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Energy consumption information for devices, as available in the literature, is typically obtained with ad hoc approaches, thus
making replication and consumption data comparison difficult. We propose a process for measuring the energy consumption of a
software application. (e process contains four phases, each providing a structured deliverable that reports the information
required to replicate the measurement.(e process also guides the researcher on a threat to validity analysis to be included in each
deliverable. (is analysis ensures better reliability, trust, and confidence to reuse the collected consumption data. Such a process
produces a structured consumption data for any kind of electronic device (IoT devices, mobile phones, personal computers,
servers, etc.), which can be published and shared with other researchers fostering comparison or further investigations. A real case
example demonstrates how to apply the process and how to create the required deliverables.

1. Introduction

A software program contains a sequence of instructions
whose execution requires the device on which it is running
to consume energy. Today, energy consumption, a non-
functional property of the program, is seldom considered
upfront as a nonfunctional requirement or, after the fact, as a
property to be measured and monitored. However, energy
consumption may represent a critical problem for end users.
In laptops, tablets, and smartphones, energy consumption
clearly has an impact on battery life and, therefore, it be-
comes a user experience issue [1]. For data centres or Bitcoin
miners [2], energy consumption has a direct impact on the
electrical bill. In the literature, many have addressed the
problem of measuring and reducing energy consumption
but typically in an ad hoc manner [3].

According to the evidence-based software engineering
(EBSE) [4] approach, concrete decision-making should be
supported by the empirical evidence available in the lit-
erature. Such evidence must be trustable, produced
through a documented and repeatable process, con-
textualised, and linked to the context where it can be
applied, identifiable, address a well-defined question,

assessable, and report the known limitations of the results.
Such characteristics are seldom present in most of the
related published literature.

If the energy consumption issue is tackled at the
hardware level, then the task is accomplished by reducing
the consumption of the physical devices or by creating
different usage profiles (e.g., processors can scale down the
frequency when used less). On the other hand, if the energy
consumption issue is managed at the operating system level,
then management policies may use the different hardware
profiles of various devices (when available) or turn off
hardware when not needed.We consider software as a driver
of the energy consumption because it requires several ac-
tions to be completed by the underlying hardware, which
reacts based on the received instructions. Measuring the
energy consumption due to a specific piece of software
implies addressing two major issues:

(i) Isolating the energy consumption of a program
when it is running concurrently to others on the
same device

(ii) Generalizing the obtained results: let the measure be
meaningful to other devices
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When collecting energy through physical measurements
on a device, the value is related to the target software and all
other processes running on the device simultaneously. (e
physical measurement does not allow a straightforward
generalization of results because the same software could
behave differently based on the hardware on which it is
executed as well as other installed software. Another option
is defining models that provide an estimate of the energy
consumption of the target software instead of performing a
physical measurement. (e input of the model consists of
device resource usage indicators collected at run-time. (e
main issue affecting this approach is that a model can be
representative of a device or a family of devices meaning that
the estimation computed by the model is not always valid.
Unfortunately, it is very difficult to get this result because
every hardware manufacturer should provide accurate data
on the consumption of the device, and this data should be
available in real time as device status information through
sensors and system calls from the operating system. Now, we
can easily measure the energy consumption of an application
by measuring the energy consumption of the entire device
on which it is executed, analysing the obtained data, and
estimate the consumption by minimising the error. (is
requires a precise methodology to obtain the most signifi-
cant data and analyse them for useful information to esti-
mate the power consumption of an application.

In this paper, we propose a general process that can be
used to measure the energy consumption of a software
application. (is process includes the best practices for
collecting and analysing energy consumption data of a
software application and formalises the steps needed to carry
out a valid empirical experiment. (us, this is proposed as a
ground zero for performing software energy measurements
to ensure repeatability and comparison of each experiment.
(e process we put forward can be used both to conduct
energy measurement and to assess existing studies serving as
a sort of checklist.

(e remainder of this paper is organised as follows:

(i) Section 2 describes the proposed process to collect
energy consumption data from devices as well as
how to analyse the data

(ii) Section 3 provides a real case study showing how to
create the deliverables

(iii) Section 4 reports the related work and assesses the
literature in terms of compliance with our process

(iv) Section 5 concludes the manuscript and provides
hints for future work

2. Software Consumption
Measurement Process

(e proposal described in this paper is a repeatable process
for measuring the consumption of a software application,
hereinafter called the Software Under Test (SWUT). (e
process consists of the following four phases:

(i) Goal (G): define the research question, the target
device(s) on which the measurements will take

place, and the context in which the SWUT is
executed

(ii) How (H): decide how consumption will be mea-
sured and the procedure needed to carry out the
measurement

(iii) Do (D): carry out themeasurement and collect the data
(iv) Analyse (A): analyse the data and address the re-

search question(s)

(e UML activity diagram in Figure 1 summarizes the
main activities and decisions encompassed by the process
and the relative threats to the validity of the results.

Each phase of the process shall produce a deliverable,
which summarizes the decisions taken, the outcomes of the
phase, and the said analysis of the threats to validity. A
summary of the elements provided by each deliverable is
provided in Table 1. As it is evident in the table, each de-
liverable serves as an input for the following one.

(e following subsections describe each phase of the
process along with the required information to reproduce it.

A sample application of the described process to a simple
case study will be then described in Section 3.

Each phase requires a few decisions to be taken, some of
which can influence the validity of the results. Wholin et al.
[5] classified the threats to validity as

(i) Internal validity: focused on how sure it is that the
treatment actually caused the measured outcome

(ii) Construct validity: focused on the relation between the
theory behind the experiment and the observation

(iii) External validity: focused on the generalizability of
the results outside the scope of the study

(iv) Conclusion validity: focused on the relationship
between the treatment used in the experiment and
the actual outcome measured

Table 1 shows these categories of threats and how they
are impacted by each phase of the process.

