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Abstract 

 

Very recently, a Weibull-based probabilistic strategy has been successfully applied to bundles of 

wires to determine their overall stress-strain behaviour, also capturing previously unpredicted 

nonlinear and post-elastic features of hierarchical strands. This approach is based on the so-called 

“Equal Load Sharing (ELS)” hypothesis by virtue of which, when a wire breaks, the load acting on 

the strand is homogeneously redistributed among the surviving wires. Despite the overall 

effectiveness of the method, some discrepancies between theoretical predictions and in silico Finite 

Element-based simulations or experimental findings might arise when more complex structures are 

analysed, e.g. helically arranged bundles. To overcome these limitations, an enhanced hybrid 

approach is proposed in which the probability of rupture is combined with a deterministic mechanical 

model of a strand constituted by helically-arranged and hierarchically-organized wires. The analytical 

model is validated comparing its predictions with both Finite Element simulations and experimental 

tests. The results show that generalized stress-strain responses - incorporating tension/torsion 

coupling - are naturally found and, once one or more elements break, the competition between 

geometry and mechanics of the strand microstructure, i.e. the different cross sections and helical 

angles of the wires in the different hierarchical levels of the strand, determines the no longer 

homogeneous stress redistribution among the surviving wires whose fate is hence governed by a 

"Hierarchical Load Sharing (HLS)" criterion. 

 

 

1. Introduction 

 

Fibre Bundle Models (FBM) were first introduced in the 1920s and first comprehensively developed 

by Daniels about twenty years later (Daniels, 1945) to describe failure processes in a large number of 

materials and settings, the success of the approaches depending on their relative simplicity, the clear 

underlying physics and the capability of preserving some key aspects which ensured to capture with 

sufficient richness the overall mechanical behaviour of the structures. Essentially, at a certain scale 

the material is modelled as a network of fibres, arranged in parallel and/or in series and subject to 

uniaxial force, with failure mechanisms governed by a statistical (Weibull) distribution of wire yield 

strengths. An Equal Load Sharing (ELS) hypothesis is assumed and, when fibres progressively 

fracture or reach a stress threshold as the external load increases, the stresses are redistributed 
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uniformly among the remaining fibres in the bundle (Pradhan, 2010). This type of model allows the 

study of fracture processes evaluating statistical fluctuations, rather than average values. Thus, FBMs 

have been used as numerical tools to describe phenomena such as creep and fatigue, but also failure 

processes in networks, traffic jams, or earthquakes. In particular, recently, the topic has enjoyed 

renewed interest due on one hand to more advanced computational tools, and on the other to the study 

of biological materials, which very often exhibit a fibre-based structure (Meyers, 2008). In fact, a 

large number of biomaterials are inherently hierarchical, often including several hierarchical scale 

levels, as one can for instance observe in tendons or in spider silk. In many cases these natural 

materials have been found to display exceptional simultaneous strength and toughness characteristics, 

which are hard to replicate in artificial media (Ritchie, 2011). Various mechanisms contribute to 

confer enhanced and somehow optimal mechanical behaviours to these classes of hierarchically 

organized biomaterials, including strategic sacrificial bonds, efficient arrangements of the 

reinforcements for crack deviation, crack bridging effects, as well as multiscale energy dissipation 

mechanisms. Attempts have been made to replicate these toughening effects in artificial fibres, e.g. 

using knots as energy dissipators (Pugno, 2014; Bosia, 2016). To model toughening mechanisms in 

fibre bundles or textiles, one however needs to correctly reproduce effects related to the hierarchical 

organization and hierarchical implementations of FBMs have been to this purpose presented in the 

literature (Pugno, 2008). Additionally, complex structural arrangements can arise, e.g. helically 

arranged fibres around a central fibre or bundle. Although fibre twisting and friction can be taken into 

account phenomenologically in a FBM, as done in (Pan, 1993) and (Pugno, 2012), this approach 

requires the introduction of additional parameters that need to be derived experimentally or 

theoretically. A number of authors have addressed the problem of verifying the validity of the ELS 

hypothesis, and failure models for fibre bundles or composite materials have been developed with 

Local Load Sharing (LLS) assumptions (Zhou, 1995; Newman, 2001; Okabe, 2002; Pimenta, 2013; 

Swolfs, 2013). However, these cannot completely capture some emerging failure mechanisms, 

nonlinear generalized stress-strain behaviours and torsion-elongation coupling in presence of 

complex hierarchical, interwoven fibre bundles. As a consequence, with the aim of updating the 

previously mentioned models and starting from the idea of considering statistical Weibull-like 

distributions of mechanical properties for the wires, here we propose a bottom-up approach to first 

trace the actual role played by helical arrangements in hierarchical bundles (or strands), to finally 

combine new ad hoc theoretical findings with ELS-based insights to develop a hybrid probabilistic-

deterministic model. 

 

2. Mechanics of the wires and overall strand response 

 

Within the general framework of the theory of naturally curved rods by Love (1944), we derive here 

a mechanical model able to predict the response of simple and of hierarchical strands, subject to 

overall prescribed load or displacement boundary conditions. In particular, self-equilibrating tensile 

axial forces F  and torques tM  exerted at the strand extremities will be considered, together with the 

corresponding generalized overall deformations, represented by the elongation   and the torsion per 

unit length,  . The resulting constitutive relations for the strand are then explicitly derived on the 

basis of selected key geometrical and mechanical parameters. In the case of a multilayered straight 

strand these parameters are, for each generic i th−  layer, the wire helix angle i , the radii of the wire 

cross sections iR , the helix radius ir , the number of wires iN , and the Young’s moduli, Poisson ratios 

and stress thresholds of the constituent materials. 

