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Abstract—Polynomial chaos-based techniques recently became
popular tools for signal integrity investigations that include the
effects of parameter variability. Most of the available approaches
are limited by the “curse of dimensionality”, apply only to
Gaussian correlations, or they are hindered by the lack of explicit
parametrization or knowledge of the input random parameters.
This paper presents a hierarchical approach for transmission line
analysis, according to which line voltages and currents are mod-
eled as polynomial chaos expansions that are function of the per-
unit-length parameters, rather than of the underlying geometrical
and material parameters. This new approach exhibits some useful
advantages such as non-parametricity (with respect to physical
parameters), higher accuracy for low expansion orders, and a
potential for dimensionality reduction. An application example
involving the transient analysis of a stripline interconnect is used
to illustrate the feasibility of the advocated approach and discuss
its performance.

Index Terms—Non-Gaussian correlation, polynomial chaos,
stochastic Galerkin method, transmission lines, variability anal-
ysis, uncertainty quantification.

I. INTRODUCTION

Polynomial chaos (PC) became widely popular for circuit

simulations that include the effects of parameter variability [1].

PC expands stochastic quantities in terms of orthogonal poly-

nomials and exhibits superior accuracy and efficiency com-

pared to the blind Monte Carlo (MC) method. In particular,

PC was extensively applied to transmission line analysis and

signal integrity investigations [2]–[6].

Generally speaking, there are several longstanding limita-

tions to the effective application of PC to real-life problems.

The so-called “curse of dimensionality”, i.e., the efficiency

decrease with increasing number of uncertain parameters, is

probably the best known. Moreover, independency of parame-

ters is a fundamental requirement. Straightforward extensions

to correlated parameters are available, but only for when they

are Gaussian distributed. Another fundamental requirement is

the preliminary parametrization of the uncertainty: an explicit,

one-to-one correspondence is needed between input uncertain

parameters and stochastic outputs of interest, and it must

be possible to compute the latter for a given realization of

the former. This is not always the case, for example when

the circuit configurations are inherently non-parametrizable or

come, e.g., from measured data.

Tensor-based [7] and hierarchical [8] approaches were pro-

posed to mitigate the dimensionality issue. In [9], suitable

multivariate orthogonal polynomials for arbitrary distributions

were numerically computed by means of a Gram-Schmidt

orthogonalization. The parametrization issue was instead never

addressed within the framework of PC. A non-parametric

approach to generate interconnect responses in a MC-like

fashion, starting from a limited set of input data, was presented

in [10] and [11].

This paper presents a hierarchical PC (HPC) approach for

the stochastic analysis of transmission lines that helps cope

with the aforementioned limitations. The main novelty lies in

the fact that voltages and currents are expanded w.r.t. the line

per-unit-length (p.u.l.) parameters, rather than to the underly-

ing physical parameters. This provides manifold advantages,

such as: 1) a one-to-one correspondence between p.u.l. and

geometrical/material parameters is no longer required; 2) the

problem dimension is reduced if the number of distinct p.u.l.

parameters is smaller than the number of physical random

parameters; 3) a more accurate expansion can be obtained

for low orders, because the relationship between voltages and

currents and p.u.l. parameters is smoother. However, since the

p.u.l. parameters are not independent and turn out to have a

non-standard correlated distribution, the hierarchical method in

[8] cannot be used, but rather the technique in [9] is leveraged

to compute suitable basis functions.

The present paper briefly outlines the proposed HPC ap-

proach. An expanded paper will provide a deeper theoretical

insight and further validations.

II. STOCHASTIC TRANSMISSION LINE ANALYSIS

For the sake of illustration, and without loss of generality,

the discussion is based on a stripline interconnect, whose

cross-section is depicted in the left frame of Fig. 1. The

geometrical and material parameters therein indicated are all

considered as uncertain parameters, leading to a total number

of ten random variables, which are collected into vector ξ.