2.1. Phase I: Goal. (is phase is about defining the research
questions that will drive the measurement process. Since the
scope of the research questions is restricted to energy
consumption, we propose to represent the goal as a template
inspired by the GQM approach [6]:

“<understand ∣ characterise ∣ compare ∣ predict> the
<consumption> of the <SWUT> run on <device(s)>
in <context(s)>.”

An example of a research question obtained applying
this template is

“Characterise the energy consumption of the Bubble Sort
algorithm implemented in Java language when run on
Raspberry Pi version 2B in the context of Raspbian Linux
OS.”

(e first aspect to consider is the purpose of the mea-
surement, which depends on the level of knowledge of a
specific process and includes the following options:
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Define the 
research goal

Understand Characterize Compare Predict

(not well known) (partially known) (known, to be campared) (well-known)

Define 
context

Threat to external validity: 
generalisability of results

Define 
procedure

TimeInstant power Model estimation

Measurement method

Threat to internal validity: 
isolation of SwUT

Threat to construct validity: 
precision and accuracy

Analysis 
method

Threat to conclusion validity: 
statistical soundness

Knowledge of SwUT

Prepare 
setup

Perform 
measurement

Analyse

Threat to construct validity: 
incorrect implementation

Threat to conclusion validity: 
unsuitable statistical tests

Goal

How

Do

Analyse

Figure 1: Summary of activities and decisions of the proposed process.

Table 1: Deliverables of the different phases and impact on threats to validity.

Phase Input Output (reats to validity
Goal — SWUT and context External: generalization of results

Research questions
Devices

How Goal deliverable Instrumentation Internal: assigning consumption value to a process
Synchronization Construct: incorrect measurement

Sampling Conclusion: insufficient number of repetitions
File format

Do How deliverable Measurement scripts Construct: incorrect implementation
Data files

Analyse Do deliverable Data analysis scripts Conclusion: not suitable statistical tests
Results and discussion
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(i) Understand: this goal applies to the initial in-
vestigations for a process that is not well known to
understand the input and output variables of the
process. Nominal or ordinal measures may char-
acterise variables.

(ii) Characterise: this goal applies to a process that is
partially known to enhance its description by
providing the input, output, and context variables
that influence the process. Interval, ratio, or abso-
lute measures may characterise variables. Re-
lationships between the variables, either analytic or
probabilistic, are proposed, but their validity is
limited.

(iii) Compare: this goal is a variant of characterising
where two similar SWUTs are characterised and
compared on the variables defined.

(iv) Predict: this goal applies to well-known processes to
provide a model that relates all variables in the
process. (e validity of the model is broad, so that
output variables are predicted by input variables
reliably.

Consumption can be measured in terms of energy
(Joule) or power (Watt), which are related and one may be
computed from the other. However, in practice, they are not
entirely interchangeable:

(i) From the research goal, power offers an imme-
diate view and is suitable for tasks with a very long
(possibly infinite) duration, while energy is
suitable for tasks with a finite duration. For in-
stance, if the software function to be measured is
“read an e-mail message,” or “convert an audio file
from mp3 to wma,” then energy is the most
suitable to characterise the consumption of the
functions. If the software function is “control the
speed of an engine,” then power is the most
suitable.

(ii) From the research goal, power offers an imme-
diate view and is suitable for tasks with a very long
(possibly infinite) duration, while energy is suit-
able for tasks with a finite duration. For instance,
if the software function to be measured is “read an
e-mail message,” or “convert an audio file from
mp3 to wma,” then energy is the most suitable to
characterize the consumption of the functions. If
the software function is “control the speed of an
engine,” then power is the most suitable. From the
measurement as a function of the hardware
configuration (server vs desktop vs mobile
phone), it may be way easier to measure power
compared to energy, which will be discussed in
Section 2.2.

(e SWUTcan represent a function, a set of functions, a
software process, a software application, or a software ap-
plication subset of features. (e description of the SWUT
includes the programming language, the toolchain used to
produce it (e.g., the compiler and its version or the linker

and its version), and the usage scenario. Harman and col-
leagues [7] identified three levels of SWUT granularity: fine
grained, corresponding to individual lines of code or
statements; midgrained, that is a block of code or a method/
procedure; or coarse-grained addressing a whole program
execution over a period of time.

(e device represents the physical device (or devices)
specifications (make, model, version, CPU, architecture, and
memory) used in the experiment.

(e context describes other attributes that may influence
the experiment, such as:

(i) (e operating system
(ii) (e list of processes running while themeasurement

is performed
(iii) (e device configuration
(iv) Any hardware and software instrumentation used to

collect the energy information

Since a SWUT can be very complex, addressing the
research questions may require the creation of many
subgoals, which aim at measuring the energy (or power)
consumption of a predefined subset of features of the
complex SWUT. We will provide a complete example in
Section 3.

As seen in Table 1, the decisions must consider the
threats to external validity, which regard the generalization
of results:

(1) (reats help identify whether the results are valid
only for the analysed device(s) and context(s) or they
have wider validity

(2) (reats define the importance the obtained results
will be valid on other devices or contexts. If yes, then
researchers should state how device(s) and context(s)
should be selected to minimise the external threats to
validity. If not, researchers should state if it is in the
goal of the experiment to obtain results only for a
specific device and context.

(is type of analysis during the early stages of the
process has a twofold contribution. It makes the experi-
ment more precise and formal as well as forcing who is
experimenting to choose the best context(s) and device(s)
to reach the goal.

(e output of this phase is a deliverable which contains the
goal description comprised of research question(s), device(s),
SWUT, context, and the external threats to validity analysis.

2.2. Phase II: How. With the unit of measure (energy or
power) determined in the first phase, this step will decide
how to take the measurement. (e three options are de-
scribed in the following, whereas Table 2 analyses the
benefits and drawbacks of each technique.

(1) Instant Power Measurement. (is technique measures the
instantaneous current consumed by the device and then
multiplies this value by the voltage. (e integral over a period
gives the energy value. Instant powermeasurements are precise
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if the sampling frequency is high, but they require physical
instrumentation. (is approach usually operates at the device
level, although hardware component-level measurement is
possible, and can work with coarse-grained SWUT only.

