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An Area-Efficient Variable-Size Fixed-Point DCT
Architecture for HEVC Encoding

Maurizio Masera, Guido Masera, Senior Member, IEEE, and Maurizio Martina, Senior Member, IEEE

Abstract—This paper proposes an area-efficient fixed-point ar-
chitecture for the computation of the Discrete Cosine Transform
(DCT) of multiple sizes in HEVC. This result is obtained by
comparing different DCT factorizations in order to find the
most suitable one for implementation in the HEVC encoder. The
recursive structure of fast algorithms, which decompose the N -
point DCT by means of two N/2-point DCTs, is exploited to
execute computations of small-size DCTs in parallel, thus max-
imizing the hardware re-usability while maintaining a constant
throughput. Simulation results prove that the proposed solution
features reduced rate-distortion losses, with relevant complexity
saving compared with state-of-the-art implementations. Finally,
the proposed architecture is exploited to design two families of
architectures for the 2D-DCT, namely Folded and Full-parallel.

Index Terms—Discrete Cosine Transform, DCT, VLSI Archi-
tecture, High Efficiency Video Coding.

I. INTRODUCTION

THE latest High Efficiency Video Coding (HEVC) stan-
dard [1] aims to double the coding efficiency with respect

to the previous Advanced Video Coding standard (AVC) [2].
One of the features introduced by the new standard to achieve
such a result, is the ability to compute transforms on squared
blocks of multiple sizes. Discrete Cosine Transforms (DCTs)
of size from 4 × 4 to 32 × 32 and the 4 × 4 Discrete
Sine Transform (DST) are specified as core transforms in the
HEVC standard [3]. The use of multiple DCT sizes improves
the video coding performance at the expense of increasing
the computational complexity. For this reason, some hardware
architectures have been proposed in the literature to accelerate
the DCT computation for HEVC. However, despite being
important, it is not easy to estimate the throughput require-
ments of the different subblocks inside the HEVC encoder.
Some works in the literature [4], [5] addressed the problem,
showing that HEVC encoding complexity is strictly related to
the use of certain coding tools and, as a consequence, to the
application. In particular, [5] shows that the number of DCTs
performed by the encoder, and so the required throughput,
changes dramatically when enabling or disabling certain tools.
For this reason most of the works proposed in the literature,
describing architectures for the DCT, rely on an application-
independent approach.

It is worth noting that the HEVC standard defines the DCT
used at the decoder side, which is an integer approximation
of the DCT and is obtained through the optimization process
discussed in [3]. As a consequence, different solutions, trading
rate-distortion performance for complexity, can be explored
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at the encoder side, leading to two possible scenarios: i)
fixed-point implementations of DCT factorizations, ii) integer
approximations of the DCT. In the first scenario, where fixed-
point implementations of DCT factorizations are considered,
e.g. [6], [7], rate-distortion performance degradation due to
quantization needs to be carefully studied. On the other hand,
in the second scenario there are two possible cases, which
depend on the selected approximation. If the integer DCT
approximation at the encoder side is the same one imposed
at the decoder side by the standard, as in [8]–[11], then
there is no need to investigate the rate-distortion performance,
as it is already known [1]. On the contrary, other integer
DCT approximations, such as [12]–[16], can lead to relevant
complexity reduction at the expense of significant coding loss,
especially at high bit-rates [7], [15].

In the following, the one-dimensional N -point DCT and
the two-dimensional DCT over an N × N block are re-
ferred to as 1D-DCT and 2D-DCT respectively. The solutions
implemented in [6], [7] for the 1D-DCT are fixed-point
architectures, which rely on the work of Chen et al. [17],
namely factorizing the 1D-DCT as the cascade of the Walsh-
Hadamard Transform (WHT) and a set of Givens rotations.
On the other hand, [8]–[11], [18] deal with the integer DCT
approximation defined in the HEVC standard. Budagavi et al.
[8] propose a unified forward and inverse transform unit by
exploiting the symmetry within the transform defined in the
HEVC standard. Meher et al. [9] present an efficient integer
DCT architecture, where the 1D-DCT core implements the
partial-butterfly factorization suggested in [3] by means of one
N/2-point DCT and one N/2 × N/2 matrix multiplication
resorting to the Multiple Constant Multiplication (MCM) tech-
nique. Zhao et al. [10] reduced the hardware cost of the design
by exploiting add-and-shift operations to represent the integer
DCT coefficients. In [11] Dias et al. exploit a systolic-array-
based design to propose a multi-standard architecture, which
supports both H.264/AVC and HEVC integer DCTs. Goebel
et al. [18] have recently proposed an HEVC multi-size DCT
architecture, which is able to support heterogeneous partition-
ing of CUs, thanks to its ability to compute DCTs of different
length in parallel. Unlike the aforementioned works, several
low-complexity approximate DCTs are shown and compared
in [12]. A similar approach is developed in [14]–[16], where
a generalized algorithm and efficient architectures are derived
by recursive decomposition of sparse DCT approximations.

