PDA 

can be a data source itself, which generates information related to the patient's conditions. Interestingly, 

different health-related applications (apps) can be developed at the PDA level for enabling patient-

doctors’ interactions or facilitating chronic disease management. Moreover, these apps allow the 

patients to get involved in their treatment while interacting with their doctors anywhere and anytime. 

In addition to that, with a PDA running optimized context-aware processing, different monitoring 

devices can be managed easily at the proximity of the patient, while optimizing medical data delivery 

considering the environment context, i.e., data characteristics, applications’ requirements, and wireless 

network conditions. 

Heterogeneous radio access network: As mentioned before, providing high-quality sHealth services 

results in generating enormous amount of data, which demands for high data rates. To maintain this 

while providing high quality of service (QoS) for sHealth, we opt to exploiting the heterogeneity of 

wireless network. Heterogeneous Networks (HetNets) can satisfy the rising traffic demand and 

successfully maintain the application's QoS requirements through leveraging the availability of several 

technologies, such as Wi-Fi, UMTS, LTE, Bluetooth. Hence, it enables the association with the most 

appropriate radio technology with the best energy consumption and data rate. 

Cloud: It represents the central storage and control unit, where data storage, epidemiological threats 

detection, population health management, and sophisticated data analysis techniques can be 

implemented. Central hospital can play the role of the cloud, where data collection and patients' records 

analysis can be implemented to provide the needed assistance. 

Monitoring and healthcare service providers: A healthcare service providers can be doctors, 

ambulances, or even a patients' relatives, who provide curative, rehabilitative, or emergency services 

to the patients. 

B. Advantages of sHealth 
In the light of the aforementioned characteristics and requirements of sHealth system, the advantages 

of the proposed system architecture above can be summarized as follows: 

Data Reduction: Various sensors, cameras, and medical devices utilized in sHealth systems are 

continuously generated a massive amount of data every few seconds [2]. For instance, 

Electroencephalogram (EEG) monitoring applications typically use high-resolution headset devices 



containing up to 100 electrodes, each generating data with sampling rate around 1000 samples/s, which 

leads to a data rate of 1.6 Mbps per single device per single patient. Hence, using centralized cloud 

paradigm to support such traffic demand is not advisable and may turn some of the sHealth services to 

be impractical, given the limited radio resources. Accordingly, applying advanced edge-based 

processing techniques at the collected data can significantly decrease the amount of transmitted data 

toward the cloud, hence enhancing energy efficiency and bandwidth consumption. 

Energy Efficiency: SHealth systems usually composed of diverse IoT devices that require to be used 

for a long time before replacement. Thus, continuous data transmission is not possible because of the 

high energy consumption it causes. Optimizing the devices operational states and their data 

transmission at the edge facilitates a better usage of devices' batteries; in addition to the proximity 

between these devices and the edge, which further decreases the energy consumption resulting from 

data transmission (a component that is estimated for example for a wireless EEG monitoring system 

by 70% of the total energy consumption [5]). Accordingly, leveraging adaptive data compression and 

selection of the most convenient radio interface at the edge for data transmission toward the cloud, can 

significantly reduce the energy consumption.  

Swift Response: For real-time monitoring applications, only main information about patients' states 

can be reported to the cloud, in normal health conditions, with loose delay constraint. While, in the 

case of emergency, the swift delivery of intensive amount of data to the cloud is a necessity. To achieve 

that, data is required to be analysed and even a diagnosis is made as close as possible to the patient. 

The proposed sHealth system can address this issue using the ability of the edge node (PDA) to execute 

event detection techniques in order to detect the emergency conditions.  

Location Awareness: The edge node can be fruitfully leveraged to infer important context information 

that is used for localization methods. This brings two main benefits to sHealth system. First, localizing 

a patient facilitates matching his/her geographical location with the nearest caregiver, e.g., hospital or 

ambulance. Second, data transfer can be optimized taking into consideration the nearest mobile edge 

node, or the most convenient device that can forward the data to the cloud, which ultimately improves 

energy efficiency and reliability. 