With reference to the mechanics of a generic straight strand structure, namely a Multi-layered Straight 

Strand (MSS) constituted by a central core surrounded by a number of layers made of helically wound 

wires, let us consider a cylindrical reference system with coordinates   3, ,r t z R , z  being the 
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strand axis (see Figure 1A). By following the approach suggested by Love (1944), an additional 

helical reference system, based on a Cartesian coordinate system whose unit vectors are  1 2 3, ,e e e , 

is locally placed over the generic cross section of each wire. In particular, the unit vector 3e  is tangent 

to the wire centreline, while the unit vector 2e  is chosen to be normal to the 1 3−e e  plane where the 

helical wire centreline lies and bending is expected during deformation. Here, a MSS made of mN  

layers, each of which constituted by iN N  wires, with {1, 2,..., }i m , is adopted as a basic scheme 

to introduce the kinematics of the strand model unit, from which hierarchically organized structural 

configurations of growing complexity can be conceived. The layers are thus numbered so that 1i =  

is the inner core wire, while i m=  indicates the external layer. Thus, the MSS configuration 

represents the generic wire arrangement in a straight strand. However, simple straight strands with a 

single layer of wires (such as in Figure 1B, composed by a central core surrounded by a six-wire 

layer), as well as multiple-core strands characterized by the assembly of several straight strands, can 

also be studied by following the same strategy proposed below. The results can therefore be 

straightforwardly generalized to more complex hierarchical strand microstructures such as those 

shown in Figure 1C. Each generic MSS i th−  layer is made by wires having circular cross sections 

with radii iR , wrapped helically around the ( 1)i th− −  inner layer, with helix radius 
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1 1

1
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i

i j i
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r R R R i
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=
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All the wires of the i th−  layer are assumed to lie in the same initial helical configuration, and the 

helical angle i  refers to the normal to the strand cross-section. Additionally, two further parameters 

are introduced for computational convenience, e.g. the complementary angle / 2i i  = − , 

measured with respect to the strand axis, and the helical pitch of the outer wires in the strand, 

2 tani i ip r = . 

In modelling the strand, some key geometrical and mechanical assumptions are introduced, 

essentially following the idea by Costello (Costello, 1976). First, the overall strand length is assumed 

to be sufficiently large to avoid end effects. Furthermore, it is assumed that the wires of a generic 

layer do not touch each other but all of them are in contact with the adjacent layers. Friction between 

wires and core and among adjacent layers is hence hypothesized to be sufficient to avoid any relative 

slip, and interlayer pressure effects and contact deformations are instead taken into account. 

From the mechanical point of view, the strands are assumed to exhibit linear elastic behaviour up to 

a prescribed threshold, say the yield stress, then standard (perfect) plasticity with constant stress for 

increasing strains. Alternatively, for a selected stress threshold, an elastic-brittle law can also be 

considered to describe the post-elastic mechanical behaviour of the wires, as actually implemented 

through a stepwise procedure in the considered examples to compare theoretical and numerical 

results. Instead, further dissipative phenomena such as inter-wire slipping, wire flattening and plastic 

deformations at the layer interfaces are neglected. In this respect, Utting and Jones (Utting and Jones, 

1987) focused their attention on inter-wire friction of a strand in the case of small deformations and 

showed experimental results which demonstrated a small influence of such effects on the global 

strand behaviour. Also, Nawrocki and Labrosse  (Nawrocki and Labrosse, 2000) performed studies 

on inter-wire contacts using Finite Element numerical models, highlighting that rolling and sliding 

might influence the overall mechanical response of strands through pivoting between wires of 

adjacent layers. Nevertheless, comparisons of the results of numerical analyses and experimental data 

seems to suggest that pivoting is a stress-free phenomenon, at least for small and moderately large 
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deformations, thus allowing to neglect these local effects and to simply correlate wire kinematics to 

the overall degrees of freedom of the strand. As a consequence, according to the theory of rods, a 

single wire reacts to the overall loads macroscopically applied to the strand exhibiting a combined 

deformation regime characterized by local elongation, bending and twisting. All the strand filaments 

are thus assumed to be isotropic and linear elastic up to a prescribed limit stress value, with Young’s 

moduli iE  and Poisson ratios i  (" "i denoting the wire material of the generic i th−  layer). 

Equivalently, corresponding Lamé moduli, 1[(1 ) (1 2 )]i i i i iE    −=  +  −  and 12 (1 )i i iE  −=  + , 

will be also introduced below for convenience. 

 

 

2.1. Kinematics at the wire level 

 

Neglecting overall bending of the structure (i.e. the resultant bending moment at the extremities), it 

is possible to completely describe the global deformation of a strand through two generalized strain 

measures, i.e. the strand axial elongation 

 

0

0

L L

L


−
=         (2) 

 

and the strand torsion, defined as twist angle per strand unit length, as follows 

 

0L



=    (3) 

 

where 0L  and L  respectively refer to the strand length in initial and stressed configurations and   

denotes the relative twist angle between two strand cross sections at a distance 0L . 

Starting from the Ramsey wire rope theory (Ramsey, 1988; Ghoreishi, 2007), it is possible to 

construct a model that allows to take into account the deformation due to the inter-wire contact due 

to the Poisson’s ratio effect, including local phenomena into the overall strand kinematics, as 

described in detail below. 