As observed in most of previous works, including [9], [11],
the separability property permits to implement the 2D-DCT by
applying 1D-DCTs first on the rows, then on the columns of
the input block of samples. As a consequence, a transposition
structure is required to feed the 1D-DCT architecture either
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row-wise or column-wise. In [11] this operation is imple-
mented by the means of a transposition switch, which is made
of multiplexers with no need for additional memory resources.
On the contrary, in [9] transposition relies on a buffer, which
contains N×N registers and N multiplexers to select the data
either row-wise or column-wise. Then, two architectures are
derived, where the first one, referred to as Folded, relies on one
1D-DCT and a transposition buffer; the second one, referred
to as Full-parallel, exploits two 1D-DCTs and a transposition
buffer to achieve high throughput. Since the buffer requires to
be filled with the intermediate results, it introduces a latency
of N clock cycles. Moreover, as the number of pixels in each
block varies from 4 to 32, the solutions presented in [9],
[18] suggest to transform 32 pixels per clock cycles, which
means to process up to 32/N blocks of N pixels concurrently.
Such solutions lead to architectures which are able to sustain
a constant throughput, independently of N .

From the analysis of previous works proposed in the litera-
ture, it is clear that designing an architecture able to support all
the DCT sizes specified in the HEVC standard, leads to some
area overhead. In particular, [9] shows that thanks to the even-
odd decomposition about 50% the architecture of the N -point
1D-DCT, can be exploited to implement one N/2-point 1D-
DCT, with low area overhead. As a consequence, being able to
increase to more than 50% the reuse of the N -point 1D-DCT
for small size ones is important, especially in fixed throughput
architectures. This aspect motivated us to analyze alternative
approaches to implement the DCT, such as resorting to DCT
factorizations. Stemming from [9], this current work describes
two families of 2D-DCT architectures (both pipelined and not-
pipelined), each of which includes a transposition buffer and
one or two 1D-DCT modules. It also aims to analyze and
evaluate the complexity and the rate-distortion performance
degradation of fixed-point implementations of DCT factoriza-
tions. Indeed, several factorizations proposed in the literature,
such as [17], [19]–[27] can be considered. However, despite
these factorizations have been partially compared for fixed N
values in previous works, such as [28], to the best of our
knowledge there is no results in the open literature showing:
i) the amount of resource reusability featured by different fac-
torizations when variable-size DCT is required, as in HEVC;
ii) if some factorizations are competitive with state-of-the-
art solutions from the hardware complexity point of view.
This motivated us to investigate these directions discovering
that, if variable-size is taken into account when choosing the
factorization, then the obtained architecture features a large
complexity reduction with respect to state-of-the-art solutions.
Based on these observations, this work aims to provide the
following novel contributions: i) to analyze different 1D-DCT
factorizations from the literature and to identify for each one
both the amount of required resources and the degree of
re-usability to support variable-size transforms, as required
for HEVC; ii) to choose the factorization which minimizes
the amount of hardware resources while maximizing the re-
usability, which has not been previously shown in the open
literature; iii) to show the rate-distortion performance degra-
dation in HEVC of the selected factorization when fixed-point
implementation is used. In particular, the selected factorization

with fixed point implementation features in the worst case an
overall Bjøntegaard Delta rate loss lower than the 2%; iv)
to present a novel fixed-point 1D-DCT architecture of the
selected factorization to support variable-size transform and to
study the effect of pipelining on area and maximum sustained
throughput. The proposed architecture is significantly smaller
than other architectures described in the literature and it
achieves lower power and energy consumption.

The paper is organized as follows. Different alternatives to
design a variable-size architecture (including DCT factoriza-
tions and DCT integer approximations) are presented and com-
pared in Section II, where the characteristics of the selected
factorization (Lee’s factorization [21]) are briefly summarized.
Section III illustrates the proposed architecture, which is able
to support all the DCT sizes specified in the HEVC standard
with high resource sharing. Finally, implementation results are
presented in Section IV, while Section V concludes the paper.

II. DCT ALGORITHMS FOR HEVC

Since the proposed architecture has to support multiple
transform sizes (i.e. N = 4, 8, 16, 32) and aims to minimize the
hardware cost by exploiting resource sharing, a comparison of
both exact factorizations and integer approximations proposed
in literature for the 1D-DCT is briefly reviewed.

A. Exact DCT Factorizations

According to [29], the 1D-DCT can be computed as:

X = CII
N · x, (1)

where x = {x0, . . . , xN−1} and X = {X0, . . . , XN−1} are
the column vectors of input samples and DCT coefficients
respectively, and CII

N is the N -order type-II DCT matrix,
which coefficients are:

(CII
N )l,k = σk cos

[(
l +

1

2

)
kπ

N

]
k, l = 0, . . . , N − 1, (2)

where σk = 1/
√
2 only for k = 0, σk = 1 otherwise.

In the past, several fast algorithms have been proposed for
computing the DCT [17], [19]–[27].

The WHT-based factorization was initially proposed in [17]
for the case N = 8. Then, it has been extended and exploited
in [6], [7] to reduce the 1D-DCT computation to FN simple
addition/subtraction butterflies and RN Givens rotations (see
the first row in Table I).

Loeffler [27] decomposed the 1D-DCT matrix by means of
one N/2-point DCT and a non-regular N/2 × N/2 rotation
matrix, which cannot be shared with other DCT sizes. It is
worth noting that Loeffler’s factorization achieves the theoret-
ical lower bound on the number of required multiplications
for N = 8. The extension of Loeffler’s factorization to larger
N values is described in [30].