Figure 1 illustrates in the top diagram the traditional

simulation workflow, denoted as “classical PC” (CPC): the

uncertainty of the underlying physical parameters translates

into a variability of the p.u.l. parameters and of the voltages

and currents. The latter are represented by PC expansions that

are function of the uncertain parameters ξ, i.e.,{
v(z, t, ξ) ≈ ∑K

k=1 vk(z, t)ϕk(ξ)

i(z, t, ξ) ≈ ∑K
k=1 ik(z, t)ϕk(ξ),

(1)



Cross-section

ξ = {h, w1, t1, h1, . . .}
PEC

PEC

h t1

w1 g w2

t2

h1 h2

εr

σ

P.u.l. parameters

Z(s, ξ) , Y (s,ξ)

Voltages and currents

v(z, t,ξ) =
∑

k vk(z, t)ϕk(ξ)

i(z, t,ξ) =
∑

k ik(z, t)ϕk(ξ)

v(z, t,η) =
∑

k vk(z, t)ϕk(η)

i(z, t,η) =
∑

k ik(z, t)ϕk(η)
η

C
P
C

H
P
C

Fig. 1. Workflow of PC-based simulations. In the CPC, line voltages and
currents are expanded w.r.t. the underlying physical uncertain parameters ξ.
In the proposed HPC, they are expanded w.r.t. the intermediate parameters η,
associated to the line p.u.l. parameters.

where the basis functions ϕk are a suitable set of polynomials

orthogonal to the joint distribution of ξ, whereas vk and

ik are the corresponding voltage and current coefficients,

respectively. Thanks to orthogonality, voltage average and

standard deviation are readily estimated as

E{v(z, t, ξ)} ≈ v1(z, t), (2)

Std{v(z, t, ξ)} ≈
√∑K

k=2 v
2
k(z, t), (3)

and similarly for the currents.

Several approaches are available for the determination of

the expansion coefficients [5]. Galerkin-based approaches

construct a deterministic, yet augmented transmission line

equation: ⎧⎪⎨⎪⎩
d

dz
Ṽ (z, s) = −Z̃(s)Ĩ(z, s)

d

dz
Ĩ(z, s) = −Ỹ (s)Ṽ (z, s),

(4)

where z denotes the longitudinal coordinate, s is the

Laplace variable, whereas Ṽ = (V T
1 , · · · ,V T

K)T and Ĩ =
(IT

1 , · · · , IT
K)T collect the Laplace-domain counterparts of

the voltage and current coefficients in (1). The pertinent

augmented p.u.l. matrices Z̃ and Ỹ are constructed from

the coefficients of the PC expansion of the original p.u.l.

matrices Z and Y . In this paper, a numerical inverse Laplace

transform (NILT) [12] is used to obtain the time-domain

coefficients after solving (4).

III. PROPOSED HIERARCHICAL APPROACH

The state-of-the-art approach, in which stochastic voltages

and currents are expanded in terms of the uncertain physical

parameters, is sometimes inconvenient. An example is when

the number of such parameters is larger than the number

of distinct p.u.l. parameters. In some cases, data of p.u.l.

parameters could be available without explicit knowledge of

the physical parameters they were computed for.

For the abovementioned reasons, a hierarchical approach is

proposed in this paper. As illustrated in the bottom diagram of

Fig. 1, voltages and currents are expanded w.r.t. a new set of

intermediate variables η, associated to the p.u.l. parameters,

disregarding the underlying physical parameters ξ. The main

difficulty that arises is that the entries of the p.u.l. matrices are

related to each other, and therefore these parameters cannot be

considered to be independent. This makes the standard PC, as

well as other hierarchical approaches like [8], inapplicable.

To solve this issue, suitable orthogonal polynomials for

the p.u.l. variables are computed based on a Gram-Schmidt

orthogonalization [9], which generically applies to arbitrary

correlated distributions. The starting point is a set of linearly

independent multivariate monomials:

M = {Ψ1(η),Ψ2(η), . . .} = {1, η1, η2, . . . , η21 , η1η2, . . .}.
(5)

The orthogonal polynomials are recursively computed as⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ̂k(η) = Ψk(η)−

k−1∑
j=1

E{Ψk(η)ϕj(η)}ϕj(η)

ϕk(η) =
ϕ̂k(η)√
E{ϕ̂2

k(η)}

(6)

for k > 1, starting from ϕ1 = 1. In (6), the expectations

are computed based on the multivariate joint distribution of

the new variables η by means of MC integration. This is

computationally tractable, as only analytical functions need

to be evaluated in this process. The distribution of the vari-

ables η is estimated from the available samples of the p.u.l.

parameters. In order to have a convenient closed form, the

actual distribution is fitted with a mixture of Gaussians, which

is a flexible model that allows reproducing any arbitrary

distribution shape. Once the basis functions are computed, they

are used in (1) to expand voltages and currents in terms of the

new variables η. The rest of the PC framework is unvaried.