(2) Time Measurement. Another way to collect the energy
consumption of a device is through measurement of time. A
fully charged (and healthy) battery holds a known amount of
energy (e.g., 1000mAh corresponds to 18 kJ). Assuming a
constant consumption over time, the speed at which energy
is depleted depends on the power consumption of the device.
So, the average power consumed is computed by measuring
the time to discharge the battery completely. (is mea-
surement relies on the precision of the battery capacity
measure. If this value is imprecise, then so will be the cal-
culated consumption value. Another issue is how linearly the
battery discharges, especially if a measure is collected
without fully discharging the battery. For devices without a
battery (e.g., SoC computers, such as a Raspberry Pi), the
type of measurement is possible by connecting the device to
a battery instead of connecting it to the electrical network.
(is approach has the same limitation as the previous one in
terms of granularity.

(3) Model Estimation. Consumption measurements through
models are calculated in a way that relates the power
consumption of a particular device with internal resource
usage indicators, such as the CPU states, instructions,
memory or disk accesses, and network adapters. In the
literature, there exist few examples of power models. For
example, Patak et al. [8] described a power module based
on system call tracing. (is approach uses system calls for
estimating the resource usage. Di Nucci et al. [9] proposed a
software-based approach, named PETRA, proving that
those methods are not inherently less precise than hard-
ware-based or model-based solutions. (eir approach is
specifically aimed at testing Android applications. Nacci
et al. [10] introduced an approach to build a power model
for Android devices by using Android APIs to retrieve a

variety of states, including the battery, network connection,
Wi-Fi, and screen. Two components usually implement the
models:

(i) A resource usage analyser that measures the usage of
resources on a computer, which depends on the
operating system

(ii) A resource usage to consumption converter that
reads the data provided by the resource usage
analyser and, based on the mathematical model, it
converts to consumption values. (e mathematical
model is a parameter that varies according to the
device.

(e latter component requires choosing a model
suitable for the device on which the SWUT will run. (e
model should provide the estimation error, the sampling
frequency at which the resource usage is updated, and the
overhead caused by extracting the resource utilisation. (e
overhead is a crucial value because a software process
implementing the model executes the resource usage data
collection, and, as with all the other software processes, it
affects the consumption of the device on which it is ex-
ecuted. (e sampling frequency and overhead are directly
proportional.

(is latter approach has the advantage of being appli-
cable also to a fine-grained SWUT.

(e output of this phase is called How deliverable
as described in Table 1, which contains the key decisions
used for obtaining the consumption of the SWUT. (e
deliverable will contain different elements based on the
selected measurement approach, as shown in Table 3.

(e components of the How deliverable, and the way
they vary according to the selected approach, are detailed in
the following subsections.

2.2.1. Hardware Instrumentation. Hardware instrumentation
is required by the approaches based on instant power and
time measurement.

Table 2: Evaluation of measurement techniques.

Measurement technique PROS CONS
Energy Power Energy Power

Instant power measurement Precise if sampling frequency is high. —

Physical instrumentation
needed. Difficult to isolate

a single software
application’s
contribution.

Time measurement Precise if the exact energy stored in
the battery is known. —

Requires many
repetitions of long tasks.
Difficult to isolate a single
software application’s

contribution.

Model estimation No instrumentation required. Easy to isolate
a single software application’s contribution.

Precision not always
declared.

Scientific Programming 5



(4) Instant Power. To perform power measurement, the
following hardware instrumentation is required:

(i) A voltage generator
(ii) A shunt resistor (e.g., 0.05Ω)
(iii) An ADC (analog-to-digital converter)
(iv) A supervising device

Figure 2 shows a typical configuration to measure instant
power consumption data from the device. An ADC reads the
voltage drop V across the shunt resistor. (is data are sent to
the supervising device, which will be later used for the
analysis. According to Ohm’s Law,V/R provides the current I,
so the instant power consumption is calculated byP � V · I. If
the device has a battery pack, it should be removed because
the voltage generator will also charge the battery pack during
the experiment, providing inconsistent values to the ADC.
Uncertainty on the power is u(P) � P∗ (u(V)/V + u(I)/I).
Both uncertainties are due to measurement errors and are
typically relatively small when using suitable devices. On the
market, there are several powermeters that can be used for the
different categories of devices (e.g., mobile phones or single
board computers, PCs). It is not required to build a power
meter; however, its internal structure can be simplified to the
circuit described in Figure 2.

(5) Time Measurement. As described in Figure 3, a super-
vising device takes the system times during the test run,
when the battery level changes and when the device battery is
completely discharged. For automating the time measure-
ment, a programmable switch (represented by the dotted
line connection between the supervising device and the
switch) may be used to manage the charging process of the
battery when it reaches a predefined discharge value (e.g.,
2%). If the battery information is not available, then the
predefined discharge value is 0%, and the device under test
will turn off. Here, the problem is how to trigger this event.
An example could be reading the output voltage value of a
USB port with an ADC. When the voltage starts decreasing,
the device is turning itself off, so this event can trigger the
battery recharge.

2.2.2. Software Instrumentation. (e software in-
strumentation is required only if the time measurement
approach is selected. Time measurements require an auto-
mated procedure, which calls the SWUT continuously until

the battery is discharged. At the end of the measurement, the
result is an average consumption of the entire test run. To
summarize, the measurement procedure should perform the
following steps:

(i) Charge the battery until maximum battery level
(ii) Record the system time
(iii) Run the SWUT inside a loop until the battery is

completely discharged; typically, the SWUT is not
able to completely discharge the battery in a single
execution, so it must be run many times in an
infinite loop while recording the number of runs

(iv) Record system time when the battery charge level
changes (if these data are available)

(v) Re-record the system time when the battery charge
level reaches a predefined minimum value or when
it is completely discharged. Compute the experi-
ment total time T and the number of runs and then
store the results in a file

(vi) Recharge the battery until it is fully charged
(vii) Repeat these steps to obtain reasonable statistics

(e.g., 30 data points represents a meaningful dataset
[11]).

