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Observability analysis of discontinuous dynamical
systems via algebraic geometry

Laura Menini, Corrado Possieri and Antonio Tornambè

Abstract—The main objective of this paper is to provide
computational methods allowing one to characterize the observ-
ability of a class of systems having discontinuous right-hand side.
In order to pursue this objective, it is first shown how tools
borrowed from algebraic geometry can be used to characterize
the observability of polynomial systems. Thus, by considering
that elementary systems can be recast into polynomial form and
that several systems having discontinuous right-hand side can be
approximated by a 1-parameter family of elementary systems,
such tools are adapted to deal with a class of elementary systems
having discontinuous right-hand side. The key advantage of the
proposed method is that it allows one to use classical tools, such as
high-gain observers, to design state observers for systems having
discontinuous right-hand side.

I. INTRODUCTION

In several applications, unmeasurable state variables of a
plant have to be estimated from the available measurements.
Examples of practical applications are the detection and iso-
lation of faults [1], [2], the estimation of unknown physical
parameters from limited measurements [3], and the estimation
of the attitude of a rigid body from inertial measurements [4]
(see also [5]).

Due to this wide interest in observation problems, a large
research effort has been spent to characterize the observability
of dynamical systems. If the plant has linear, time-invariant
dynamics, its observability can be easily characterized by
using linear algebra tools [6], [7], [8], whereas the problem
of characterizing the observability of a plant with nonlinear
dynamics is much more challenging [9]. Some necessary
conditions and a sufficient condition for the observability
of nonlinear systems are given in [10], whereas necessary
and sufficient conditions for the observability of analytic and
polynomial systems are given in [11]. Such conditions entails
with the injectivity of the observability map of the system,
that is the map relating the current state of the system with
the output and its time derivatives.

Several methods have been proposed in the literature to
design observers for nonlinear systems. Some remarkable
examples are: the extended Kalman filter [12], high-gain
observers [13], [14], [15], [16], discrete-time iterative schemes
[17], and sliding mode observers [18].

The main objective of this paper is to provide computational
tools that allow one to study the observability of a class of
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systems having discontinuous right-hand side [19]. In order
to pursue this objective, it is first shown how some tools
borrowed from algebraic geometry can be efficiently employed
to determine whether there exists a rational left inverse of
the observability map of a polynomial system. Secondly, it
is shown that several nonlinear systems that arise in practical
engineering applications can be recast into polynomial form,
thus allowing one to directly use the tools developed for poly-
nomial systems. Finally, by considering that several systems
having discontinuous right-hand side can be approximated
by a 1-parameter family of elementary systems, the tools
developed for polynomial plants are adapted to characterize
the observability of this family of systems, independently of
the parameter governing the approximation.

The key advantage of the proposed method to characterize
the observability of systems having discontinuous right-hand
side is that it provides also an inverse of the observability
map, thus allowing one to readily construct a state observer
by using classical tools, such as high-gain observers.

Examples of applications of the proposed methods are given
all throughout the paper in order to illustrate and corroborate
the theoretical results.

II. ANALYSIS OF THE OBSERVABILITY OF POLYNOMIAL
SYSTEMS THROUGH ALGEBRAIC TOOLS

The main objective of this section is to review some results
given in [20], [21] in order to illustrate how some tools
borrowed from algebraic geometry can be used to characterize
the observability of (non-switching) non-linear, autonomous,
polynomial systems. Such results are used in the subsequent
Section III to characterize the observability of systems having
discontinuous right-hand side.

Consider the following non-linear polynomial system:

ẋ = f(x), y = h(x), (1)

where x = [ x1 · · · xn ]> is the state vector, y ∈ R
is the output, f ∈ Rn[x] and h ∈ R[x]. The solution of
system (1) at time t ∈ R>0 with initial condition x0 ∈ Rn
is denoted x(t) := φf (t, x0) and is assumed to exist for
all t ∈ R>0 (in particular, it is assumed that solutions to
system (1) do not blow up in finite time) and to be unique. Let
y(k)(t) := dky(t)