As a by-product of the advocated approach, the HPC

expansion is expected to be more accurate for a given order,

as voltages and currents are modeled directly in terms of the

intermediate p.u.l. parameters and their distribution, regardless

of their further relationship with the underlying physical

parameters.

IV. VARIABLE DEFINITION

This section discusses the definition of the intermediate

variables η. For the stripline interconnect depicted in Fig. 1,

the frequency-dependent p.u.l. impedance matrix is expressed

as follows:

Z(s, ξ) = Rdc(ξ) +
√
s/πRhf(ξ) + sLdc(ξ), (7)

where the stochastic and frequency-independent resistance

and inductance matrices Rdc, Rhf , and Ldc, depend on the

random physical parameters ξ, and they are therefore random

themselves. Their entries become the new random variables η,

w.r.t. which the line voltages and currents are expanded. These

new variables are defined as

Rdc =

(
Rdc,11 0

0 Rdc,22

)
=

(
η1 0
0 η2

)
,

Rhf =

(
Rhf,11 Rhf,12

Rhf,21 Rhf,22

)
=

(
η3 η4
η4 η5

)
,

Ldc =

(
Ldc,11 Ldc,12

Ldc,21 Ldc,22

)
=

(
η6 η7
η7 η8

)
,



where it has been considered that Rdc,12 = Rdc,21 = 0 under

the assumption of PEC ground planes, and that Rhf,12 =
Rhf,21 and Ldc,12 = Ldc,21 because of reciprocity.

Under the assumption of negligible dielectric losses, the

p.u.l. admittance is simply given by

Y (s, ξ) = sCdc (8)

where, owing to the line homogeneity,

Cdc =

(
Cdc,11 Cdc,12

Cdc,21 Cdc,22

)
= μ0ε0εrL

−1
dc

=
μ0ε0 · η9
η6η8 − η27

(
η8 −η7

−η7 η6

)
.

(9)

In (9), an additional variable η9 is associated to the random rel-

ative permittivity εr. The total number of random variables η
in thus nine.

V. NUMERICAL RESULTS

For the validation, a stripline with the following nominal

parameters is considered: h = 20 mil, w1 = w2 = 5 mil,

t1 = t2 = 0.6 mil, h1 = h2 = 10 mil, g = 5 mil,

εr = 4, σ = 58 MS/m (copper). One of the two traces is

excited at the near end with a pulse voltage source with an

internal resistance of 100 Ω, an amplitude of 1 V, rise/fall

times of 200 ps, and a duration of 2.8 ns. The other trace is

terminated with a 100-Ω resistor. Both traces are terminated

by 1-pF capacitances at the far end, and a length of 10 cm

is considered. The p.u.l. parameters are computed by means

of a field solver and, for the HPC simulation, a mixture of

Gaussians distribution is fitted to the intermediate variables

defined in Section IV. Reference MC results are obtained by

means of transient SPICE simulations. For the CPC and HPC

results, a NILT is applied to the Laplace-domain solution of

(4).
Figure 2 illustrates the variability of the far-end transmitted

voltage (left panels) and crosstalk (right panels) by considering

a 5% relative standard deviation of the random physical

parameters. The top panels show a subset of MC samples

(gray lines) highlighting the variability of the voltages as

a result of the uncertainty, as well as the average voltage

computed from 5000 MC samples (solid blue lines), or with

the CPC expansion (dashed red line) and proposed HPC

expansion (dotted green line). The excellent agreement is

further confirmed by the central and bottom panels comparing

the standard deviations. In particular, the bottom panel shows

that a first-order HPC expansion is already very accurate, as

opposed to a CPC expansion of the same order. This can

be understood by the fact that line voltages are smoother

functions of the p.u.l. parameters rather than of the geometrical

and material parameters, as already noted. A higher accuracy

of the HPC is also observed for a second-order expansion

(central panels).
For a more quantitative assessment of the modeling accu-

racy, the following error measure on the standard deviation is

introduced:

E =
1

T

∫ T

0

|StdPC(t)− StdMC(t)| dt, (10)

Fig. 2. Variability of the far-end transmitted (left panels) and crosstalk (right
panels) voltages for a 5% parameter variation. Top panels: subset of MC
samples (gray lines) and average computed from the MC samples (solid blue
lines), CPC expansion (dashed red lines) and HPC expansion (dotted green
lines). Central and bottom panels: standard deviation for different PC orders
(the same color code is used).

where T is the maximum observation time (here set to 12 ns).