In the local helical reference system whose unit vectors are  1 2 3, ,e e e  (see Figure 1A) the unstrained 

(natural) curvatures of the wires in the generic layer of the strand can be defined as follows: 

 
2

0 0

cos
0, ' i

i i

ir


 = =    (4) 

 

where 0i  and 0'i  are the curvatures in the planes whose normals are 1e  and 2e , respectively, while 

the axial twist around 3e  is 

 

0

sin cosi i
i

ir

 
 =             (5) 

 

As the strand is loaded, each wire assumes a deformed helical configuration coaxial with the initial 

helix (Costello 1990). The updated curvatures and twist therefore take the form 
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0 ' ,iD iD iD

iD iD iD

iD iDr r

  
  = = =        (6) 

 

where iDr  and iD  are the radius and the angle of the deformed helix of the wires belonging to the 

i th−  layer. It is worth noticing that, because no overall bending is applied to the strand, curvature 

0i  in the plane 2 3−e e  and its related variation 0i iD i   = − , both remain zero in every section. 

Small strand deformations imply that { , } 1    and consequently second order terms can be 

neglected in the calculations. According to the general theory of thin rods (Love 1944), the helical 

angle increment i iD i   = −  and axis wire elongation 
i  can be related to the global strand 

deformations,   and  , through the following equation 
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which is the relation that accounts for the coupling effect between torsion and elongation along the 

strand axis. Following the approach proposed by Costello (Costello 1990), the kinematics of the 

single wires is fully defined through three parameters: the local elongation 
i  measured along the 

wire axis, the local difference in wire curvature 'i  in the plane 2 3−e e  and the wire twist angle 

variation i . Finally, the linearization obtained by taking only the first order the terms { , }i   in 

the strain measures gives the wire elongation along its axis as 

 

tan

i
i

i


 




= −            (8) 

 

and the wire bending curvature in the 1 3−e e  plane, 0' ' 'i iD i   = − , becomes 
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while the wire torsion 0i iD i   = −  takes the form 
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As a result of the assumed kinematics and due to the Poisson’s ratio effect, the radial deformation 

ir  of the helix radius ir  can finally be expressed as follows 
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      (11) 

 

where, for the MSS, the local core strain value is taken to be coincident with the global ones, that is 

1  . 

 

2.2. Equilibrium and generalized stress-strain constitutive relations at the wire level 

 

In terms of equilibrium, three components of the resulting forces can be traced on each wire cross 

section of the generic i th−  layer: two shear components directed along the 1e  and 2e  directions, say 

iS  and 'iS , respectively, and the tensile force, iT , along 3e  (see Figure 1A). Furthermore, three 

resulting moments (two bending moments and a torque) also emerge on the wire cross sections, two 

lying respectively in the planes whose normals are 1e  and 2e , say iG  and 'iG , and the torsion iH  

acting on the cross section plane. In the present case, the shear force iS  vanishes since 0 0i = , as 

does the bending moment iG  because 0iD = . Also, although classical body forces are neglected, 

the contact forces per centreline unit length iX  at the interfaces between wires and adjacent layers 

play the role of body forces directed along the 1e  direction, appearing de facto within the field 

equations. Within these hypotheses, the equilibrium equations referred to the helical wire centreline 

can be written as 

 
'

'

' 0

' ' 0

i iD i iD i

i iD i iD i

S T X

G H S

 

 

− + + =

− + − =

   (12) 

 

By following Ramsey (Ramsey, 1988), the constitutive relations between the nonzero generalized 

forces and the components of curvature, twist, and elongation give 

 

( ) ( )'

0 0' ' , ,i i i i i i i i i i i i i i i iG E I H J T E A       =   + =   + =             (13) 

 

where 4 4i iI R=  is the cross-sectional moment of inertia with respect to the 2e  axis, 
4 2i iJ R=  is 

the polar moment of inertia of the cross section of the wire, and 2

i iA R=  represents the wire cross-

sectional area, and i  and iE  are the already introduced first Lamé and Young moduli of the wire, 

respectively. The resultant axial force 
iF  and the twisting moment i

tM  emerging from the generic 

layer of the strand comprising the helical wires are thus respectively given by 

 

( )sin ' cosi

i i i i iF N T S =  +          (14) 

 

and 

 

( )sin ' cos cos ' sini

t i i i i i i i i i iM N H G T r S r   =  + + −     (15) 

 

where iN  is the already introduced number of wires in the layer. 
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2.3. Derivation of stresses at single wire level 

 

Once the loads acting on the individual wires are known from Eqs. (12) and (13), it is possible to 

determine the stress associated with these loads. By starting from the assumption that the wires are 

initially stress-free, the normal stress induced by the tensile force and acting on the wire cross-section 

of the generic i th−  layer is 

 

3 2

i i

i

T

R



=       (16) 

 

whereas the maximum normal stress due to the bending moment 'iG  is 

 

max 3

4 'i i

i

G

R



=        (17) 

 

and the maximum shearing stress due to the twisting moment iH  is 

 

max 3

2i i

i

H

R



=        (18) 

 

As verified in all considered cases in this work (see Section 5), the stress generated by the shear force 

'iS  is in general negligible if compared with the others and, as a consequence, is not computed in the 

following calculations, for the sake of simplicity. The maximum values of the stresses found above 

will hence be considered to estimate the proximity of the stress state in a wire to the corresponding 

material stress threshold. In particular, in the following analyses, the stress components to be 

compared with the wire strength will be calculated as 

 

iii

max3
3

2
 +           (19) 

 

ii

max
3

2
        (20) 

 

Due to the fact that the loads are applied only at the strand extremities and no gradients are assigned 

to loads, stresses and strains in the wires can be taken as spatially constant along the direction 

associated to 3e  in the local reference system, as well as with respect to the strand axis. Additionally, 

as suggested by Costello (Costello 1990), the wires belonging to the i th− layer are not in contact 

with each other and this implies that, both in the analytical calculations and at each step of the 

numerical simulations, the following inequality must be verified for each strand layer 