Once the raw data are collected, the average power
consumption is computed by analysing the time spent to
completely discharge the battery as P � (C/T) · V, where

(i) P is the average power consumption consumed in
an hour

(ii) C is the total capacity of the battery in mAh (or the
total capacity minus the residual capacity at the
predefined minimum.)

Table 3: Elements of the How deliverable.

Instant Time Model
power measurement estimation

Hardware instrumentation ✓ ✓ —
Software instrumentation — ✓ —
Synchronization ✓ — ✓
Sampling frequency ✓ — ✓
File format ✓ ✓ ✓
(reats to validity ✓ ✓ ✓

Device 
under 

test

Supervising
device

ADC

+

Figure 2: Circuit designed to measure instant power consumption.

Device 
under 

test

ADC

+

Supervising
device

Figure 3: Hardware configuration for time measurement.
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(iii) T is the time needed to discharge it in hours and
(iv) V is the voltage provided by the battery

While the total energy consumed can be computed as
E � C · V.

(e uncertainty on the P is u(P) � P∗ (u(C)/C +

u(T)/T + u(V)/V), thus it depends on the following factors:

(i) u(C): the uncertainty on the actual battery capacity,
this is the most critical since battery tends to change
their capacity over time and even new batteries
might have actual capacity quite different from the
nominal one

(ii) u(T): the error in the time measurement: this error
is typically small since complete battery discharge
requires a long time

(iii) u(V): the error in the voltage measurement: this
error must be minimized using suitable measure-
ment devices

(is technique assumes a constant power consumption
value over the entire battery discharge time.

2.2.3. Synchronization. Instant power: in this approach, the
consumption data, collected with a certain sampling fre-
quency, is available on the supervising device used for
collecting the data. However, power consumption must be
associated with the process executing the SWUT, and this
information is available on the DUT. In other words, it is
needed to synchronise the time scales of the DUT and the
supervising device. (is problem can be solved in two
ways:

(i) Synchronize the DUT and the supervising device
system times so that each sample belongs to a known
timestamp

(ii) Instrument the code by adding distinctive power
patterns for a defined period before and after each
run

(e first approach requires accurate time synchroni-
sation between the DUT and the measurement device to
record only the consumption related to the SWUT exe-
cution. (e synchronisation could be achieved using NTP
(network time protocol). However, this solution can cause
errors of more than 100ms due to network congestion. It
also requires both the supervising device and the device
under test to be connected at least to a LAN to reach the
NTP server. An error in the synchronisation between the
two devices can lead to data invalidation, especially in
experiments carried out in cascade because the con-
sumption data collected are not entirely related to the
SWUT. (e second approach allows for the association of
the consumption to a SWUT without synchronisation by
adding markers in the SWUT. (e markers are known as
code patterns, which produce distinctive data consumption
patterns identifiable by data analysis after the data col-
lection and may be defined as

(i) Busy Marker: a function executing an empty infinite
loop

(ii) Sleep Marker: a call to the sleep function

It is possible to automatically identify these well-known
patterns in the consumption data using signal processing
techniques because the busy marker has very high power
consumption, while the sleep marker has very low power
consumption (Section 2.2.7). Figure 4 presents three busy
markers, two sleep markers, and one execution of the SWUT
tagged as work.

Model estimation: the problem related to time and data
synchronisation is similar when this approach is adopted.
Instead of having a consumption value, there will be re-
source usage data. It will then be required to translate the
resource usage data into consumption data allowing the use
of a timestamp to isolate the consumption data related to the
SWUT. Alternatively, it is possible to add a marker before
and after the SWUTto identify the SWUTconsumption data
between the two markers. While the latter approach can be
followed exactly, the first approach is more straightforward
because the model estimation does not require a supervising
device, and hence there is no need to perform clock syn-
chronisation. So, it is possible to isolate the SWUT con-
sumption data by using timestamps.

2.2.4. Sampling Frequency. A sampling frequency is re-
quired when the instant power and model estimation ap-
proaches are adopted. (e instant power consumption
measurement represents the average power consumption in
each sample. A suitable sampling frequency is 125 kHz
because only 1% of energy is consumed above this frequency
as stated by Saborido et al. [12]. (e authors stated that a
10 kHz measurement could lead to an error of 8%, so such a
low sampling frequency causes significant errors.

(e size of the data log should be considered as another
constraint. Considering that each sample could be ∼10 bytes,
at 10 kHz frequency, the script produces ∼100Kbytes per
second. So, the sampling frequency should be selected
carefully based on the duration of the process running the
SWUT, the related size of the data logged, and the acceptable
error.

(e same sampling frequency tradeoffs are valid for the
model estimation approach. However, it should be taken
into account that logging the resource usage too frequently
can cause a sensible overhead.

2.2.5. File Format. (e How deliverable document contains
the explanation of the raw data file format that is used.

For Instant Power measurements, the raw data are in-
cluded in a plain text file with each line containing the
instant current in A in the sample time T. (is format is
simple, easy to read, and does not contain any extraneous
data. If the instant measurement contains multiple data (e.g.,
current, voltage, and the current system time), then it is
better to organise the file in JSON or XML format to

Scientific Programming 7



explicitly express the type of data included in the file. Such a
definition of a file format and content is useful for creating
data file parsers. (e same file format can be applied to the
Model Estimation approach, given that the output provided
by the model is parsed and converted into consumption.

In case of Time Measurement, the raw data are included
in a plain text file representing the duration of the experi-
ment. (is format is simple, easy to read, and does not
contain any extraneous data, for example, 1 :15 :13.041454.

2.2.6. Analysis Method. (e typical goal of an energy
measurement campaign is to assess whether any main factor,
e.g., a specific algorithm or computation architecture, affects
the energy consumption for specific tasks. In addition, often
the experimental design allows for the monitoring of pos-
sible confounding factors. For this purpose, a basic analysis
approach consists of fitting a linear model for the factors
with the following form:

Energy � cMF × MainFactor + cCF × CoFactor. (1)

(e factor variables can be a basic indicator or con-
tinuous variables. (e linear model will be subject to an
avalysis of variance (ANOVA) to understand the statistical
significance of the factor effects on the power. ANOVA is a
statistical method to analyse the difference of means among
different groups; ANOVA attributes the variance of means
to different sources and evaluates the probability that an
observed difference is due to an actual effect of factor versus
random effects (e.g., measurement noise). Typically such
probability—called p value—is compared against a pre-
defined threshold (5% is a common choice) to decide
whether it is possible to state that the treatment had a real
effect.