Briefly speaking, the error is defined as the integral of the area

between the PC curve and reference MC result. A Simpson’s

quadrature rule is used to evaluate the integral. Table I collects

the errors for the terminal voltages, including the near-end

crosstalk (not shown in Fig. 2 due to the lack of space). The

figures confirm the superior accuracy of the proposed HPC.
Next, the relative standard deviation of the random parame-

ters is increased to 10%. Figure 3 shows the updated plots for

the far-end terminal voltages. The larger uncertainty causes a

much broader variability of the voltage levels. Nevertheless,

the HPC expansion is still remarkably accurate, even for

order one. In this case, 15000 MC samples are used to

calculate the reference results. Table I collects the errors of

the CPC and HPC approaches also for this second scenario.

The figures corroborate the previous conclusions, although

in this case the HPC is not always more accurate than the

CPC for the second-order expansion. The reason is probably

a numerical inaccuracy in the evaluation of the basis functions

and expansion coefficients.
The computational times are similar for the two scenarios

considered and they are collected in Table II. The HPC has

the additional overhead of numerically computing the basis

functions, which are instead standard and available for the

CPC. The calculation of the augmented p.u.l. matrices in (4)

takes similar time for the two methods. Instead, the solution

of (4) is slightly faster for the second-order HPC simulation,

because the number of uncertain parameters is reduced from

ten to nine, leading to a smaller dimension of the Galerkin

problem. The achievement is however significant considering

that a first-order HPC expansion has comparable accuracy as



TABLE I
ERROR BETWEEN CPC/HPC EXPANSIONS AND MC RESULTS.

variation quantity
order 1 order 2

CPC HPC CPC HPC

5%

far-end transmission 2.9915e-04 1.9635e-04 8.6582e-05 8.1490e-05

near-end crosstalk 4.1755e-04 2.4029e-04 1.2283e-04 1.1526e-04

far-end crosstalk 2.6472e-04 1.3034e-04 6.7092e-05 5.9144e-05

10%

far-end transmission 9.3660e-04 5.8507e-04 3.5322e-04 4.4294e-04

near-end crosstalk 2.6854e-03 1.1444e-03 9.2660e-04 6.8755e-04

far-end crosstalk 1.0048e-03 4.6998e-04 2.8028e-04 3.7999e-04

Fig. 3. Variability of the far-end transmitted and crosstalk voltages for a 10%
parameter variation.

TABLE II
COMPUTATIONAL TIMES FOR THE CPC AND HPC APPROACHES.

method basis functions augmented matrices line solution

CPC (order 2) — 49.7 s 57.2 s

HPC (order 2) 75.0 s 45.5 s 44.5 s

CPC (order 1) — 8.0 s 2.3 s

HPC (order 1) 3.2 s 0.3 s 2.4 s

a second-order CPC expansion, leading to a 94.5% reduction

in the overall simulation time. The speed-up becomes more

relevant when the dimensionality reduction in the hierarchy is

more substantial.

VI. CONCLUSIONS

This paper discussed a HPC approach for the stochastic

analysis of transmission lines. As opposed to state-of-the-art

implementations, the PC expansion of the line voltages and

currents is computed w.r.t. the line p.u.l. parameters, rather

than of the underlying physical parameters. The technique

was illustrated by means of its application to the time-domain

analysis of a stripline interconnect with frequency-dependent

losses. It is shown that it is a viable solution that can achieve

good accuracy with a lower expansion order. The approach is

beneficial whenever the number of p.u.l. parameters is smaller

than the number of random physical parameters, or when

the latter cannot be explicitly defined. Further examples and

validations will be provided in an expanded paper.
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