III. Possible Approaches to be Implemented at the Edge 
This section demonstrates the main functionality that can be implemented at the edge. Specifically, 

different context-aware approaches are presented to optimize medical data delivery and QoS for 

sHealth by moving computational intelligence to the network edge. These approaches include: data-



specific technique, which considers data characteristics such as sparsity to adaptively adjust 

transmitted data size based on application's requirements, and state of the wireless network; application 

specific technique, which uses characteristics related to the application such as class of the data to 

obtain transmitted data type; and network-aware technique that allows the PDA to be connected 

anywhere and anytime, while optimizing network association. 

A. Adaptive In-network Compression 
The classic approach of transferring the entire raw data wirelessly to the cloud requires the 

transmission of an enormous amount of data, which is challenging. A promising methodology to 

address this challenge in sHealth system is to perform local in-network processing and data-specific 

compression on the collected data considering the network state before the transmission. This 

facilitates, on one hand, implementing efficient compression techniques with high compression ratio 

and low signal distortion, on the other hand, decreasing transmitted data size, hence decreasing 

transmission energy. 

A possible approach to tackle this problem is designing a holistic Energy-Cost-Distortion framework. 

This framework leverages the benefits of adaptive compression to optimize not only transmission 

energy consumption, but also to account for monetary cost of using network services as well as the 

requirements on signal distortion for medical data. In particular, this approach formulates a multi-

objective optimization framework that accounts for minimizing the transmission energy consumption 

(at the physical layer), as well as the signal distortion and network utilization cost (at the application 

layer) through obtaining the optimal transmission rate and compression ratio, while maintaining 

latency and Bit Error Rate (BER) constraints [6]. Thus, a PDA can adapt its transmission parameters 

according to wireless channel conditions and application’s characteristics. Thus, the following tasks 

are implemented at the PDA: 

• Receiving from sensor nodes the acquired data, and application layer constraints, e.g., 

maximum BER and latency.  

• Given the wireless network conditions, finding optimal transmission rate and 

compression ratio that provides the optimal trade-off among its objectives (i.e., energy 

consumption, monetary cost, and signal distortion). 

• Compressing collected data. 

• Forwarding compressed data to the cloud. 

Implementing such adaptive compression schemes often leads to a trade-off between energy and 

distortion: the higher the compression ratio, the lower the energy consumption and the higher the 



distortion. This trade-off is demonstrated in Figure 2. As shown, at low compression ratio, the obtained 

distortion is low, while the transmission energy is high. As reducing transmission energy becomes 

more important, i.e., compression ratio is increased, the obtained distortion increases until it reaches a 

maximum target value (i.e., set at 30%), at the expense of reducing transmission energy. This result 

proposes that it is important to develop an algorithm that maintains the optimal trade-off among 

transmission energy and distortion, such that the obtained minimum value of transmission energy 

allows the system to satisfy the required maximum level of distortion accepted by the application. 

 

Figure 2: Trade-off between transmission energy and distortion using adaptive compression. 

Number of solutions have been also proposed in the literature targeting the reduction of energy 

consumption in Body Sensor Networks (BSN). The main aim of these solutions varies, ranging from 

lossiness and computational complexity reduction to the exploitation of spatial or temporal redundancy 

and of waveform transformations (e.g., vector quantization and discrete wavelet transform) [7]. 

Specifically, two main data reduction approaches have been investigated: compressive sensing (CS) 

and feature extraction. The application of CS in BSN has exhibited great promise. The idea of CS is 

to utilize the sparsity of the input signals using random sampling techniques, such that the signal can 

be reconstructed at the cloud from less number of samples than required by the Nyquist rate [7]. The 

main benefit of CS for sHealth is providing high compression ratio, while moving the high 

computational load to the reconstruction phase at the cloud. The second approach, instead, aims at 

extracting and transmitting the most representative features from the collected data that are associated 

with the patient's conditions, which substantially decreases transmitted data size, hence decreasing 

energy consumption, without affecting the detection of the patient's state [8]. 
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B. Event-detection at the edge 
Given the aforementioned requirements and challenges of sHealth system, this approach aims at 

enabling energy-efficient delivery of real-time medical data by developing:  

• A technique for emergency detection at the PDA that identifies the patient's status. 