(e ANOVA is a parametric test, meaning that its results
are reliable when a few conditions are met, the most im-
portant being the normality of the samples. (e normality
can be checked by means of the Shapiro–Wilk test; if the test
returns a p value smaller than a given α level, it is possible to
conclude that the data are not drawn from a normal
distribution.

When the parametric assumption for ANOVA is not
met, a permutation test alternative to ANOVA can be used
(e.g., using the lmPerm R package [13]). In addition to the

statistical significance, it is important to evaluate the mag-
nitude of the effect of the factors. A basic assessment can be
performed by looking at relative values of the estimated
regression coefficients or by means of standardised co-
efficients, such as η (https://github.com/SoftengPoliTo/
powtran/ (Last Visited: 2019/09/22)).

When a simple comparison of two samples is required,
without any co-factor involved, a t test can be applied, being
a simplified version of an ANOVA.

2.2.7. <reats to Validity Analysis. Regardless of the chosen
approach, the How deliverable must contain an analysis of
three different threats to validity.

Internal validity: it depends on whether the consumption
data is related to the execution of the SWUT. Several possible
cases include the following:

(i) (e device has no operating system and executes
only the SWUT. (e consumption of the device can
be attributed entirely to the SWUT.

(ii) (e device has a multitasking OS. (e SWUT and
other processes (at the application or OS level) run
concurrently. (e problem is how to attribute the
consumption of the device to each process (and to
the SWUT, in particular). An option is to stop all
processes except the one that executes the SWUT.
(is is unfeasible in most OSs, so the remaining
option is to minimise the set of running processes
to those strictly required by the OS. (en, it is
possible to measure the device consumption both
when the device is idle, i.e., only OS-related pro-
cesses are running, and when it is running the
SWUT. (e difference between the two con-
sumption values represents a reasonable approx-
imation of the effective consumption attributable
to the SWUT.

(iii) (e device has a multicore processor. (e SWUT
can be executed on any core at a specific CPU
frequency. For this reason, it is unlikely that two
consumption measurements for the same SWUT
performed on the same device provide the same
value.

(e execution of the SWUTnot in isolation might be less
a threat when the goal of the process is to perform a
comparison. In such a case, a comparison can be performed
when assuming the noise produced by other programs is
similar for all tested alternatives.

Construct validity: it depends on how consumption is
measured as well as the precision of the measurement:

(i) Instant power consumption has precision impacted
mostly by the precision of the current measurement
and by the noise produced by processes executed in
parallel with the SWUT (see discussion above on
internal validity).

(ii) Time measurement has precision impacted by the
measure of the energy contained by the battery, by
the nonlinear discharge pattern, by the reduction
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of battery capacity with the recharging cycles, and
by the time required to identify that the energy
contained by the battery falls below a defined
threshold.

(iii) Model estimation builds on the precision of the
model as its key attribute. (e model may or may
not consider relevant factors (for instance, heating)
and, therefore, produces poor estimates.

Conclusion validity: it is the final category of threats to
analyse during this phase. For gaining statistical evidence,
the researcher must plan a certain number of repetitions of
the same consumption measurement. Sometimes, this can
be an issue, especially in time measurements where each run
can last hours. (us, when it is not feasible to plan many
repetitions of the same run, the investigator should consider
a tradeoff between the number of repetitions and the pos-
sible error in the conclusions. Appropriate statistical tests
should be used to determine the likelihood of observed
differences or the confidence intervals associated with
measurements.

2.3. Phase III: Do. In this phase, the researcher implements
the experiment designed in the previous phases. (e crucial
part is the procedure automation. Each execution of the
procedure should be autonomous, and at the conclusion, the
researcher should be able to collect the data without in-
terventions. Human intervention will alter the procedure
execution because it will not be repeatable with the same
actions. Achieving this requires defining a script that per-
forms the same procedure multiple times. So, the goal of this
phase is to provide an automated procedure valid for the
DUT(s) used in the experiment.

In the case of instant power consumption measurement,
the scripts should automate both the data acquisition and the
SWUT execution. When performing a time measurement,
the script must store all the system times as well as manage
the battery recharge to avoid human intervention. In
[14, 15], the authors explained a possible implementation of
this kind of scenario automation for timemeasurements. For
model measurements, the scripts run all the software
measurements tools defined in the previous phase and
collect resource usage logs for each scenario.

An incorrect setup of the experiment poses a threat to
Construct validity of the results since it could lead to
measuring the wrong construct.

(e output of this phase will be the scripts, which au-
tomate the data collection procedure and a set of files, which
contain the raw energy consumption data according to the
data format provided in the previous phase. (e Do de-
liverable document, introduced in Table 1, will be a synthetic
report that lists and explains the content of each script and
raw data. (e availability of scripts and data makes the
replication and verification of results—essential in any
scientific approach—to be carried out by third party. A
recommended practice is to leverage open public reposi-
tories—e.g., figShare, Zenodo, and GitHub—to store scripts
and data.

2.4. Phase IV: Analyse. In this phase, the consumption data
collected in the previous phase are analysed. (ere are two
approaches for identifying task-related data in power traces:

(i) Online with synchronisation between the recorder
and under measurement systems and

(ii) Offline using added markups to the traces.

With the first approach, only the portion of the traces
pertaining to the observed tasks is recorded and later pro-
cessed. (e approach requires accurate synchronisation that
is based on the capability to timely communicate between
the device and the measurement instrumentation.