On the other hand, the CII
N matrix can be recursively

factorized by splitting the computation into one type-II DCT
matrix of size N/2 (CII

N
2

) and one type-IV DCT matrix of
size N/2 (CIV

N
2

) [29]. Some works in the literature implement
CIV

N
2

by the means of sparse matrices [19], [20]. Other works
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Fig. 1. Flowgraphs of 1D-DCT for N = 8 of factorizations in [21] and
[26].

rewrite CIV
N
2

as a function of CII
N
2

[21]–[26] to obtain solutions
based on CII

N
2

only. The formulas to compute the number of
additions and multiplications as a function of N , referred to
as AN and MN , for [6], [7], [19]–[26] are given in Table I,
whereas for [27] no closed-form is available [30].

Although factorizations in [21]–[26] feature equal com-
putational complexity, they adopt different flowgraphs and
coefficient values. As an example, Fig. 1 shows the data flow,
for the case N = 8, of two representative factorizations, namely
[21] and [26]. As it can be observed, the additions and the
multiplications in the initial stage are performed concurrently
in both factorizations. The coefficients in the multiplications
are inverse cosine 1/(2 · ci,j) values in [21] and cosine
ci,j = cos iπ

j values in [26]. Moreover, as highlighted by the
dashed boxes in the right-most part of Fig. 1 (a) and (b),
the final stage is different. The data flow in [21] performs
concurrent computation of the last N/2−1 additions, whereas
cascaded additions are used in [26]. As a consequence, the two
data flows have the same critical path except for the final stage.
Indeed, the delay of the last stage is one adder for [21] and
N/2− 1 adders for [26]. For this reason, the factorization in
[21] provides the shortest critical path among [21]–[26], being
the most suitable one (in the group of CII

N
2

only factorizations)
for high throughput hardware implementation.

B. Integer DCT Approximations

These approximations aim to reduce the complexity by
placing integer coefficients into the DCT matrix. Depend-
ing on the choice of the coefficients, several different rate-
distortion/complexity trade-offs can be achieved.

The DCT used in HEVC is an integer DCT approximation
[3], which has been designed to achieve several properties,
including almost orthogonal basis vectors with almost equal
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Fig. 2. 1D-DCT block schemes. Continuous lines represent N -samples data-
flow and dashed lines N/2-samples data-flow.

norm, symmetry and the possibility to embed small transform
matrices in large ones.

Other approaches can be used to design low-complexity
approximations of the DCT for HEVC as well. The works
in [14], [15] present a general recursive algorithm to derive
an approximate N -point DCT from a pair of N/2-point DCTs
with an additional cost of N/2 butterflies. As shown in Table
II, such solutions feature very low complexity compared to
the other ones. However, as argued in [15], these works
give coding loss between 2% and 30% in terms of bit-rate,
when used for video compression. Another integer cosine
transform has been proposed in [16], to provide the same
coding performance of HEVC while reducing the complexity.
Formulas to compute AN and MN for [3], [14]–[16] are given
in Table I.

C. Variable-size Analysis

As highlighted in Section I, the complexity of a multiple-
size DCT architecture depends on both the complexity of the
employed factorization and the possibility to share resources
for different values of N . Even if some factorizations, such
as [27], exhibit low complexity when each N value is taken
as a stand-alone point in the design space (see Table II), they
suffer from some complexity overhead when resource sharing
is required to support variable-size transforms. As stated
in Section I, this current work exploits a fixed throughput
solution, where the 1D-DCT architecture processes 32/N data
blocks concurrently, i.e. one 1D-DCT32, two 1D-DCT16, four
1D-DCT8 or eight 1D-DCT4. As a consequence, resources
allocated for large N values must be reused for small N
values. However, all the factorizations which employ one
N/2-point DCT and a custom matrix multiplication, such
as [3], [16], [19], [20], [27], are not suited for variable-size
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TABLE I
FORMULAS TO COMPUTE THE NUMBER OF ADDITIONS (AN ) AND MULTIPLICATIONS (MN ) OF DCTS ALGORITHMS

