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Abstract—This paper investigates the efficiency of a pertur-
bative approach for the statistical assessment of differential
transmission lines affected by random parameters. Within the
polynomial chaos framework, the novel technique reformulates
the so-called stochastic Galerkin method in a decoupled and iter-
ative fashion. Instead of solving the classical, augmented and fully
coupled transmission line equations, the new approach iteratively
solves multiple uncoupled line equations with nominal per-unit-
length parameters and suitable equivalent distributed sources
accounting for their variability. The methodology is applied to
a system of up to four PCB differential pairs. A computational
advantage is observed against the classical stochastic Galerkin
method for large problems in terms of number of random
parameters and/or conductors.

Index Terms—Differential signaling, perturbation technique,
polynomial chaos, statistical analysis, stochastic Galerkin method,
transmission line modeling.

I. INTRODUCTION

Differential signaling is widely adopted in modern high-
speed electronic systems for the mitigation of detrimental
effects such as crosstalk and radiated emission/susceptibility.
A symmetric and perfectly balanced differential line (DL)
limits the signal transmission to the differential mode (DM),
generating no common mode (CM) noise. However, manufac-
turing variability may in practice break the symmetry of the
line geometry, thus giving rise to DM-to-CM conversion and
degrading signal integrity and electromagnetic compatibility
performance.

Some recent papers investigated mode conversion from a
theoretical viewpoint in various deterministic scenarios [1]–
[7]. Nevertheless, a statistical assessment is extremely bene-
ficial, as the source of such asymmetry is often stochastic in
nature.

In recent literature, the method of generalized polyno-
mial chaos expansion (PCE) has been extensively used for
stochastic signal integrity analysis [8]– [10]. It was shown
that using the PCE, in particular in conjunction with the
stochastic Galerkin method (SGM), allows outperforming the
blind and brute-force Monte Carlo (MC) method. This is
true at least for a moderate number of random variables
(RVs), whereas the efficiency rapidly decreases as the number
of parameters increases, as a consequence of the so-called

“curse of dimensionality” [11]. Indeed, the SGM projects the
stochastic telegraphers’ equations onto the polynomial basis
functions, and results in equivalent, deterministic telegraphers’
equations of larger size in the unknown PCE coefficients. The
system size scales rather inconveniently with the number of
RVs, thus limiting the applicability to problems with a small
to moderate number of parameters.

A preliminary approach for mitigating this issue was pre-
sented in [12], in which an iterative and decoupled refor-
mulation of the SGM was introduced that builds upon a
perturbation approach. In this previous work, only a proof of
principle was presented based on a single DL, showing the
feasibility of this alternative approach. In the present paper,
the technique is applied to more challenging examples, and
the scaling of the efficiency with respect to the number of
parameters is assessed. It is thus confirmed that the proposed
perturbative reformulation outperforms the classical SGM for
larger problems. As a test case, a structure with up to four
uniform PCB differential lines and 15 RVs is considered.

II. CLASSICAL AND PERTURBATIVE SGM FORMULATIONS

In this section, the perturbative reformulation of the SGM,
originally presented in [12] for a single DL, is extended
to the general case. The starting point for the discussion
are the well-known frequency-domain telegraphers’ equations
for a multiconductor transmission line (MTL) with N signal
conductors, which read [13]

d

dz
V(z, ω) = −Z(ω)I(z, ω) (1a)

d

dz
I(z, ω) = −Y(ω)V(z, ω), (1b)

where ω is the angular frequency, Z,Y ∈ RN×N are the
per-unit-length (p.u.l.) impedance and admittance matrices,
whereas vectors V, I ∈ RN collect voltages and currents along
the conductors. In the following, the variable ω is omitted for
brevity of notaiton.

If the MTL is affected by a certain number d of RVs,
embedded in vector ξ = [ξ1, . . . , ξd], the impedance and
admittance matrices, as well as the voltage and current vectors,



are inherently ξ-dependent and hence stochastic. In the frame-
work of generalized polynomial chaos, stochastic quantities
are expressed as PCEs [8], e.g.,

Z(ξ) ≈
K∑

k=0

Zkϕk(ξ) (2a)

V(z, ξ) ≈
K∑

k=0

Vk(z)ϕk(ξ), (2b)

where the impedance coefficients Zk are determined based
on the known variability of the geometry, while the voltage
coefficients Vk are to be determined. Analogous relations hold
for the admittance matrix and the vector of currents. From the
PCEs (2), statistical information is readily obtained by post-
processing. The number of coefficients is related to the number
of RVs d and polynomial order p by K+1 = (p+d)!/(p!d!).

Replacing the PCEs (2) into (1) and performing a Galerkin
projection, yields the following deterministic though aug-
mented MTL-like equations in the PCE coefficients:

d

dz
Ṽ(z) = −Z̃Ĩ(z) (3a)

d

dz
Ĩ(z) = −ỸṼ(z), (3b)

with Ṽ = [V0, . . . ,VK ]T and Ĩ = [I0, . . . , IK ]T , whereas
Z̃ and Ỹ are block matrices constructed using a suitable
combination of the coefficients Zk and Yk. The size of
equations (3) is N(K + 1) and rapidly becomes intractable
when the number of RVs and/or expansion order is increased,
due to the coupled and dense nature of the involved matrices.

Nonetheless, it is possible to factor out the block-diagonal
components Z0,Y0, corresponding to the average of the
impedance and admittance matrices. This allows rewriting (3)
as

d

dz
Ṽ(z) = −(I⊗ Z0)̃I(z) + (I⊗ Z0 − Z̃)̃I(z) (4a)

d

dz
Ĩ(z) = −(I⊗Y0)Ṽ(z) + (I⊗Y0 − Ỹ)Ṽ(z), (4b)

where I is the identity matrix ∈ R(K+1)×(K+1), and ⊗ denotes
the Kronecker product.