(e second approach requires all the traces for a series of
experiments to be recorded, and then, during an analysis
phase, the segments pertaining to the observed tasks are
extracted and processed. It requires no synchronisation as it
suffices for trivial instrumentation to add markups into the
traces. (is approach is supported by the R package Powtran
(https://github.com/SoftengPoliTo/powtran/ (Last Visited:
2019/09/22)). (e result of the power trace analysis is the
total amount of energy consumed to perform a task.

(e energy consumption obtained in either way can then
be analysed according to the method defined in the How
phase.

(e Analyse phase might pose a threat to the Conclusion
validity. In particular, the data must be checked for the
presence of outliers, which must be assessed, and then a
decisionmust be taken concerning their possible removal. In
addition, the distribution of the energy data should be
identified; this is important to allow the choice of the ap-
propriate statistical tests.

(e output of this phase is a deliverable, called the
Analyse deliverable as described in Table 1, which contains
data analysis scripts, the data analysis results, and the
conclusion threats to validity analysis.

3. Applying the Consumption
Measurement Process

In this section, we show how the proposed process can be
applied to an example in which a battery-powered
Raspberry Pi is used to sort integer values gathered by a
sensor. (e experiment can be deemed as representative of
a typical environment in which measuring the energy
consumption of a software application is required, since
that estimation is crucial for the development of embedded
software [16]. In the example, it is required to choose the
most efficient sorting algorithm to maximize battery time.
Given that the issue is the battery time, all the con-
sumption measurements will be energy measurements.
(e following subsection is a process deliverable according
to our proposed framework.

3.1. Goal Deliverable. As defined in Section 2.1 the Goal
deliverable contains the research questions, the description
of SwUT, device, context, and the external threats to validity
analysis.
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3.1.1. Research Questions. RQ1: compare energy con-
sumption of counting sort algorithm implemented in C
language and merge sort algorithm implemented in C
language run on Raspberry Pi version 2B in the context of
Raspbian Linux OS:

(i) RQ1a: characterise the energy consumption of the
counting sort algorithm implemented in C language
run on Raspberry Pi version 2B in the context of
Raspbian Linux OS

(ii) RQ1b: characterise the energy consumption of the
merge sort algorithm implemented in C language
run on Raspberry Pi version 2B in the context of
Raspbian Linux OS.

3.1.2. SWUT Description. (e following two SWUTs are
considered in the experiment:

(i) Counting sort: 2-pass sorting algorithm, with O(n)
time complexity

(ii) Merge sort: single-pass sorting algorithm, with
O(nlogn)] time complexity

A brief description of the considered algorithms and the
code implementation are reported Appendix A.1.

We planned five distinct dataset to test the SwUT labeled
with numbers from 1 to 5.(e first dataset contains numbers
from 0 to (DATASET_SIZE-1) in ascending order and the
second dataset contains numbers in descending order from
(DATASET_SIZE-1) to 0. (e remaining three datasets
contain pseudorandom numbers with values between 0 and
(DATASET_SIZE-1). (e seed is known, so the same
pseudorandom numbers can be generated anytime. For
these data, DATASET_SIZE represents 50,000 elements.

3.1.3. Device Specifications and Context. (e most relevant
hardware specifications for the tested device, a Raspberry Pi
2B, are specified in Table 4.

(e context of the measurement is specified in Table 5.
(e full set of device specifications and the complete list of
processes running during the experiment is reported in
Appendix A.2.

3.1.4. <reats to External Validity Analysis. (e results will
be valid only for Raspberry Pi version 2B, and the experi-
menters accept this restriction.

3.2. How Deliverable. As defined in Section 2.2, the how
deliverable for an instant power measurement will contain
the following sections: hardware instrumentation, syn-
chronization, sampling frequency, file format, and threats to
validity analysis.

3.2.1. Hardware Instrumentation

(i) Voltage generator: 5V (max 2A)
(ii) Shunt resistor: 0.05Ω

(iii) ADC: National Instrument NI-6210
(iv) Supervising device: desktop computer

3.2.2. Sampling and Data Synchronization. (ere will be no
clock synchronisation or postprocessing data analysis.

3.2.3. Sampling Frequency. (e selected sampling frequency
is 125 kHz.

3.2.4. File Format. (e file name includes the following
details about the experiment: device maker, device model,
algorithm name, programming language, dataset size, and
dataset label (e.g., progressive number). A sample file name
can be Raspberry_2b_counting_c_5000_1. A file content
sample can be the following:

1,149160E+ 0
1,142452E+ 0
1,152316E+ 0

3.2.5. <reats to Validity Analysis. To limit the threats to
internal validity related to the correct determination of the
consumption value for a specific process, we plan to

(i) Run the experiment on a new installation of a
Raspbian Lite OS to minimise the number of
concurrent processes

(ii) Measure the instant power consumption of the
device in idle and

(iii) Subtract the idle value from the data obtained in
each run (Section 3.2.7)

To limit the threats to construct validity, we provide a
voltage measurement of the shunt resistor. (e value
logged in the file is the voltage multiplied by the voltage
divided by the shunt resistor value. (is multiplication
will provide the instant power consumption value

Table 4: Goal deliverable devices.

Parameter Value
CPU 900MHz quad-core ARM Cortex-A7
RAM 1GB
Graphics core VideoCore IV

Table 5: Goal deliverable context.

Parameter Value
OS Raspbian Linux OS: Jessie Lite
Kernel version 4.4
OS config. Default
No. running processes 22
Power information
collection interface ADC NI USB 6210

Power information
processing

C software written with NI library
(http://softeng.polito.it/ardito/sust/

acquisition_software.zip (Last
Visited 2018/11/12).)
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according to Ohm’s Law, P �V · I. In this computation, we
do not take into account the shunt resistor temperature,
which could alter our measurement. We are willing to
accept this error because it is not going to affect our results
significantly.

To limit the threats to conclusion validity, we will repeat
each measurement 30 times.