 

2

2

tan
2
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2.4. Overall response of the strand 

 

2.4.1 Twisting-elongation coupling at the strand level 

 

In order to obtain constitutive equations for the strand under consideration, it is possible to derive 

external loads on it by projecting the sum of the wire forces and moments along the strand axis. Thus, 

the total axial force F  and the resultant torque 
tM  can be directly related to the generalized strand 

deformations   and   by introducing the following matrix form 

 

1 1 1

1 1 1

m m m
i i i

i i i

m m m
t i i i

t

i i i

F k k
F

M
M k k

 

 





= = =

= = =

   
      
   = =    
      
   
   

  

  
    (22) 

 

where the superscript i  denotes the generic layer of the wires and the coefficients collected in the 

(2 2)  matrix physically represent the strand stiffness components. The constitutive equation (22) is 

essential in practical problems because it allows to deal with both cases where force-prescribed and 

displacement-prescribed boundary conditions are implemented. Elongation-twisting coupling due to 

the presence of nonzero out-of-diagonal coefficients in the stiffness strand matrix reflects the actual 

situations that in a strand with helical microstructure elongation and torsion cannot be considered as 

separate or independent mechanisms. As a consequence, when axial forces are prescribed at the strand 

extremities, the deformation is generally characterized by elongation accompanied by twisting and, 

conversely, when elongation is assigned in a test, the strand is stressed by both tensile forces and 

torsion. Moreover, the overall coupling between axial forces and torsion in the strand is the effect of 

an analogous coupling at the wire level, where the additional bending regime contributes to the 

kinematics. At this local microstructure scale level, the key geometrical parameters that play the main 

role in the deformation of the wire are the twisting angle i , the ratio /i iR r  between wire and helix 

radii and the helical pitch. 

 

2.4.2 Sensitivity analysis for varying boundary conditions 

 

As in the case of the strand, boundary conditions applied in terms of prescribed forces or 

displacements strongly influence the mechanical response of the wire, also producing some 

counterintuitive effects in the deformation when axial wire elongation i , helix curvature variations 

'i  and wire torsion variation i  are plotted against the helical angle 
i . These results are 

illustrated for a simple straight strand in Figure 2 (the chosen example is a central core surrounded 

by a six-wire layer), where - under the hypotheses of linear isotropic materials, small deformations 

and zero transversal contraction of the core ( 1 0 = ) - two complementary limit cases are considered 

in which the same tensile axial forces are applied. In particular, in the first case, the twist at the ends 

is locked ( 0, 0tM =  ), while in the second case the ends are torque-free ( 0, 0tM  = ). The plots 

show how the three wire kinematical parameters, 
2 , 2'  and 2 , evolve with prescribed initial 

helical angle 2 (0, 2)  . Although geometrical compatibility requires a helical angle variation 

confined within ( )2 2min 2min 2 1 2{ [ , 2[, arctan / 0}R R R       +    , it is interesting to observe 
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that wire elongation 
2  always grows nonlinearly up to its upper bound, which coincides with the 

overall strand strain   as 2 2 → , the wire bending curvature 2'  exhibiting non-monotonic 

variations and wire twist 2  displaying a nonlinear and non-monotonic trend that is also 

accompanied by an unexpected change in sign in the proximity of 2 4  , to accommodate the 

geometrical congruency due to the mutual interaction between local torsion and bending curvatures. 

From the mechanical point of view, it is worth highlighting that the nonlinear and non-monotonic 

curves describing the variation of the wire strain measures - and in turn of the layer and of the overall 

strand kinematics - with the micro-structural parameters (in the example, the initial wire angle) can 

be of great interest in engineering applications. Indeed, since the local stress states are proportional 

to (or growing with) the strains, the above mentioned curves can be exploited to predict, as a function 

of the strand geometry, stress localization and peaks that otherwise would seemingly seem bizarre, 

thus interpreting the way in which failure phenomena take place in bundles of wires with helical and 

hierarchical architectures and envisaging optimal strand design criteria. 

 

3. The hybrid probabilistic-deterministic approach in strand failure: the Hierarchical 

Load Sharing (HLS) criterion 

 

Following previous work by some of the authors (Bosia et al. 2012) and using the equations derived 

above for helically arranged microstructures, let us consider a generic strand made of a prescribed 

number of layers with a selected number of wires: each single wire can thus be stretched (and/or 

twisted) as a result of applied loads and/or displacements at the strand ends and seen to obey a linear 

elastic law up to its corresponding failure point, say until the stress threshold is reached. Its strength, 

here roughly assumed as the stress value at which the wire fails, can be determined from an equivalent 

stress value, eqv , which, without loss of generality for the procedure at hand, is here taken as the 

Von Mises yield criterion. As a consequence, for the generic i th−  wire one can write: 

 

    ( ) ( )
2 2

23 3i i i i

eqv J  = = +     (23) 

 

where 
2

iJ  represents the second deviatoric stress invariant and the stress components are those derived 

in Eqs. (19) and (20). 

A probability distribution function can then be introduced in order to include the statistical variation 

in the failure mechanism of the strand for each wire for a prescribed stress state. For this purpose, it 

is assumed that the equivalent stress in the wire follows a Weibull distribution (Weibull, 1951), and 

that the wire failure strength is thus governed by the cumulative probability distribution function of 

the form 

 

( ) ( )1 exp
i

i i i

eqv eqv YP


   
= − −

  
          (24) 

 

where i

Y  is the reference stress threshold (scale factor) and 
i  is the Weibull shape factor for the 

wire materials. Although scaling is not investigated in detail in this work, it is worth noting that Eq. 