dtk
denote the k-th time-derivative of the output

y, k ∈ Z>0 and let ye,N (t) := [ y(0)(t) · · · y(N)(t) ]> for
all N ∈ Z>0. System (1) is observable if there do not exist
two different initial states x1, x2 ∈ Rn with x1 6= x2 such
that h(φf (t, x1)) = h(φf (t, x2)) for all times t ∈ R>0 [22].
By [11], since both f and h have entries being polynomials in
x, system (1) is observable if the state x(t) at time t ∈ R
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can be expressed as a function of y(0)(t), . . . , y(N)(t), for
some sufficiently large (but finite) N ∈ Z>n−1. In particular,
defining the successive directional derivatives of h along f
as L0

fh(x) := h(x) and Lj+1
f h(x) := ( ∂

∂xL
j
fh(x))f(x),

j ∈ Z>0, and letting N be a sufficiently large integer,
N > n − 1, consider the observability map of order N of
system (1),

ON (x) :=

 h(x)
...

LNf h(x)

 .
Note that, for linear systems of the form

ẋ = Ax, y = Cx,

the map ON (x) is given by [ C> · · · (CAN )> ]>x and
it is injective if and only if N > n− 1 and the pair (A,C) is
observable [7], [23].

The map ON (x) relates the current output and its successive
time-derivatives with the state of system (1), i.e.,

ye,N (t) = ON (x(t)), ∀t ∈ R>0. (2)

By Theorem 1 of [11], system (1) is observable if and only if
there is N̄ ∈ Z>n−1 such that, letting YN̄ := ON̄ (Rn) be the
image of Rn through ON̄ , there is KN̄ : YN̄ → Rn such that

ye,N̄ = ON̄ (KN̄ (ye,N̄ )), ∀ye,N̄ ∈ YN̄ . (3)

Algebraic geometry tools can be used to character-
ize the observability of system (1). In particular, letting
N ∈ Z>n−1 be fixed, consider the ideal IN of Ra :=
R[x1, . . . , xn, y

(0), . . . , y(N)] (briefly, Ra := R[x, ye,N ]),

IN := 〈y(0) − L0
fh(x), . . . , y(N) − LNf h(x)〉, (4)

that is the ideal generated by the constraints given in (2), which
hold for all t ∈ R>0. In view of Theorem 2 of [21], the set of
all the polynomial constraints (usually referred to as embed-
dings) that exist among the time-derivatives of the output up
to order N is given by EN := IN∩R[y(0), . . . , y(N)], which is
an ideal of Rb := R[y(0), . . . , y(N)] (briefly, Rb := R[ye,N ]).
In particular, consider the following proposition.

Proposition 1. V(EN ) is the Zariski closure of YN , i.e.,
YN = V(EN ). Furthermore, V(EN ) is irreducible, i.e., if
V(EN ) is written in the form V1 ∪ V2, where V1 and V2 are
varieties, then either V1 = V(EN ) or V2 = V(EN ).

By the Elimination Theorem [24], the reduced Gröbner basis
GEN of the ideal EN with respect to the Lex order, with y(0) �
· · · � y(N), is obtained by computing the reduced Gröbner
basis GIN of the ideal IN with respect to the Lex order, with
x1 � · · · � xn � y(0) � · · · � y(N), and by retaining the
entries that are independent of x1, · · · , xn, i.e.,

GEN = GIN ∩ R[y(0), . . . , y(N)].

Hence, define the quotient ring Rc := R[y(0), . . . , y(N)]/EN
(briefly, Rc := R[ye,N ]/EN ), let K be the field of the rational
functions with numerator and denominator being polynomials
in the ring Rc, and define the ring Rd := K[x1, . . . , xn]
(briefly, Rd := K[x]). Note that using Rd as ambient ring

essentially means that the coefficients of all the polynomials
in x have to be considered as rational functions whose nu-
merator p1 and denominator p2 coerced into Rb are such that
pi%EN = pi, i = 1, 2. Thus, coerce the ideal IN into Rd and
consider the elimination ideals

KN,j := IN ∩K[xj ], j = 1, . . . , n. (5)

By Corollary 4 (p. 41) of [24], the ideal KN,j is principal,
i.e., there exists gN,j ∈ K[xj ] such that KN,j = 〈gN,j〉. In
particular, such a polynomial gN,j is unique up to multipli-
cation by a non-zero element of K. The following theorem
shows how the polynomials gN,j can be used to characterize
the observability of system (1).