• A selective data transmission strategy that, leveraging the proposed detection technique 

to map acquired data into different transmission modes considering the patient's status 

and QoS requirements; hence transmitting toward the cloud only the essential and 

representative data, which can further reduce energy consumption in sHealth system. 

Data acquisition, feature extraction, and swift classification are the basis of event detection at the PDA. 

For providing high-intensive monitoring in case of emergency, all collected data from a patient has to 

be frequently reported to the cloud, while in normal conditions, some critical data features describing 

the patient's state can be sufficient. Leveraging this fact, it is important to develop a highly accurate 

classification technique at the PDA that, utilizing some features extracted from the gathered data, in 

order to provide a reliable detection of the patient's state while requiring low computational 

complexity.  

Applying this classification to estimate the patient's state at the PDA has two additional advantages. 

First, it enables a selective data transmission scheme that adopts the most convenient transmission 

mode according to the detected patient's state (see Figure 3). For instance, if no emergency is detected, 

the collected data can be further processed to transmit only those features that are essential for patient 

assessment and treatment. Furthermore, by detecting the state of the patient at the PDA, an efficient 

class-based compression scheme can be also implemented, which accounts for the data characteristics 

and the class of the patient to define the best configuration of the compression parameters [9]. Second, 

a quick emergency notification signal can be sent to notify patient's caregivers in case of emergency. 



 

Figure 3: Energy-efficient data transmission scheme for sHealth system. 

Decreasing energy consumption due to continuous data transmission and monitoring is the major 

objective of the proposed sHealth system. Figure 4 assesses the performance of the proposed sHealth 

system, in terms of PDA's battery lifetime, compared to a mobile-health (m-health) and remote 

monitoring (RM) systems. In m-health system, the PDA compresses the gathered data, with a fixed 

compression ratio = 40%, and transfers the processed data to the cloud. In RM system, the PDA is 

used as a communication hub while conveying all processing tasks to the cloud (i.e., raw data is always 

sent). In this figure, set of experiments have been conducted considering a practical scenario where a 

smartphone with full battery is running as a PDA until it runs out of battery. The PDA's power 

consumption calculations have been estimated using Battery Historian [10]. Moreover, the EEG 

database in [11] is used, which includes three classes of patients: seizure-free (SF), non-active (NAC), 

and active (AC). In our experiments, the compression ratio of sHealth for NAC class is set to 40%. 

Also, 10% of the acquired EEG signals belongs to AC class, 20% belongs to NAC class, and 70% 

belongs to SF class [12]. The selected value for the compression ratio has been chosen based on the 

trade-off between energy consumption and distortion. However, different values can also be selected, 

taking into consideration the QoS requirements, patient's status, wireless network conditions, and 

energy budget at the PDA. Figure 4 clearly illustrates that sHealth system provides significant 

performance improvement in terms of battery lifetime over the RM and m-health methods. For more 

details about the implemented framework, please refer to [12].  
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Figure 4: SHealth, m-health (with C = 40%) and RM battery lifetimes. 

In this context, many machine learning approaches, including supervised, unsupervised and 

reinforcement learning, were proposed in the literature for the classification of diverse applications. 

Shortly, supervised learning techniques require two phases: learning from a labelled training dataset, 

then classifying the testing dataset. Unsupervised learning classifies the acquired datasets into various 

clusters using the correlation in the input data. The third category is reinforcement learning that 

leverages real-time learning, which comprises of the learning of the environmental conditions and the 

utilization of the acquired knowledge, to classify the input data [13]. However, some limitations should 

be considered when applying machine learning techniques in sHealth, including, (i) the trade-off 

between the algorithms' computational complexity and the obtained classification accuracy, (ii) the 

need to process large datasets in order to maintain high accuracy, (iii) it is not trivial to analytically 

formulate the learned model or to control the learning process. 