[6], [7] AN = 2 · FN + 3 ·RN FN = 2 · FN
2

+ N
2

F4 = 2

MN = 3 ·RN RN = 2 ·RN
2

+N ·
log2 N∑
i=2

1
2i

R4 = 1

[19] AN = AN
2

+ 3N
4

log2 N A4 = 8 [3] AN = AN
2

+ N
2

+ N2

4
A4 = 8

MN = MN
2

+ N
2
log2 N − N

4
M4 = 6 MN = MN

2
+ N2

4
M4 = 4

[20] AN = AN
2

+ N
8

· (7 · log2 N
2

− 2) +N A4 = 9 [14] AN = 2 ·AN
2

+N , MN = 0 A8 = 22

MN = MN
2

+ N
8

· (3 · log2 N
2

+ 2) M4 = 5 [15] A4 = 8

[21]–[26] AN = 2 ·AN
2

+N + N
2

− 1 A4 = 9 [16] AN = AN
2

+ 3N
2

+N · log2 N
4

A4 = 8

MN = 2 ·MN
2

+ N
2

M4 = 4 MN = MN
2

+N · log2 N
2

M4 = 6

TABLE II
COMPUTATIONAL COMPLEXITY COMPARISON AMONG DIFFERENT DCT ALGORITHMS

N

Factorizations Integer Approximations
WHT based CIV

N
2

as sparse matrices CII
N
2

only Loeffler HEVC sparse matrices based

[6], [7] [19] [20] [21]–[26] [27] [3] [14] [15] [16]
MN AN MN AN MN AN MN AN MN AN MN AN MN AN MN AN MN AN

4 3 11 6 8 5 9 4 9 3 9 4 8 - - 0 8 6 8
8 15 39 16 26 13 29 12 29 11 29 20 28 0 22 0 24 22 28
16 51 115 44 74 35 83 32 81 31 81 84 100 0 60 0 64 70 84
32 147 307 116 194 91 219 80 209 79 209 340 372 0 152 0 160 198 228
All 147 307 216 352 172 396 80 209 144 384 480 560 0 152 0 160 336 400

support. Indeed, in [9], variable-size support is achieved by
adding a further N/2-point DCT, shown in dark-shaded gray
in Fig. 2 (a). Therefore, the total amount of additions and
multiplications needed by these algorithms is:

AAll = A32 +A16 + 2 ·A8 + 4 ·A4 (3)

MAll = M32 +M16 + 2 ·M8 + 4 ·M4 (4)

where the terms AN and MN are computed as in Table I.
On the other hand, all the factorizations which rely on

two N/2-point DCTs (see Fig. 2 (b)), such as [6], [7], [14],
[15], [21]–[26], achieve a higher degree of re-usability as they
do not pay the overhead introduced by the custom matrix
multiplication. In this case the resources needed for N =
32 are reused for the concurrent computation of small-size
transforms. As a consequence, adders and multipliers achieve
a 100% utilization, AAll = A32 and MAll = M32, where A32

and M32 for [6], [7], [14], [15], [21]–[26] are computed as in
Table I.

The amount of additions and multiplications required by
each algorithm to implement a variable-size DCT architecture
for the HEVC encoder are shown in the last row of Table
II, where they are labeled as All. As it can be observed,
factorizations in [21]–[26] achieve the lowest complexity,
being all good candidates for fixed-point implementations.
However, as highlighted in Section II-A, [21] features the
shortest critical path among [21]–[26]. Thus, in the following
sections an architecture for Lee’s factorization [21] is proposed
and analyzed.

D. Lee’s DCT Factorization

According to Lee’s factorization [21] and neglecting σk in
(2), the DCT matrix can be recursively decomposed as:

CII
N =PN ·

[
IN

2

RN
2

]
·

[
CII

N
2

CII
N
2

]
·

[
IN

2

DN
2

]
·BN , (5)

where the N -order butterfly matrix BN is:

BN =

[
IN

2
ĪN

2

ĪN
2

−IN
2

]
(6)

and I and Ī are the identity and the reverse identity matrices
respectively. On the other hand, DN

2
is an anti-diagonal matrix

which contains N/2 inverse cosine coefficients:

dk,N =
1

2 · cos (2k+1)π
2N

k = 0, . . . ,
N

2
− 1. (7)

Besides, matrix RN
2

is an upper bidiagonal matrix, which
performs data recombination and it can be written as:

RN
2
=


1 1

. . .
. . .

. . . 1
1

 . (8)

Finally, PN is the alternating permutation matrix defined by
ΦN :

ΦN =

(
k

ϕN (k)

)
k = 0, . . . , N − 1, (9)

with

ϕN (k) =

{
⌊k
2 ⌋ k even

⌊k
2 ⌋+

N
2 k odd

. (10)
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III. HARDWARE ARCHITECTURE

This Section describes the proposed baseline 1D-DCT
hardware architecture, derived from the Lee’s factorization
[21]. Then, architecture modifications to support variable-
size DCT are explained and two schemes to implement the
2D-DCTs are presented as well. Finally, it is shown how
pipelining can improve the maximum sustained throughput of
the architectures.

A. 1D-DCT Architecture

The proposed recursive 1D-DCT architecture, shown in Fig.
3, corresponds to the implementation of Lee’s factorization as
in (5), where the N -point 1D-DCT computation is performed
by the means of two N/2-point DCTs plus the Butterfly
Unit, the Inverse Cosine Unit and the Recombination Unit,
implementing BN , DN

2
and RN

2
respectively.

The Butterfly Unit implements the N/2 butterfly operators
defined by IN

2
and ĪN

2
in (6), which combine x values into

g∗ and h∗ as:

g∗k = xk + xN−k−1

h∗
k = xk − xN−k−1

k = 0, . . . ,
N

2
− 1, (11)

where xk, g∗k and h∗
k are the k-th elements of x, g∗ and

h∗, respectively. As it can be observed, g∗ is directly con-
nected to the input of the upper N/2-point DCT (i.e. g =
{g0, . . . , gN/2−1}) and h∗ is the input of the Inverse Cosine
Unit. This block multiplies each h∗

k value with the proper
inverse cosine coefficient to produce:

hk = (δk,N · h∗
k) >> Nq k = 0, . . . ,

N

2
− 1, (12)

where h = {h0, . . . , hN/2−1} is the input of the lower N/2-
point DCT,

δk,N = ⌊dk,N · 2Nq⌉ (13)

are the coefficients in (7) scaled up by Nq bits and rounded to
the nearest integer and >> represents the right-shift operation.
As an example, d0,2 = 1/[2 · cos(π/4)] = 1/