Theorem 1. There exists a rational map KN ∈
Rn(y(0), . . . , yN ) such that ye,N = ON (KN (ye,N )) for al-
most all ye,N ∈ YN if and only if, letting {gN,j} be the
reduced Gröbner basis of KN,j , one has that

LT(gN,j) = xj , j = 1, . . . , n. (6)

Theorem 1 provides a computational tool to test the observ-
ability of system (1). In fact, if the condition given in (6) holds,
then system (1) is “generically” observable, whereas, if such a
condition does not, then there does not exist a rational inverse
of the observability map ON (x). It is worth mentioning that
all the computations required to determine the polynomials
gN,1, . . . , gN,n can be easily carried out by using the CAS
software Macaulay2 [25].

Example 1. Consider the dynamics of the Lorenz oscillator:

ẋ1 = 10(x2 − x1), ẋ2 = x1(20− x3)− x2, (7a)
ẋ3 = x1x2 − 8

3x3, y = x1. (7b)

Hence, let N = 3, compute
h(x) = x1,

Lfh(x) = 10x2 − 10x1,

L2
fh(x) = −10x3x1 + 300x1 − 110x2,

L3
fh(x) = −10x2x

2
1 + 710

3
x3x1 − 5200x1 + 3110x2 − 100x2x3,

and define the ideal I3 of R[x1, x2, x3, y
(0), y(1), y(2), y(3)],

I3 := 〈y(0) − L0
fh(x), y(1) − L1

fh(x),

y(2) − L2
fh(x), y(3) − L3

fh(x)〉.
By computing the reduced Gröbner basis of the ideal I3

according to the Lex order, with x1 � x2 � x3 � y(0) �
y(1) � y(2) � y(3), and retaining only the entries that are in-
dependent of x1, x2, x3, one obtains the reduced Gröbner basis
GE3 = {η3} of the ideal E3 := I3 ∩ R[y(0), y(1), y(2), y(3)],

η3 = 30(y(0))4 + 3(y(0))3y(1) − 1520(y(0))2 + 88y(0)y(1)

− 33(y(1))2 + 41y(0)y(2) − 3y(1)y(2) + 3y(0)y(3).

This shows that y(0), y(1), y(2), and y(3) are algebraically
dependent functions of time. In particular, one has that

η3(y(0)(t), y(1)(t), y(2)(t), y(3)(t)) = 0, ∀t ∈ R.

Thus, let Rc := R[y(0), y(1), y(2), y(3)]/〈η3〉 and let K be the
field of the rational functions whose numerator and denomina-
tor are inRc. By coercing I3 into K[x1, x2, x3] and computing
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the reduced Gröbner basis GK3,j
of K3,j = I3 ∩ K[xj ], one

obtains that GK3,j = {g3,j}, j = 1, 2, 3, with

g3,1 = x1 − y(0), g3,2 = x2 − 10y(0)+y(1)

10 ,

g3,3 = x3 − 190y(0)−11y(1)−y(2)
10y(0)

,

whence, by Theorem 1, system (7) is almost globally observ-
able. In particular, if y(0) 6= 0, or, equivalently, if x1 6= 0, then
the current state of system (7) can be expressed as

x = K3(ye,3) =

 y(0)

10y(0)+y(1)

10
190y(0)−11y(1)−y(2)

10y(0)

 .
Note that this expression for the inverse of the observability
map O3 is not unique. As a matter of fact, since η3 vanishes
identically along the trajectories of system (7), for each H ∈
R3[ye,3], one has that the map

Ǩ3(ye,3) = K3(ye,3) + η3(ye,3)H(ye,3)

is such that ye,3 = O3(Ǩ3(ye,3)), for all ye,3 ∈ Y3 \V(y(0)).