C. RAN-aware Optimization 
This section discusses the third function through which we can leverage the benefits of MEC, namely, 

Radio Access Network (RAN)-aware optimization. Thanks to the knowledge on the available RANs 

quality and user context, the performance of sHealth system can be enhanced by enabling data transfer 

from edge node to the cloud in an energy-efficient manner, while maintaining a long lifetime of the 

battery-operated devices. However, this poses several challenges as innovative network association 

techniques are required, which account for energy efficiency while meeting application's requirements. 
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A possible approach to tackle the problem of optimizing network association is to adopt a user-centric 

strategy that enables each user to independently select one or more RANs to use simultaneously. The 

selection depends on the user's objectives (i.e., energy saving, monetary cost, or service latency), and 

the characteristics of the available RANs (i.e., throughput, channel quality, and data rate). Furthermore, 

a dynamic weight update mechanism, as in [14], can be incorporated in the  scheme to optimally select 

the RAN(s) taking into consideration both the user battery level and monetary budget. By doing so, 

the selection strategy can achieve the desired level of fairness among different user's objectives while 

significantly enhancing the lifetime of the edge node.  

For concreteness, we consider an example of sHealth application where a user has to connect to the 

available RANs in order to transfer 10 MB/hour of medical data to the Cloud, and its monetary budget 

is 45$. Each of the available RANs has different characteristics as follows: RAN1 has a monetary cost 

per MB €, = 0.3 $/MB, and data rate 𝑅, = 4 Mbps; RAN2 has €. = 0.2 $/MB, and 𝑅. = 3.5 Mbps, 

RAN3 has €I = 0 $/MB, 𝑅I = 2.5 Mbps; RAN4 has €J = 0.1 $/MB and 𝑅J = 3 Mbps.  

 

Figure 5: Selected networks using (a) ASWU, (b) AANS, and (c) RNS. 

Figure 5 and Figure 6 show the performance gain of the Autonomous Selection with Weights Update 

(ASWU) algorithm [14] in terms of user lifetime with varying networks association, compared to two 

baseline algorithms, named Ranked Network Selection (RNS) and Autonomous Access Network 
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Selection (AANS). Herein, the user lifetime is defined as the maximum operating time till the mobile 

user runs out of energy or monetary budget. In RNS, each user computes a score for each of the 

candidate RANs using its multi-objective function, and network with the lowest score is selected. In 

AANS, instead, it considers a multi-objective optimization problem that accounts for user's objectives, 

however the weights of different objectives are assumed to be pre-defined and fixed, while in ASWU 

a dynamic weights update mechanism is developed to maximize user lifetime. Accordingly, in ASWU 

and AANS, a PDA can associate to more than one RAN simultaneously instead of being limited to 

one RAN only (see Figure 5). However, ASWU algorithm efficiently updates the different objectives' 

weights such that the lifetime is maximized. Hence, as user's monetary budget decreases, the 

corresponding cost weight increases; a similar behaviour is obtained with decreasing energy budget. 

It follows that ASWU enables the user to dynamically vary its RANs' association in order to avoid 

reaching zero energy/money budget. Consequently, Figure 6 illustrates that ASWU can improve the 

PDA operating time by 15% with respect to AANS, and by 373% with respect to RNS. 

 

Figure 6: Energy and monetary budgets assessment for the ASWU, AANS, and RNS schemes. 
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data) in order to provide remote access to a patient's record. For instance, detecting and correlating a 

patient with a heart attack who has been prescribed medications in different health entities with 

interacting properties inducing the heart attack, requires coordinated/collaborative data analytic across 

these entities. However, sharing of the medical data owned by a stakeholder is challenging due to the 

privacy concerns and the high cost of data transfer.  