(24) implies that size-dependent effects can be expected if one performs simulations on strands of a 

given structure at different scale levels. 
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Similarly to the cases of bundles analysed under the ELS hypothesis (Hemmer and Hansen 1992, 

Pugno 2012), when a wire of a hierarchically organized strand breaks, the load acting on the strand 

is redistributed among the surviving wires; however, contrary to the ELS stress reorganization, the 

above mentioned load is not redistributed in a homogenous (uniform) way among the constituents: 

the wires belonging to each layer, at the several hierarchical levels, are in fact subjected to different 

stress states as a consequence of the mechanics of the MSS illustrated in detail in the previous 

sections. Therefore, while the probabilistic approach - applied in the literature to bundles made of 

straight, although hierarchically organized, wires (Pugno 2012) - describes the collapse of one or 

more structural constituents by implying that a homogeneous redistribution of stresses within the 

surviving structure occurs, in the proposed approach the failure - and in turn the stress reorganization 

- is the result of the influence of the probability of rupture in the deterministic (inhomogeneous) 

distribution of stresses among the wires, governed by the mechanical model of strands constituted by 

helically arranged and hierarchically organized wires. As a result, once one or more elements break, 

the criterion of stress redistribution is ruled by the geometry and the mechanics of the strand 

microstructure and the redistribution of stresses among the surviving wires are no longer 

homogeneous, thus leading to an emerging "Hierarchical Load Sharing" effect. In particular, by 

considering a prescribed deformation state of a generic i th−  layer in the strand in which one of the 

wires breaks (for the sake of simplicity, brittle behaviour with no plastic deformation is assumed 

here), the total loads of Eqs. (14) and (15) are obtained as the sum of the forces acting on the remaining 

1iN −  wires. In a generic deformed state  ,  , the total load that a strand can sustain is thus derived 

from the total number of intact fibres among the wires by virtue of the following relation 

 

( ) ( )exp 1
i

i i i

eqv Y eqvP


   
− = −
  

          (25) 

 

and then, integrating previous approaches (Sornette 1989, 1992; Hemmer and Hansen 1992) in the 

proposed model, axial force and torque for the generic i th−  layer at this stage can be written as 

 

( ) ( )sin ' cos exp
i

i i i

i i i i i eqv YF N T S


    
=  +  −

  
            (26) 

 

and 

 

( ) ( )sin ' cos cos ' sin exp
i

i i i
t i i i i i i hi i i hi i eqv YM N H G T r S r



      
=  + + −  −

  
          (27) 

 

where 
i

eqv  denotes the equivalent stress in the wire of the generic i th−  layer (see Eq. (23)). Finally, 

from Eq.(22) and for a prescribed number m  of strand layers, it follows that 

 

1

m
i

i

F F
=

=       (28) 

 

1

m
i

t t

i

M M
=

=         (29) 

 

which, in terms of stiffness coefficients 
ik , one can explicitly rewrite as 
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( ) ( )
1 1

exp exp
i im m

i i i i i i

eqv Y eqv Y

i i

F k k
 

      
= =

   
=  − +  −

      
            (30) 

 

( ) ( )
1 1

exp exp
i im m

i i i i i i i
t eqv Y eqv Y

i i

M k k
 

      
= =

   
=  − +  −

      
             (31) 

 

a form which can be usefully exploited in analytical approaches as well as in numerical step-by-step 

procedures to solve the problem of the progressive collapse of wires, up to the overall failure of 

hierarchical strands with helically organized microstructure. 

Note that in the limiting case of bundles made by two types of straight wires (i.e. 1 2 =  and 

2 2 = ) Eq. (30) reduces to the formula already obtained by some of the present authors in a 

previous work (Bosia et al. 2012), i.e.: 

 

( ) ( )
(1) ( 2)

(1) (1) (2) (2)

1 1 1 2 2 2
2

2

lim exp expeqv Y eqv Y

m

F A E N A E N
 

 
    

→
→

    
=  − + −        

        (32) 

 

in which the torsion-elongation coupling obviously disappears and Eq. (16) in the above work is 

obtained. 

4. In silico FE-based simulations 

 

To validate analytical solutions, Finite Element (FE) analysis has been performed on selected 

hierarchically organized strand geometries. Standard 20-node brick (parallelepiped) elements with 

three translational degrees of freedom for each node have been adopted, obtaining overall a mesh of 

about 28.000 elements. This number can vary slightly as a function of the selected hierarchical 

geometry to be implemented. Nonlinear analysis has thus been performed by taking into account the 

geometric updating of wires at each step of the numerical calculation. For all the systems a total 

volume per unit length 2

tot 100 mmV =  has been assumed and boundary conditions have been 

assigned by imposing an overall stretch of up to 2% to the strands, and simultaneously imposing zero 

twisting at the strand extremities, i.e. 0 = . The wire material is linearly elastic up to its yield point, 

at which point brittle failure is assumed to occur. The wire strength is additionally characterized by a 

probability distribution. In particular, to reproduce this statistical feature in the FE models, different 

strength values have been assigned to the elements of each wire by performing a random generation 

procedure based on the Weibull distribution with relative cumulative probability distribution function 

described by Eq. (24). For the cases considered below, in the numerical analysis it is assumed that 

each single wire breaks when the maximum value of a selected equivalent stress FE

eqv  equals the 

corresponding prescribed limit threshold. The equivalent stress FE

eqv  in a single wire is then evaluated 

using the von Mises yield criterion through the following relation 

 

 

1

1 1

w we e
FE e e e

eqv eqv

e e

v v 

−

= =

   
=     
   
   (33) 

 

where ev  is the volume of the generic element of the wire, 
e

eqv  is the von Mises stress of the element 

and we  is the total number of elements constituting the mesh of the selected wire. 