Note that the map KN obtained by using the tools given
in Theorem 1 can be easily used to design an observer for
system (1). In fact, letting ŷ(0), . . . , ŷ(N) be estimates of the
time derivatives of the output y(0), . . . , y(N) (which can be
obtained by using classical tools available in the literature such
as high-gain observers [13], sliding mode differentiators [18],
and super-twisting algorithms [26]), an estimate of the current
state of system (1) is given by

x̂(t) = KN (ŷe,N (t)). (8)

III. IMMERSION OF DISCONTINUOUS AND ELEMENTARY
SYSTEMS INTO POLYNOMIAL FORM

The main objective of this section consists in showing that
several systems that arise in practical engineering applications
can be immersed into the polynomial form (1), thus making
the tools given in Section II readily usable to characterize their
observability.

Let E[ξ] be the set of all the elementary functions in ξ, i.e.,
the set of all the functions α : Rm → R that are solution of a
scalar polynomial differential equation in α with coefficients
in R[ξ]. Some examples of elementary functions are

α = sin(ω ξ), α = cos(ω ξ) satisfying α′′ + ω2α = 0,

α = exp(λ ξ) satisfying α′ − λα = 0,

α = log(λ ξ) satisfying α′′ + (α′)2 = 0,

where ′ denotes the derivative with respect to ξ.
Hence, consider the following elementary system:

ξ̇ = α(ξ), y = β(ξ), (9)

where ξ = [ ξ1 · · · ξm ]> is the state vector, y ∈ R is
the output, α ∈ Em[ξ] and β ∈ E[ξ]. Next theorem states that
system (9) can be immersed into polynomial form.

Theorem 2 (Immersion of elementary systems, [27]). Con-
sider system (9), let D ⊂ Rm be the domain in which the
elementary functions α and β are defined and smooth, and

assume that D 6= ∅. Thus, there exists a smooth and injective
state immersion x = Φ(ξ), Φ : D → Rn, globally defined in
D, that recasts (9) into the polynomial form (1).

Theorem 2 paves the way toward the use of the tools
given in Section II for the observability analysis of elementary
systems. As a matter of fact, given system (9), it suffices to first
compute the immersion Φ that recasts it into the polynomial
form and, secondly, apply the tools given in Section II to study
the observability of the latter system.

Example 2. Consider the mechanical system depicted in
Figure 1, which is constituted by a mass connected to a
frictionless pivot through a rigid and massless link and by
a torsion spring, whose rest position is θ = 0.

θ

Fig. 1: A pendulum with a torsion spring.

Assuming, for simplicity, unitary values of the physical con-
stants, the dynamics of this system are given by

ξ̇1 = ξ2, ξ̇2 = −ξ1 − cos(ξ1), (10)

where ξ1 denotes the angular displacement of the link and ξ2
denotes its angular speed. Let the measured output be y = ξ2.
Since system (10) is elementary, it can be immersed into a
polynomial one. Indeed, the diffeomorphism


x1

x2

x3

x4

 = Φ(ξ) :=


ξ1
ξ2

cos(ξ1)
sin(ξ1)


recasts system (10) into the following polynomial form:

ẋ1 = x2, ẋ2 = −x1 − x3, (11a)
ẋ3 = −x2x4, ẋ4 = x2x3, y = x1. (11b)

Thus, the tools given in Section II can be used to characterize
the observability of this polynomial system. In particular, let-
ting N = 3, define the ideal I3 as in (4). Hence, by computing
the reduced Gröbner basis of I3 with respect to the Lex order,
with x1 � x2 � x3 � x4 � y(0) � y(1) � y(2) � y(3), and
retaining only the entries that are independent of x, one obtains
that E3 = 〈∅〉, i.e., the Zariski closure of O3(R4), where O3(·)
is the observability map of the polynomial system (11), is the
whole R4 = V(〈∅〉). Thus let Rc = R[ye,3]/E3 = R[ye,3] and
let K = R(ye,3), i.e., the field of all the rational functions with
real coefficients in ye,3. Coercing I3 into K[x], letting K3,j
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be defined as in (5), and computing its reduced Gröbner basis
GK3,j = {g3,j}, j = 1, . . . , 4, one obtains

g3,1 = x1 − y(1)y(2)−(y(0))3y(1)−y(0)y(3)
(y(0))3

,

g3,2 = x2 − y(0),

g3,3 = x3 − y(0)y(3)−y(1)y(2)
(y(0))3

,

g3,4 = x4 − y(0)+y(2)

y(0)
.