 Accordingly, leveraging cooperative edge that enables the communication between the edges 

of different stakeholders, which are geographically distributed (such as hospitals, pharmacies, and 

health institutions), is valuable in threefold. First, it facilitates distributed information management 

between various stakeholders, thanks to in-network processing at the cooperative edges. Second, it 

allows the patients to transfer their data toward the cloud with the help of other edge nodes by 

exploiting Device-to-device (D2D) communication, which enhances spectrum and energy efficiency 

while enabling data transferring in geographically remote areas [15]. Third, it allows a patient's edge 

to directly communicate with the nearest hospital's edge for getting fast emergency response, without 

going through the cloud, which also assists in improving monitoring and energy efficiency, as well as 

operational cost. 

B. Heterogeneous Sources of Information 
Smart health applications typically rely on data acquisition, aggregation, and real-time analysis of large 

amount of data from different heterogeneous sources (see Table 1). Thus, the proposed sHealth system 

can be adopted to deal with this challenge through: 

Table 1: Common data types in healthcare applications. 

Data type Examples 
Physiological  Electroencephalogram (EEG), Electrocardiogram (ECG), blood 

pressure, Electromyography (EMG), Electrooculography (EOG), 

blood oxygen, respiratory rate, temperature. 
 

Healthcare information Smoking, gene sequence, family history, protein sequence, diabetes, 

medical image. 
 

Behavioral  Sleep time, frequency of wake up, walking speed, rest time and 

frequency, eating time. 
 

Environmental  Surveillance video, pollution density, weather conditions, noise level.  
 

 

• Developing data analytic and vision-based activity recognition techniques at the edge, 

which support real-time processing of such humongous amount of data to perform 

knowledge discovery, features selection, clustering, classification, and event detection. 



This helps also in designing adverse event detection and emergency notification 

schemes using collected data at the edge to detect patient's status and send a quick 

emergency notification to notify patient's caregivers or different health entities in case 

of emergency.   

• Designing event-based data transmission strategy that exploits heterogeneous sources 

of information to provide a compact representation of the relevant data considering not 

only the intra-modality correlation, but also inter-correlation amongst diverse 

modalities, QoS requirements, and characteristics of the gathered data. This allows, on 

one hand, implementing efficient data reduction techniques, on the other hand, reducing 

the amount of transmitted data, hence saving consumed network bandwidth and 

transmission energy. We emphasize that deep learning can be a good candidate for such 

techniques [16], due to its ability to efficiently extract the hierarchical representations 

of the data and learn the different order features from heterogeneous sources of 

information. 

• Leveraging computational intelligence at the edge for implementing data fusion 

algorithms (including probabilistic methods, artificial intelligence, and theory of belief) 

for emergency detection and patient tracking. This multi-modal fusion can significantly 

enhance the overall system reliability through detecting several distress situations. 

Several studies have been presented in the field of behavioural signal processing and recognition 

methodologies for inference of complex human behaviour and psychological states, leveraging multi-

modal data [17], in particularly audio-visual and physiological sensing data. In [18], authors present a 

case study on chronic pain measurement and management exploiting various sensing modalities 

including: activity monitoring from accelerometer and location sensing, audio analysis of speech, and 

image processing for facial expressions. However, many challenges are still open when we come to 

the sHealth. First, it is not straightforward to consider multiple active and passive modalities in sHealth 

system, where energy consumption is a limiting factor. Second, noise artifacts emanate from internal 

sources, such as muscle activities, or from external sources, such as interference and signals offset, 

have severe impact on data quality [19]. 

V. Conclusion 
This chapter proposed our vision of a sHealth system that leverages multi-access edge computing. The 

proposed system architecture can significantly promote the system performance through efficiently 

handling the massive amount of data generated by different medical/non-medical devices at the 



network edge. While addressing the large data size and constrained energy availability of such devices, 

we also account for both applications and data characteristics. In particular, in-network processing like 

compression and event detection has shown great effect on reducing amount of data transmitted to the 

cloud, hence addressing one of the main bottlenecks in sHealth system. In this context, this chapter 

proposed some effective approaches and computing tasks to be implemented at the edge for optimizing 

energy consumption, emergency response time, and bandwidth utilization. Finally, it highlighted the 

main challenges and opportunities of applying edge computing within sHealth that are worth to further 

investigated. 
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