√
2 with Nq = 7

gives δ0,2 = 91. As a consequence, depending on Nq , different
trade-offs between DCT accuracy and hardware cost have been
defined. The results of this trade-off exploration are reported
in Section IV. Since δk,N are constants, multiplications are
simplified into add-and-shift blocks by exploiting the Reduced
Adder Graph (RAG-n) technique [31]. As an example, the

TABLE III
SCALED VALUES OF INVERSE COSINE COEFFICIENTS δk,N AND NUMBER

OF ADD Ak,N AND SHIFT Sk,N OPERATIONS FOR RAG-n
IMPLEMENTATION WITH Nq = 7

(k,N ) δk,N Ak,N Sk,N (k,N ) δk,N Ak,N Sk,N

0,2 91 3 3 0,32 64 0 1
0,4 69 2 2 1,32 65 1 1
1,4 167 3 3 2,32 66 1 2
0,8 65 1 1 3,32 68 1 2
1,8 77 3 3 4,32 71 2 2
2,8 115 3 3 5,32 75 2 2
3,8 328 2 3 6,32 80 1 2
0,16 64 0 1 7,32 86 3 4
1,16 67 2 2 8,32 95 2 2
2,16 73 2 2 9,32 107 3 3
3,16 83 3 3 10,32 124 1 2
4,16 101 3 3 11,32 150 2 3
5,16 136 1 2 12,32 190 2 3
6,16 220 2 3 13,32 263 2 2
7,16 653 3 3 14,32 436 3 4

- - - - 15,32 1304 3 4

product δk,N · h∗
k in (12) when k = 0, N = 2 and Nq = 7

becomes:

δ0,2 ·h∗
0 = 91 ·h∗

0 = (h∗
0 << 6)+(3 ·h∗

0 << 3)+3 ·h∗
0, (14)

where 3 · h∗
0 = (h∗

0 << 1) + h∗
0 and << represents the left-

shift operation. Thus, the multiplication is implemented with
the RAG-n technique as three additions (A0,2 = 3) and three
shift operations (S0,2 = 3). The δk,N values, as well as the
number of add (Ak,N ) and shift (Sk,N ) operations required to
implement each coefficient through the RAG-n representation
for Nq = 7 are reported in Table III. As it can be observed,
when k=15 and N=32, Eq. (7) gives d15,32 ≈ 10.19, which
means that in the worst case 4 bits are required to correctly
represent the integer part of dk,N .

The last stage in Fig. 3 connects the result of the upper N/2-
point DCT (i.e. G = {G0, . . . , GN/2−1}) to even-position
1D-DCT results, X2k with k = 0, . . . , N/2 − 1. On the
other hand, the output of the lower N/2-point DCT (i.e.
H = {H0, . . . ,HN/2−1}) is fed to the Recombination Unit,
which calculates odd-position 1D-DCT results (X2k+1 with
k = 0, . . . , N/2− 1) as described in (8), namely:

X2k+1 =

{
Hk +Hk+1 k = 0, . . . , N

2 − 2
Hk k = N

2 − 1
. (15)

Architectures for N = 8, 16, 32 are obtained by applying
the recursion shown in Fig. 3 until the 4-point DCT is found.
The inner 4-point DCT architecture, which is the smallest non-
recursive unit, is depicted in Fig. 4. Fig. 5 (a)-(c) illustrates
the internal structures of Butterfly, Inverse Cosine and Recom-
bination units for N = 8.

B. Variable-size 1D-DCT Architecture

As stated in Section II-C, the proposed architecture has
to concurrently compute one 32-point DCT or two 16-point
DCTs or four 8-point DCTs or eight 4-point DCTs, so it
sustains a processing rate of 32 coefficients per cycle indepen-
dently of the size N . Thus, the 1D-DCT architecture shown
in Fig. 3 has been modified as depicted in Fig. 6 to support
variable-size. As it can be observed, the reconfigurability of
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Fig. 5. Proposed architectures of 1D-DCT internal units for N = 8.

the architecture for variable-size computation is achieved by
the means of two banks of 2:1 multiplexers. The selection
signal of each multiplexer, referred to as sel, is driven by
simple logic depending on current N value. In particular,
when the architecture is used for N -point DCT computation,
each N/2-point DCT block is fed with the output of the
Butterfly and Inverse Cosine units, i.e. g and h. On the
contrary, when the architecture is used to compute small-
size DCTs, each N/2-point DCT block receives N/2 input
samples, i.e. (x0, . . . , xN/2−1) and (xN/2, . . . , xN−1). As it
can be observed, the result produced by the upper N/2-point
DCT block is directly connected to the output, independently
of the selected transform size. The second bank of multiplexers
is used to output the Recombination Unit results when N -
point DCT computation is selected. On the other hand, it
connects the results of the lower N/2-point DCT block to X,
when small-size DCT computation is required. The complete
variable-size computation required by HEVC is achieved by
applying this scheme recursively from the maximum size N
= 32 to the smallest non-recursive 4-point DCT.