Finally, since they are of possible interest for many engineering applications, the toughness values 
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0

tot 0

1 r

F Fd
V



 = =   (34) 

 

have been analytically and numerically computed, totV  being the total volume per unit length of the 

strand according to Eq. (35). It is useful to estimate how this mechanical property changes with the 

hierarchical configurations in helically arranged bundles of wires, for prescribed materials and fixed 

volume. 

 

5. Results  

 

Although the proposed model allows to take into account different mechanical properties (stiffness 

and strength) for each wire, as explicitly detailed in the equations above, the analysis is performed 

using the same threshold stresses. This choice is motivated by the fact that our objective is to highlight 

and quantify how the strand hierarchical microstructure alone can lead to unequal load sharing, and 

a different assignment of strength to the wires in a strand would mask the crucial role played by the 

geometry in influencing this heterogeneous stress distribution. 

Therefore, in order to show the capabilities and reliability of the proposed hybrid (deterministic-

probabilistic) modelling approach in predicting how a statistical distribution of material properties, 

helical structure and hierarchical organization of strands all combine to determine the overall elastic 

and failure mechanical response of bundles of wires, a wide range of in silico simulations has been 

conducted, by exploring different possible strand microstructural configurations and making use of 

Eqs. (30) and (31). 

Analytical solutions are compared to Finite Element (FE) analysis results for the chosen hierarchically 

organized strand geometries. These are generated - without loss of generality - by combining two 

elemental archetypes, i.e. self-similar (SS) and multi-layer (ML) strand paradigms. An illustrative 

image of this generation criterion is shown in Figure 3.  

In particular, the analysis has been performed by taking into account the following strand 

configuration types: simple straight strands (2 layers, e.g. 1 core and 1 external layer of wires), 

multilayered straight strands (3 to 5 layers, e.g. 1 core and 2 to 4 external layers respectively), two-

level hierarchical simple straight (HSS) strands (2 layers at level 1 and 2 layers at level 2), and two-

level hierarchical multilayered straight (HML) strands (3 layers at the level 1 and 3 layers at the level 

2). All of these are shown in Figure 3. Additionally, to quantitatively compare the results in terms of 

generalized stress-strain behaviour up to failure, as well as in terms of elongation-twisting coupling, 

specific geometrical constraints have been established to govern the strand generation rules for all the 

cases investigated. In particular, Eq. (21) has been used to relate the number of wires in each external 

layer to the wire radii in order to fill the cross-sectional area of the layer. Moreover, each helically 

wound wire in a strand is characterized by the same pitch length, all the wires are made of the same 

material with failure probability ruled by the same distribution function, and the total volume per unit 

length of the strand is imposed as a constant using the formula 

 

 

2

tot

1 sin

m
i i

i i

N R
V



=

=
 

(35) 
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The "volume per unit length" has obviously the dimensions of an area, but it is greater than the 

"nominal cross section of the strand", since its projection on the plane whose normal is co-axial with 

the strand axis de facto represents the sum of the actual cross-sectional areas of the wires. 

Figure 4 shows analytical results the predicted tensile force F and torque M vs strain  up to failure 

for various strand geometries and hierarchies: a simple straight strand (“5X1”), a multilayered straight 

strand (“11X5X1”), and two hierarchical strands (“5X1-5X1” and “5X1-12X5X1”). Schematic 

representations of the structures are shown in Figure 4 and corresponding details regarding 

geometrical parameters are reported in Table 1. Results highlight that neglecting elongation-torsion 

coupling implies a significant overestimation by ELS calculations of the actual axial force 

experienced by stretched bundles and a drastic underestimation of the torque, in the cases (often found 

in real situations) of clamped ends. 

Further strand structures are considered in Figure 5: a simple straight strand (“6X1”), two 

multilayered straight strands (“6X6X1” and “6X6X6X1”), and a hierarchical strand (“6X1-6X1”). 

Corresponding details are given in Table 2. In Figure 5, analytical results for F and M vs  are 

additionally compared to FE-based simulations. There is good agreement between FE predictions and 

analytical calculations, thus validating the approach. 

Changing hierarchical architectures (i.e. the number of wires and/or their assembly in the bundle for 

a constant volume, mean wound angle and material properties) leads to no relevant differences from 

an engineering point of view in terms of axial force versus elongation, while - on the contrary - 

differences up to 100% in terms of torque peaks are highlighted as a function of the wire wrapping 

and arrangement. This behavior thus affects the way in which shear stresses combine with normal 

stresses at the single wire level, in turn modifying the mechanical energy stored by bundles during 

loading processes and finally influencing toughness and mechanisms of rupture (see Figures 4, 5) by 

creating prestress conditions prodromal to elastic-plastic buckling failure modes. The latter cannot be 

predicted adopting simple ELS models. 

Additionally, experimental axial tensile tests are performed on three strands of steel wires arranged 

hierarchically on a structure similar to that illustrated in Figure 4 (top-right), constituted by a central 

core and two surrounding layers of five and eleven wires, respectively. The dimensions of the wires 

considered experimentally are smaller than those analyzed in the simulations, due to fabrication 

requirements, but the structural configuration preserves the same "multilayered straight stand 

11X5X1" geometry in Figure 4 (top-right). The experimentally measured Force vs. strain curves are 

shown in Figure 6, and the strand sizes and the other properties are reported in the figure caption. 