3.2.6. Do Deliverable. We will collect instant power con-
sumption during the execution of the algorithm. In the
analysis phase, we will transform instant power consump-
tion to an energy value by computing the integral of instant
power consumption over the experiment time interval. For
automating the experiment, we created a script in the Python
language, to

(i) Run the data collector on the supervising device
(ii) Run the SwUT on the Raspberry Pi
(iii) Store the instant power consumption on a text file
(iv) Commit and push the instant power consumption

file to a local git repository

(e Raspberry Pi is connected to a router on a LAN.(e
supervising device is also connected to the same network, so
it is possible to run the SwUT via SSH. (e script reads the
to-do list from an input file. (e to-do list includes a line
representing each run of the SwUT specifying the following
information:

(i) Device model
(ii) Programming language;
(iii) SwUT
(iv) Dataset size
(v) Dataset label

To repeat these operations programmatically, we created
a program, called executor, to run on the Raspberry Pi,
which takes the following as input:

(i) (e SwUT name
(ii) (e dataset size
(iii) (e dataset label

When started, the executor will

(1) Create the dataset dynamically
(2) Run the marker
(3) Run the SwUT
(4) Repeat points 2 and 3 thirty times
(5) End

(e experiment automation script in python, the to-do
list file, and the raw data are available online on an open
repository [17].

Each element of the to-do list executes the same task
thirty times, as described in Section 3.2.5. Each run is
preceded by the implementation of a marker, which allows
the identification of the SwUT in the instant power con-
sumption data.

3.2.7. Analyse Deliverable. Corresponding to the original
RQ, we formulate the following null hypothesis: there is no
significant difference in the central tendency of the energy
consumed by the two algorithms in performing the sorting
task. (e significance level (α), corresponding to the risk of
committing a type I error, i.e., rejecting the null hypothesis
while it is true, may be assigned to the standard 5%.

Analysis Results. (e distribution of the energy con-
sumed per task can be represented graphically by means of a
boxplot displayed in Figure 5.

A summary of the data, together with a central tendency,
dispersion, and normality is reported in Table 6. (e values
are reported in millijoules.

We observe that the last column, reporting the p value of
the Shapiro–Wilk test, contains values that are smaller than
5% (our reference value). We can reject the null hypothesis
for both algorithms that the values are sampled from a
normal distribution. (erefore, we should apply non-
parametric statistics in the following analysis. To check the
null hypothesis, we can apply a Mann–WhitneyU test.(e p

value returned by the test is smaller than the reference level,
so we can reject the null hypothesis. We conclude that a
significant difference in energy consumption exists between
the two algorithms. To quantify the magnitude of the dif-
ference, we compute the standardised effect size. For this
purpose, we adopt Cliff’s Delta statistic. We obtain an effect
size of − 1 meaning that the amount of energy consumed by
the first algorithm (counting sort) is smaller than the second
(merge sort) by a significant amount. So, we conclude
counting sort is the algorithm to select for better energy
efficiency.

4. Related Work

During recent years, the interest in how software influences
the power consumption of a device has increased sharply. It
is possible to divide the related work on the topic into two
categories:

(1) Energy consumption measurement/estimation
(2) Energy consumption reduction/optimization

(e first category focuses on the way in which energy is
measured or estimated. A recent work by Harman et al. [7]
categorizes energy testing as one of the most important fields
for search-based software engineering and highlights the
need for trustable metrics and for quick and well-defined
energy-measuring procedures. (e paper also highlights
several novel hardware-based approaches, e.g., the SEEP [18]
approach using symbolic execution to capture and re-exe-
cute paths. (e approach we propose is adaptable to any
alternative method for measuring energy or power, since
using a different procedure would only have impact on the
hardware section of the How deliverable and on the Do
deliverable where the steps of the experiments are
formalized.

Noureddine et al. [19] review different energy mea-
surement approaches that can be classified as measure-
ment/estimation and modelling. In this first subcategory,
the goal is to determine the energy consumption through
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the hardware equipment, while the latter creates a math-
ematical model of the device energy consumption to
provide energy data without external equipment. By ana-
lysing the literature, we see that Hindle et al. [20] proposed
an approach to measure how the energy consumption of
software applications varies through the different versions.
(ere exist working prototypes, which allow estimating the
energy consumption of mobile devices, the most popular
being DevScope [21], AppScope [22], and En-Track [23].
(is work proposes complete and working prototypes for
measuring the power consumption of Android applica-
tions. (e main problem of these approaches is the limited
number of supported devices. For this reason, it is difficult
to replicate the studies to validate the measurements or to
apply the same measurement on a slightly different device
or software.

(e second category focuses on the changes to be made
to the architecture or the source code to achieve the energy
consumption reduction or optimisation. (e literature re-
view by Aleti et al. [24] describes some approaches to reduce
the energy consumption by improving the software
architecture.

All these efforts are typically individual optimisation
and are difficult to apply to general cases. Furthermore,
both categories share some common steps to be per-
formed, such as data collection, code instrumentation,
and data analysis, but often it is not easy to compare the

procedures in different experiments since a uniform
notation for the documentation of similar tasks is missing.
So, it is useful to think about a general process to measure
the power consumption of a software application and to
provide the tools needed to document and analyse the data
obtained in the measurement. To our knowledge, such a
general and repeatable approach is still missing in the
literature.

It is possible to identify many references that measure
the energy consumption of software applications and pro-
pose ways to reduce it [9, 25–40]. In Table 7, we compare the
information (listed as table columns) provided by our
process along with the information provided by each of these
papers (listed as table rows). A check mark (✓) indicates that
the current information carried out by our process is also
included in the related paper. In Section 2, we explain in
detail all information produced as the output of our process.
Table 7 shows that in the literature there are methods for
measuring the energy consumption of software applications.
However, there is no common procedure to extract the
energy data from software applications. In detail, all the
analysed works lack the following features:

(i) Provide all the information that are part of our
process

(ii) Explain step-by-step how to replicate the
experiment

(iii) Provide a defined format to publish the raw data
obtained

Following a defined procedure will enable a comparison
between data of different experiments. (is will guide
developers toward countermeasures to handle cases of
high-energy consumption. We previously identified a high-

Table 6: Summary statistics of energy by algorithm.