C. 2D-DCT Architecture

As described in Section I, the separability property is
exploited to design two variable-size 2D-DCT architectures,
based on the solution proposed in [9], which are composed
of one (Folded) or two (Full-parallel) variable-size 1D-DCT

blocks with maximum size N = 32 and a transposition buffer
to store the intermediate results, as shown in Fig. 7.
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Fig. 7. 2D-DCT architectures as in [9].

The Folded architecture relies on one 1D-DCT block only,
which is reused when computing the 2D-DCT. In the first 32
cycles, the 1D-DCT block is fed with 32 samples taken row-
wise from the 322/N2 input data blocks of size N × N , as
in [9]. Its outputs are then scaled, to be consistent with the
HEVC encoder [32], and stored row-wise in the transposition
buffer. During the following 32 cycles, successive columns of
the transposition buffer are read and processed by the 1D-
DCT block, which outputs the final DCT results. The whole
computation takes 64 clock cycles to compute 32 × 32 results
independently of the DCT size N . Therefore, the achieved
processing rate is equal to 16 results per cycle.

On the other hand, the Full-parallel architecture in Fig. 7
(b) achieves double processing rate by exploiting two 1D-DCT
modules to calculate the 2D-DCT. In the first 32 cycles, 32
input samples are fed row-wise to the first 1D-DCT block,
which writes the scaled partial results into the transposition
buffer. Then, during the following 32 cycles, the DCT is
computed column-wise by the second 1D-DCT module. At the
same time, a new computation can start in the first module,
thus achieving a processing rate of 32 results per cycle.
Since the two 1D-DCT blocks have to concurrently write/read
to/from the transposition buffer, the first 1D-DCT block may
overwrite part of the data which the second 1D-DCT block is
going to read in the next clock cycles. Even if this problem
can be avoided by doubling the transposition buffer, in this
work we exploit the simple and effective solution proposed in
[9], which requires only one transposition buffer. Namely, the
first 1D-DCT block starts writing row-wise in the transposition
buffer. When the buffer is full, the second 1D-DCT block reads
the data column-wise. As a consequence, now the first 1D-
DCT block can write column-wise in the transposition buffer.
These new data will be read row-wise by the second 1D-
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DCT block. Thus, by alternating row-wise and column-wise
writing/reading, which is implemented with some multiplexers
and few logic, only one transposition buffer is needed.

D. Pipelined Architectures

The performance of the proposed variable-size DCT ar-
chitectures can be improved by applying pipelining to the
inner 1D-DCT blocks. It is worth noting that the adoption
of pipelining inside the 1D-DCT block increases its latency.
Since the 2D-DCT requires that all the partial results are
calculated before starting the computation on the transposed
samples, the maximum sustained throughput of the 2D-DCT
architectures is affected by the latency of the core 1D-DCT
module. However, to understand the effectiveness of pipelin-
ing, maximum sustained throughput analysis is required. In
general, the maximum sustained throughput of the complete

2D-DCT architecture processing 322/N2 blocks of N × N
pixels and employing pipelining can be expressed as:

T =
322

N2
· N2

α · (32 + L)
· fCK , (16)

where α is 2 and 1 for the Folded and the Full-parallel
architectures respectively, L is the number of pipeline stages
and fCK is the operating clock frequency. It is worth noting
that if L is independent of N , then the maximum sustained
throughput is independent of N as well. In particular, the
case when L = 0 corresponds to the constant-throughput
architectures described in Section III-C. As it can be inferred
from (16), deep pipelining (large L), which is useful to reduce
the critical path of large-size DCTs, increases the latency
(i.e. 32 + L), thus leading to a severe T reduction. As an
example, considering the Folded architecture and L = 5, the
processing rate of the architecture decreases from 16 to 13.8
samples/cycle. However, Fig. 6 highlights that multiplexers,
required to support variable-size DCTs, act as bypass elements.
As a consequence, the number of pipeline stages required for
small-size DCTs (e.g. N = 4) is lower than the one required for
large-size DCTs (e.g. N = 32). Thus, the maximum sustained
throughput of the architecture T improves if L becomes a
function of N (LN - adaptive pipelining). In this case, where
the throughput TN is a function of N , the maximum sustained
throughput T can be obtained as a weighted sum of TN , where
the weight associated to each size is the usage statistic of the
corresponding DCT [10]; such values well approximate the
experimental ones measured in [7]. To implement adaptive
pipelining, we added pipeline stages to limit the critical path
to one adder and one add-and-shift multiplier. Therefore, LN

= 2, 3, 4, 5 have been used for N = 4, 8, 16, 32, respectively,
as shown in Fig. 8. Thus, processing rates of 15.0, 14.6,
14.2 and 13.8 samples/cycle are achieved for N = 4, 8,
16, 32 respectively and 14.9 samples/cycle on average, in
the Folded architecture. On the other hand, the Full-parallel
structure achieves 30.1, 29.3, 28.4, 27.7 samples/cycle and
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29.8 samples/cycle on average, where the average processing
rate has been computed as a weighted sum, as suggested in
[7], [10].

IV. IMPLEMENTATION RESULTS

A. Data Representation

The internal parallelism and the scaling operations have
been sized as specified in the HEVC standard [3]. Indeed, input
samples are represented with 9 bits, as they are residuals of
the intra and inter prediction modules. Besides, intermediate
as well as final results are represented with 16 bits. More-
over, 1D-DCT results are scaled prior to being stored in the
transposition buffer (>> log2 N − 1) and before being output
(>> log2 N +6), as shown in Fig. 7, where the 1/

√
2 scaling

required in (2) for σk is shown as well.