Experimental results and theoretical predictions using the proposed Hierarchical Load Sharing model 

display good agreement for the most part of the force-strain profile. Only the final part of the softening 

branch predicted by the theory exhibits a discrepancy with respect to the actual behavior of the tested 

strands, as a result of their more complex rupture modes which are not included in the theoretical 

model. This quantitative and qualitative agreement in mechanical behavior of the analyzed strand 

demonstrates the validity of the approach. 

Figure 7 shows analytically derived maximum axial force, maximum torque and overall strand 

toughness as a function of the helical angle of the outermost layer, for various types of axially 

stretched structures with twisting locked at the extremities. The structures are schematically shown 

in the figure inset, and include 2- to 5-layer strands and a hierarchical strand. FE- simulation results 

are also included in the plots, showing good agreement, whilst significant discrepancies are found 

ELS predictions, which are shown to be valid only for limit helical angles. Interestingly, the 

considered hierarchical strand structure maximizes maximum torque and, more importantly, 
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toughness values, while displaying similar maximum load values compared to the other strand types. 

These results are relevant to explain the mechanical effects of the hierarchical structure found in 

biological fibrous materials, which are known to display exceptional simultaneous strength and 

toughness values. 

 

6. Discussion and conclusions 

 

Several geometries of hierarchically organized bundles with helically wound wires have been 

investigated by using a hybrid approach in which a Weibull probability function for the material 

strength is integrated into a deterministic model of a strand. Analytical and numerical FE analyses 

have been performed, generating different hierarchical architectures (see Figure 3) and plotting the 

results in terms of resultant axial force versus axial elongation of the strands, as well as in terms of 

torque versus axial strain. The results show the effectiveness of the hybrid modeling strategy in 

capturing both elastic and nonlinear behavior of the structures up to failure, also predicting the 

coupled twisting-elongation response of the bundles due to the helical wire configurations (Figure 4). 

The comparison of the analytical results with FE simulations highlights the robustness of the method, 

as shown in Figure 5 for different strand geometries and statistical Weibull distributions of wire 

strengths. Additionally, analytically derived maximum axial force (Figure 7A), maximum torque 

(Figure 7B) and overall strand toughness (Figure 7C) as functions of the helix angle of the outermost 

layer of wires in multilayered and hierarchical strands have been found for the case of axially 

stretched strands with twisting locked at the bundle ends. All the results highlight how complex and 

at times unexpected responses can be obtained by changing strand microstructure, independently from 

the statistical distribution of material properties, leaving the ELS hypothesis as a limit case. 

On the basis of the results, the proposed hybrid approach, in which the probability of rupture is 

included into a deterministic mechanical model of a strand constituted by helically-arranged and 

hierarchically-organized wires, can be usefully employed to study complex bundle architectures 

under combined axial and torque load conditions, gaining important advantages in terms of accuracy 

of the results and capability of quantitatively predicting coupled mechanical responses when the ELS 

hypothesis is no longer applicable. 

In future, to better capture the actual post-elastic response of the strand up to complete failure, several 

aspects could additionally be taken into account, such as friction between wires/bundles, actual 

constitutive relations governing the exchange of stresses at the interfaces among wires, as well as 

possible ruptures occurring at single wire level due to instability phenomena induced by the coupling 

between local twisting/tensile loading. Despite their relevance, these more complex structural 

responses are beyond the scope of this work, because they would require very specific assumptions 

on how the intrinsic post-elastic properties of the wires combine with the nonlinear mechanical 

behavior of the material interfaces. Here, the focus is rather on the effect of the strand hierarchical 

organization on unequal load sharing and on its quantitative prediction through a hybrid approach. 

Overall, the proposed updated model can be helpfully applied in several fields, from biological to 

composite materials. Indeed, elongation-torsion coupling is essential to understand the real 

mechanical behaviour of helically arranged protein filaments in the cytoskeleton and the response of 

many biological tissues organized in a hierarchical way. In many cases, as in muscles and tendons, 

the self-similar architecture is a result of multiphysics optimization processes involving overall 

structure toughness, torsional (and bending) flexibility and nutrient walkway and transport 
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phenomena throughout vessel and micro-channels networks regulated by the interplay between 

(interstitial fluid) pressure gradients and in situ deviatoric stress states. Moreover, with respect to 

man-made materials, for instance in cord-rubber composites for tire applications, modelling axial 

force-torque coupling can help to analyse and gaining insights into the shear stresses transferred 

across reinforcement-matrix interfaces, thus paving the way for new possible design optimization 

strategies. 
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Table of symbols 

 

iR
 

wire radius 

i  angle of the helical wrapping of the 

 wires 

ir   
radius of the helical wrapping of the 

 wires  

ip
 

pitch of the helical wrapping of the 

 wires 

iE
 

Young’s moduli of the wire material 

i  
Poisson’s ratio of the wire material 

i  
first Lamé moduli of the wire material 

i  
second Lamé moduli of the wire 

 material 

F  tensile axial force 

tM  torque 

  strand elongation 

  strand twisting per unit length 

iN  number of wires in the generic i th−

 layer of the strand. 