Equations (4) are formally equivalent to (3). However, it is
now noted that the first matrix term in the r.h.s. of (4) i) has
a block-diagonal structure and ii) is much larger (in norm)
than the second one. The second point can be understood by
considering that the PCE is typically dominated by the zero-
order coefficient (average value). These two considerations
allow relaxing (4) and further recasting them as a set of
uncoupled and iterative subproblems:

d

dz
V

(m)
k (z) = −Z0I

(m)
k (z) +

[
I⊗ Z0 − Z̃

]
k∗

I
(m−1)
k (z)

(5a)
d

dz
I
(m)
k (z) = −Y0V

(m)
k (z) +

[
I⊗Y0 − Ỹ

]
k∗

V
(m−1)
k (z),

(5b)

where m is the iteration index, while the notation [ · ]k∗ denotes
the kth row matrix block.

Equations (5) correspond to the telegraphers’ equations of
an MTL with distributed sources [13], which require integra-
tion along the line length. At every iteration, each PCE coef-
ficient Vk and Ik is solved independently for k = 0, . . . ,K.
This is possible because the distributed sources only depend
on the solution at the previous iteration, and they are therefore
explicitly known at a given step. The procedure is terminated
based on the convergence of the solution in relative difference.

Despite the integration of the distributed sources, the de-
coupled nature of (5) allows for a faster solution w.r.t. the
original coupled problem (3), even when a relatively high
number of iterations is required. Indeed, the computational
cost of the new solution scales linearly with the number of
PCE coefficients. The assessment of the efficiency scaling is
the main subject of the present paper and is discussed in the
next section.

III. APPLICATION TO MULTIPLE DLS
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Fig. 1. Test structure with multiple differential pairs. Cross-sectional view of
the case study with N = 8 conductors (4 DLs).

In order to generate different test cases of increasing com-
plexity, a modular PCB structure consisting of up to four
differential pairs is considered, as depicted in Fig. 1. The RVs
that are possibly taken into consideration are the trace widths
(nominal value of wi = 0.6 mm, i = 1, . . . , N ) and their
separations (nominal values of Di = 1.1 mm, i = 1, . . . , N/2,
and Si = 2.2 mm, i = 1, . . . , N/2 − 1), all independent
and Gaussian with a relative standard deviation of 10%. The
other geometrical and material parameters are as follows:
h = 1.425 mm, t = 0.035 mm, εr = 4.4, tan δ = 0.001. The
traces are made of copper with a conductivity of 58 MS/m.
Eight scenarios are investigated, as summarized in Table I: the
number of differential pairs is increased from one to four. For
each structure, two cases are considered, one with variability in
the trace widths only, and one with variability in both the trace
widths and their separations. This allows generating a relevant
collection of test cases, with a number of RVs ranging from
2 to 15, and complexity in terms of matrix size ranging from
12 to 1088.

Statistical estimates of the mixed-mode S-parameters are
evaluated by means of the perturbative reformulation of the
SGM outlined in Section II, and compared versus the predic-
tions obtained by the MC method and classical SGM. For all
test cases, a second-order PCE is used. As an example, Fig. 2
shows the mean value and standard deviation of |Sc8d1| for
the configuration with four DLs and eight RVs. An excellent
accuracy is established. Similar accuracy is observed also for
other S-parameters and test cases. It is important to remark



TABLE I
TEST CASES AND COMPLEXITY

Number of conductors N Number of RVs and SGM problem size
Case 1 Case 2

d N(K + 1) d N(K + 1)

2 (1 DL) 2 12 3 20
4 (2 DLs) 4 60 7 144
6 (3 DLs) 6 168 11 468
8 (4 DLs) 8 360 15 1088

that the difference w.r.t. the classical SGM can be arbitrarily
reduced by considering a sufficiently high number of itera-
tions. For the considered test cases, the iterations required to
achieve 0.1% convergence range from 3 up to a maximum of
19, depending on the frequency point.
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Fig. 2. Statistical estimates (average and standard deviation) of |Sc8d1| in the
configuration with four DLs and eight RVs. The results are computed with
MC (solid gray line), classical SGM (dashed black line), and perturbative
SGM (dotted green line).

Fig. 3 compares the speed-ups obtained by the classical
and perturbative SGM formulations against the standard MC
simulation (10000 samples). The comparison clearly shows
that the proposed perturbative SGM outperforms the classical
SGM for problems with eight RVs or more, and remains more
efficient than MC even for the problem with 15 RVs. This
is quite remarkable, since the perturbative SGM requires the
evaluation and integration of the distributed sources along the
line, as opposed to MC and the classical SGM.

IV. CONCLUSION

In this paper, the efficiency of the perturbative reformu-
lation of the SGM for MTLs is investigated for problems
with increasing complexity in terms of equation size. The
perturbative SGM solves the originally coupled SGM problem
in an iterative and uncoupled manner, thus achieving a sig-
nificant efficiency improvement. Several PCB configurations
with multiple DLs are used as test cases. It is shown that the
perturbative SGM outperforms the classical SGM for problems
with more than eight RVs, while still beating MC up to at least
15 RVs. Future work will extend the advocated approach to
the analysis of nonuniform MTLs.
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Fig. 3. Speed-up of the classical and perturbative SGM implementations w.r.t.
MC analysis. Markers • and N refer to cases 1 and 2 in Table I, respectively.
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