B. HEVC Performance/Resources Analysis

As introduced in Section III, it is possible to define trade-
offs between rate-distortion loss and hardware cost by chang-
ing Nq , the number of bits to represent the fractional part of
each inverse cosine coefficient.

In order to select the proper Nq value in the context of
HEVC encoding, we have integrated Lee’s DCT algorithm
[21] into the HEVC reference software HM-16.3 [32]1. In
this work two setups have been considered. In the first one,
referred to as setup1, only the forward transform has been
modified, whereas the decoder implements the original HEVC
transform. In the second one, referred to as setup2, both the
forward and the inverse transforms have been modified as well
as the decoder.

Simulations have been performed on all the video sequences
taken from classes A, B, C, D, E and F, as specified in the
common test conditions reported in [34]. All-Intra (AI), Low-
Delay (LD) and Random-Access (RA) main configurations
and quantization parameters 22, 27, 32 and 37 have been
used. The rate-distortion loss has been studied via Bjøntegaard
Delta (BD) metrics [35], namely by computing the BD-rate
between curves obtained by encoding the sequences with the
proposed solution, both for setup1 and setup2, and with the
original partial-butterfly approach used in HEVC, which is
available in the HM-16.3 software model and has been used
as anchor in the comparison. Table IV shows the average BD-
rate variations both for setup1 and setup2 per each class of
sequences in the three encoding configurations as a function
of Nq in the range from 4 to 7. As it can be observed,
in the worst case the BD-rate loss decreases significantly
when increasing Nq . Besides, by choosing Nq = 7 bits, the
overall BD-rate loss becomes negligible for setup1 and less
than 2% for setup2. It is worth noting that the rate-distortion
performance of setup2 are generally worse. This fact is due
to the adopted numeric approximation of the coefficients δk,N
in the inverse DCT. Indeed, for the aim of simplicity, in this
work the same calculated coefficients δk,N have been used in
both the forward and inverse DCT. More accurate results for
setup2 can be obtained by choosing the set of coefficients δk,N

1Modified reference software HM-16.3 is available at [33].

TABLE IV
BD-RATE [%] COMPARISON OF THE LEE’S DCT IN HEVC FOR setup1

AND setup2:
(A) ALL INTRA, (B) LOW DELAY, (C) RANDOM ACCESS.

Nq
setup1 setup2

4 5 6 7 4 5 6 7
Class A 2.15 0.93 0.27 0.12 9.32 6.14 4.53 3.46
Class B 0.94 0.39 0.14 0.04 5.40 3.76 2.97 2.21
Class C 0.53 0.28 0.07 0.03 2.35 1.56 1.26 0.99
Class D 0.44 0.20 0.05 0.03 2.03 1.17 0.96 0.72
Class E 0.72 0.38 0.09 0.05 4.82 3.64 3.03 2.55
Class F 0.32 0.20 0.06 0.08 1.71 1.19 1.04 0.83
Overall 0.86 0.40 0.12 0.06 4.30 2.91 2.30 1.78

(a)

Nq
setup1 setup2

4 5 6 7 4 5 6 7
Class A - - - - - - - -
Class B 0.49 0.07 0.10 0.00 3.41 2.25 2.18 1.83
Class C 0.25 0.13 0.09 0.00 2.15 1.45 1.38 1.16
Class D 0.31 0.17 0.12 0.05 1.76 1.11 1.00 0.92
Class E 0.48 0.20 0.04 0.12 3.74 2.68 2.72 2.43
Class F 0.22 0.09 -0.02 -0.06 1.84 1.32 1.05 0.99
Overall 0.35 0.13 0.07 0.02 2.57 1.74 1.64 1.44

(b)

Nq
setup1 setup2

4 5 6 7 4 5 6 7
Class A 1.73 0.15 0.35 0.00 7.81 4.29 3.94 3.06
Class B 0.63 0.20 0.09 0.02 4.30 2.85 2.40 1.86
Class C 0.32 0.17 0.00 0.01 1.71 1.09 1.00 0.83
Class D 0.25 0.15 0.05 0.03 1.67 1.10 0.90 0.76
Class E - - - - - - - -
Class F 0.28 0.15 0.05 0.08 1.61 1.01 0.90 0.76
Overall 0.64 0.16 0.11 0.02 3.80 2.31 2.03 1.62

(c)

which minimize the mismatch between the forward and the
inverse DCT matrices. From these experimental results, one
can infer that the proposed 1D-DCT, based on Lee’s factor-
ization, achieves nearly the same rate-distortion performance
as the partial-butterfly approach implemented in the reference
software, therefore it is suitable for HEVC applications.