0L , L
 

strand length in initial and stressed 

 configuration. 

  twist angle between two strand cross 

 sections at a distance 
0L  

i , 'i
 
wire curvatures 

i  
wire axial twist 

i  
wire axial deformation 

ir  radial deformation of the helix radius 

iS , 'iS
 
wire shear forces 

iT  wire tensile force 

iG , 'iG  wire bending moments 

iH
 

wire torque 

iI
 

wire cross-sectional moment of 

 inertia 

iJ
 

wire cross-sectional polar moment of 

 inertia 

iA
 

wire cross-sectional area 

iF  axial force on the generic i th−  layer 

i

tM  twisting moment on the generic i th−

 layer 

3

i
 

wire tensile stress 

max

i
 

wire maximum shear stress 

max

i  maximum normal stress due to the 

 bending moment on the wire 
i  wire normal stress 

i  wire shear stress 
i

eqv  equivalent wire stress 

2

iJ  wire second deviatoric stress invariant 
i

Y  wire reference yield stress 

i  Weibull shape factor for the wire 

 material 
ik  wire generic strand stiffness 

 component 

F  resultant strand axial force 

tM  resultant strand torque 
i

F  emerging axial force in the generic 

 i th−  layer 
i

tM  emerging twisting moment in the 

 generic i th−  layer 

totV  total volume per unit length of the 

 strand 
FE

eqv
 

maximum value of the equivalent 

 stress in the wire 
ev  volume of the single finite element of 

 the wire model 

we  number of elements in the FE wire 

 model 
e

eqv
 

von Mises stress of the single finite 

 element of the wire model 

0

F

=  expected strand toughness 

m  number of strand layers 
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Figure 1: A) Sketch of a generic strand unit with helically arranged wires and the two considered 

reference coordinate systems. B) Simple (6 1)+  straight strand: cross-section and lateral view. C) 

Representation of different possible arrangements of wires and cores in hierarchically organized 

strands: z is the strand axis, i  is the helical angle of the wires in the i-th layer, pi is their helical pitch, 

ir  is their distance from the strand axis of the generic layer of wires and iR  is the corresponding cross 

section wire radius. 
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Figure 2. Kinematics of a single wire in a strand undergoing axial displacement, i.e. local elongation 

w, curvature 'i  and torsion i  for varying helical angle . Left: fully clamped end conditions; 

strand axial load 40 NF k= , strand axial torsion per unit length 0 = . Right: torque-free conditions; 

strand axial load 40 NF k= , strand axial torque 0tM =  (Strand parameters: 

1.97 mm, 1.865 mm, 197.9 GPa, 0, 0.3c w c wR R E v v= = = = = ). 
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Figure 3. Hierarchical strands with helically arranged wires: possible rules for assembling wires and 

strand layers to generate hierarchical structures starting from two main assembly procedures, i.e. self-

similar (SS) and multi-layer (ML), finally combined to obtain complex bundle geometries. 
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Figure 4. Analytical models and results in terms of tensile force F and torque M vs strain up to failure 

for a simple straight strand 5X1 (top-left), a multilayered straight strand 11X5X1 (top-right), a 

hierarchical strand 5X1-5X1 (bottom-left) and a hierarchical strand 5X1-12X5X1 (bottom-right). 

Geometrical parameters are reported in Table 1. For wires, mechanical parameters are Young’s 

modulus Ei = 197.9 GPa, Poisson’s ratio i 0.3 = , Weibull scale factor GPai

Y 2=  and Weibull 

shape factor 4i = . Theoretical results from the hybrid probabilistic-deterministic model (HLS) for 

a tensile test are illustrated for the case in which twisting is not permitted. The black lines refer to the 

overall strand response, the coloured lines refer to the response of the single layer at the lowest 

hierarchical level in the strand (illustrated using the corresponding colour in the graphics above), the 

grey dashed lines denote the single layer response at the highest hierarchical level in the strand 

(shaded in blue, green and yellow in the case of core, 1st and 2nd external layer, respectively), while 

the red thick lines indicate the results obtained with the ELS hypothesis, here obtained as special case 

of the proposed theory as in Eq. (32). Note that ELS does not capture the coupling between torsion 

and elongation. 
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Table 1. Strand geometrical parameters of the models illustrated in Figure 4. 
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Figure 5. Analytical and FE model results (axial force F and torque M versus elongation ) for a 

simple straight strand 6X1 (top-left), a multilayered straight strand 6X6X1 (top-right), a multilayered 

straight strand 6X6X6X1 (bottom-left) and a hierarchical strand 6X1-6X1 (bottom-right). 

Geometrical parameters are reported in Table 2, while wire material parameters are those already 

indicated for Figure 4. Results for a tensile test are illustrated for the case in which twisting is not 

permitted. The black lines refer to the overall strand response (HLS), the coloured lines refer to the 

response of the single layer at the lowest hierarchical level in the strand (illustrated using the 

corresponding colour in the graphics above), the grey dashed lines denote the single layer response 

at the highest hierarchical level in the strand (shaded in blue, green, yellow and red in the case of 

core, 1st, 2nd and 3rd external layer, respectively), while the red thick lines indicate the results obtained 

for the ELS hypothesis, here obtained as special case of the proposed theory as in Eq. (32). Note that 

ELS does not capture the coupling between torsion and elongation.  
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Table 2. Strand geometrical parameters of the models illustrated in Figure 5. 
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Figure 6. Analytical results for ELS (empty red curve) and HLS (black curve) in terms of tensile 

force F versus axial strain  up to failure for a multilayered straight 11X5X1 strand. The filament 

diameters are the same for both the core and all the wires of the two-strand layers and are equal to 

0.165 mm. Young’s moduli and Poisson’s ratios of the wires and Weibull factors are the same as 

those adopted in the simulations illustrated in Figures 4 and 5. 
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Figure 7. Analytically derived maximum axial force (A), maximum torque (B) and overall strand 

toughness (C) in the case of axially loaded strands (with twisting locked at the extremities) as a 

function of the helical angle of the outermost layer. The results have been obtained by performing the 

analysis on several types of multilayer strands with different numbers of layers (dashed portions of 

the lines refer to strand configurations that do not obey the condition (21)). The horizontal dashed 

line indicates the results obtained using ELS, say in the limit case of Eq. (32) while the markers 

highlight the FE solutions illustrated in detail in Figure 5. 

 