Algorithm Mean Median SD p.SW
Counting sort 2.30 2.33 0.25 p< 0.001
Merge sort 8.69 8.55 1.22 p< 0.001
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Figure 5: Energy consumed by the two algorithms for sorting an array of 50,000 elements.
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level framework [41], which describes the motivations that
lead to measuring the energy consumption of software
applications. So, the main contribution of this work pro-
poses a common process to be used by anyone to extract
energy data of software applications in such a way as to
have comparable data that are extracted and analysed in a
standard way.

5. Conclusion

(e awareness of energy consumption is an emerging quality
for software and hardware. (e expansion of mobile device
usage as well as the diffusion of IoT devices made energy
consumption a critical issue due to the limited amount of
energy batteries can store. In this paper, we presented a well-
defined and rigorous approach to plan and conduct software
energy consumption measurements that, to the best of our
knowledge, was not previously available in the literature.(e
proposed procedure incorporates features enabling the
adoption of evidence-based software engineering as it
produces results that are

(i) Trustable: detailed documentation of goals, plan-
ning, and execution allows quality assessment

(ii) Comparable: the contextual details and the uni-
formity of the process ease comparison

(iii) Actionable: the factors are defined and, thus, any
energy improvement actions can be properly
targeted

(e approach is applicable in a real-world context and
has been applied by the authors in the previous research. In
addition, a sample application is reported to serve as a
template guide for third-party applications.

Furthermore, the approach also serves as a checklist for
assessing existing studies. We used it in this sense to evaluate
the related work, as summarized in Table 7.

For future work, we plan to create a repository where it
will be possible to upload the deliverables produced

according to the process we describe. Such repository would
allow comparing different studies and building an empiri-
cally backed body of knowledge.

Appendix

A. Experiment Details

A.1. SWUT code. Counting sort is a 2-pass sort algorithm
that is efficient when the number of distinct keys is small
compared to the number of items. (e first pass counts the
occurrences of each key in an auxiliary array and then makes
a running total so each auxiliary entry is the number of
preceding keys. (e second pass puts each item into its final
place according to the auxiliary entry for that key. Time
complexity is O(n). (e implementation has been tested and
follows the state of the art:

void counting_sort (int A[], int n){
int i, ∗B,∗C;
B�malloc (n ∗ sizeof (int));
C�malloc (M ∗ sizeof (int));
for (i� 0; i<M; i++)
C[i]� 0;

for (i� 0; i< n; i++)
C[A[i]]++;

for (i� 1; i<M; i++)
C[i] +�C[i − 1];

for (i� n − 1; i≥ 0; i− − ){
B[C[A[i]] − 1]�A[i];
C[A[i]]− − ;

}
for (i� 0; i< n; i++)

A[i]�B[i];
}

Table 7: Comparison between related work and our process.

Related paper [9] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [33] [35] [36] [37] [38] [39] [40]
Goal deliverable
RQ definition ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Software under test description ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Device context info ✓ ✓ ✓ ✓ ✓ ✓ ✓
How deliverable
Measurement or estimation
technique description ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hardware and software
instrumentation ✓ ✓ ✓ ✓ ✓

Sampling frequency used ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Data format description
Do deliverable
Implementation scripts
description and publication
Raw data publication
Analyse deliverable
Statistical data analysis ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
(reats to validity analysis ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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(e merge sort algorithm divides the items to be sorted
into two groups, recursively sorts each group, and merges
them into a final, sorted sequence. Time complexity is
O(nlogn). (e implementation has been tested and follows
the state of the art:

void my_merge_c (int ∗v, int dim){
int ∗aux;
aux � (int ∗) malloc (dim ∗ sizeof (int));
merge_sort_recur (v,0, dim − 1, aux);

}
void merge_sort_recur (int ∗v, int p, int r, int ∗aux){

int q;
if (p< r){

q� (p+ r)/2;
merge_sort_recur (v, p, q, aux);
merge_sort_recur (v, q+ 1, r, aux);
my_merge (v, p, q, r, aux);

}
}
void my_merge (int ∗v, int p, int q, int r, int ∗aux){

int i, j, k;
for (i� p, j� q+ 1, k� p; i≤ q&& j≤ r){

if (v[i]< v[j])
aux[k++]� v[i + +];

else
aux[k++]� v[j + +];

}
while (i≤ q)

aux[k++]� v[i + +];
while ( j≤ r)

aux[k++]� v[j + +];
for (k� p; k≤ r; k++)

v[k] � aux[k];
}

A.2. Devices and Context. (e hardware specifications for
the tested device, Raspberry Pi 2B, include

(i) A 900MHz quad-core ARM Cortex-A7 CPU
(ii) 1 GB RAM
(iii) USB ports: no devices connected
(iv) 40 GPIO pins: not used for our experiment
(v) Full HDMI port: no display connected
(vi) Ethernet port: connected to a local router without

Internet connection
(vii) Combined 3.5mm audio Jack and composite

video: not used
(viii) Camera interface: not used
(ix) Display interface: not used

(x) Micro SD: Kingston 16GB Class 10
(xi) VideoCore IV 3D graphics core

For this experiment, the context may be summarized as
follows:

(i) Raspbian Linux OS: Jessie Lite, Kernel version 4.4
(ii) Default OS configuration
(iii) Processes running during the experiment:

(1) kworker
(2) systemd
(3) kthreadd
(4) ksoftirqd
(5) rcu_sched
(6) rcu_bh
(7) migration
(8) kdevtmpfs
(9) netns
(10) perf
(11) khungtaskd
(12) writeback
(13) crypto
(14) bioset
(15) kblockd
(16) rpciod
(17) kswapd0
(18) vmstat
(19) fsnotify_mark
(20) nfsiod
(21) kthrotld
(22) bioset

(iv) Power information collected through ADC NI USB
6210

(v) Power information processed through custom
software written in the C language using the default
NI library; the software has been made available
online through an open repository [42]

Data Availability

(e data used to support the findings of this study are in-
cluded within the article in the form of references linking to
resources available on the figShare public open repository.
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