As explained in Section III-A, multiplications have been
simplified to add-and-shift blocks, by exploiting the RAG-n
technique [31]. Similar approaches have been followed in [7],
[9], where multiplications were simplified through the RAG-n
and Multiple Constant Multiplication algorithms, respectively.
Thus, Table V shows the detailed number of adders required
by these multiplierless algorithms both for individual values
of N and for the variable-size 1D-DCT architectures (see the
last row labeled as All). In [7] the use of RAG-n leads to
an architecture made of AAll = A32 = 584 adders. According
to (3), the work in [9] requires 1024 adders. In the proposed
architecture the number of adders is AAll = A32 and it grows
as the BD-rate loss decreases (i.e. increasing Nq), as expected.
Nevertheless, the number of adders used in the proposed
variable-size 1D-DCT architecture ranges from 314 (Nq = 4)
to 394 (Nq = 7), so it is noticeably lower than the one required
by [7] and [9], for all tested Nq values.
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TABLE V
NUMBER OF ADDERS OF THE STATE-OF-THE-ART AND THE PROPOSED

MULTIPLIERLESS ALGORITHMS AS FUNCTION OF THE NUMBER OF
FRACTIONAL BITS Nq

N [7] [9] Nq

4 5 6 7
4 17 14 16 16 17 20
8 69 50 47 49 52 60
16 213 186 125 133 139 159
32 584 682 314 335 350 394
All 584 1024 314 335 350 394

TABLE VI
COMPARISON OF VARIABLE-SIZE 1D-DCT ARCHITECTURE AS FUNCTION

OF THE NUMBER OF FRACTIONAL BITS Nq

Nq
Maximum Frequency Minimum Area
fCK [MHz] Gates fCK [MHz] Gates

4 380 86 K 185 63 K
5 343 96 K 174 70 K
6 326 106 K 161 75 K
7 296 111 K 147 83 K

C. Synthesis of Variable-size 1D-DCT

The proposed architecture has been described in VHDL,
verified and synthesized with a 90-nm CMOS standard-cell
library. The performance and the gate count when synthesizing
the variable-size 1D-DCT architecture for maximum frequency
and for minimum area are reported in Table VI. As expected,
the equivalent gate count of the proposed architecture increases
with the number of fractional bits Nq , whereas the oper-
ating frequency is reduced because of longer critical paths.
Moreover, when searching for the maximum performance,
the frequency doubles while the gate count increases only
from the 33% to the 40% with respect to the minimum area
implementations.

Table VII reports the technology, the operating frequency
(fCK), the number of processed samples per cycle for each
DCT size, the throughput (T ) and the equivalent gate count
of different variable-size 1D-DCT architectures for HEVC.
The processing rate of the 1D-DCT architectures is calculated
considering their usage in the Folded 2D structure. Thus,
they have been synthesized at an operating frequency of 187
MHz and 401 MHz, for the non-pipelined and the pipelined
architectures, respectively. The proposed non-pipelined and
pipelined architectures respectively show smaller gate count
and higher throughput when compared to the other state-of-
the-art DCT implementations. In particular, only the solution
proposed in [14] provides lower gate count at the expense of
very high rate-distortion loss. Area saving of about 33% has
been achieved by the proposed non-pipelined architecture with
respect to the best implementation in [9] for equal throughput.
Since the proposed pipelined variable-size 1D-DCT allows to
speed-up the computation with respect to the non-pipelined
architecture, it provides double throughput at the cost of 28%
more area, due to the implementation of pipe registers.

D. Synthesis of 2D-DCT

Table VIII compares the proposed 2D-DCT with other
existing architectures for HEVC in terms of technology,

operating frequency (fCK), processing rate, throughput (T ),
gate count, throughput-area ratio, power consumption (P ),
energy-per-sample (EPS) and BD-rate for setup1 and All Intra
configuration. Both pipelined and non-pipelined variable-size
1D-DCTs have been used to implement the corresponding
Folded and Full-parallel 2D-DCT structures, where the two
transposition buffers presented in [9] have been used as well.
The values related to the proposed architectures refer to the
synthesis with Nq = 7, whereas Architecture 1 MODE0 has
been chosen for fair comparison with the work in [7], since it
uses a totally unfolded 1D-DCT and provides negligible rate-
distortion losses. As highlighted by the ratio of throughput
over area and by the energy-per-sample metric, the proposed
architectures provide very high area and power efficiency. The
architecture proposed in [14] achieves the best area efficiency
at the cost of a very high rate-distortion performance degrada-
tion. With respect to the best state-of-the-art implementations
in [9], the proposed 2D architectures based on non-pipelined
variable-size 1D-DCT achieve 20% and 27% area reduction
for equal throughput in the Folded and Full-parallel schemes
respectively. On the other hand, the architectures based on
the pipelined 1D-DCT achieve the best area efficiency for
negligible losses by nearly doubling the achievable throughput
and showing lower gate count with respect to the architectures
in [9].

V. CONCLUSION

In this paper, an efficient variable-size 1D-DCT architecture
for HEVC has been proposed. A comparison among the
existing DCT factorizations has been presented and exploited
to identify the one which minimizes the amount of hardware
resources required to support variable-sizes. For the selected
factorization, which is Lee’s factorization, fixed-point analysis
has been performed by evaluating the rate-distortion loss in
the HEVC context and an area-efficient architecture has been
derived as well. Then, the architectures of both 1D-DCT and
2D-DCT have been implemented and characterized, achieving
significant area reduction with respect to other DCT archi-
tectures for HEVC, available in the literature. Furthermore,
an adaptive pipeline scheme has been applied to the proposed
variable-size 1D-DCT, which has been exploited to implement
area and power efficient 2D-DCT architectures.
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