Therefore, since ξ1 = x1 and ξ2 = x2, whenever y(0) 6= 0,
the following rational expression can be used to express the
state ξ of system (10) as a function of ye,3:

ξ1 = y(1)y(2)−(y(0))3y(1)−y(0)y(3)
(y(0))3

, ξ2 = y(0).

The main objective of the remainder of this section is to
show that a similar construction can be carried out also in the
case of systems having discontinuous right-hand side [19].

Let ψ : R → R be a monotonically increasing elementary
function such that ψ(s) ' −1 if s � −1, and ψ(s) ' 1, if
s� 1 (i.e., ψ(s) is approximatively −1 for small values of s
and approximatively 1 for large values of s), usually referred to
as transition function [28], [29], [30]. For instance ψ(s) can be
chosen either as ψ(s) = exp(s)−1

exp(s)+1 or as ψ(s) = 2
π arctan(s).

Hence, letting $ : Rm → R be an elementary function having
0 as regular value (i.e., if ξ◦ is such that $(ξ◦) = 0, then
∂$
∂ξ (ξ◦) 6= 0), consider the vector field

F (ξ) =

{
α1(ξ), if $(ξ) > 0,

α2(ξ) if $(ξ) 6 0,

where α1, α2 ∈ E[ξ]. The ψ-regularization of F (ξ) is the 1-
parameter family of vector fields

R(ξ, µ) = ( 1
2 + 1

2ψ(µ$(ξ)))α1(ξ)+( 1
2− 1

2ψ(µ$(ξ)))α2(ξ),

where µ ∈ R. Hence, consider the system (which has discon-
tinuous right-hand side)

ξ̇ ∈ F (ξ), y = Z(ξ) (12)

and the elementary system (note that the vector field R(ξ, µ)
is elementary due to the fact that the class of these functions
is closed with respect to function composition)

ξ̇ = R(ξ, µ), y = Z(ξ). (13)

By Tikhonov’s theorem [31], under mild assumptions, the
trajectories of system (13) approaches the ones of system (12)
as µ tends to +∞, i.e., the trajectories of system (13) approach
the ones of the differential inclusion (12). Furthermore, since
system (13) is elementary, by Theorem 2, there exists an
injective immersion Φ that immerses system (13) into

ẋ = r(x, µ), y = z(x, µ), (14)

where x ∈ Rn and r, z ∈ R[x, µ]. The tools employed in
Section II to analyze the observability of system (1) can be
adapted to study the stability of system (14) independently
of µ. In particular, letting N ∈ Z>n−1 be fixed and letting
YN := ON (Rn,R) be the image through ON (x, µ) of Rn×R,
the main objective of the remainder of this section is to

determine whether there exists a rational map KN : YN →
Rn, independent of µ, such that, letting ON (x, µ) be the
observability map of system (14), one has

x = KN (ON (x, µ)), ∀x ∈ Rn, ∀µ ∈ R. (15)

The main interest in determining a map KN such that (15)
holds relies on the fact that, if such a map exists and sys-
tem (13) satisfies the assumptions of Tikhonov’s theorem, then
such a map can be used to design observers for system (12),
although it has discontinuous right-hand side.

Letting rµ(x) = r(x, µ) and zµ(x) = z(x, µ), define the
ideal IN of Ra := R[x, µ, ye,N ],

IN := 〈y(0) − zµ(x), . . . , y(N) − LNrµzµ(x)〉. (16)

Hence, define the ideal EN := IN ∩ R[ye,N ], and consider
the following proposition.

Proposition 2. The variety V(EN ) equals the Zariski closure
Y N of YN and is an irreducible variety.

By Proposition 2, the ideal EN is the set of all the
polynomial relations that hold among the time derivatives
y(0), . . . , y(N) of the output y and that are independent of
µ. Hence, in order to determine whether there exists a map
KN (ye,N ) such that (15) holds, let Rc := R[ye,N ]/EN , define
the field K of the rational functions with numerator and
denominator being polynomials in the ring Rc, and define the
ring Rd := K[x1, . . . , xn]. Thus, coerce the ideal IN into Rd

and consider the elimination ideals

KN,j := IN ∩K[xj ], (17)

whose reduced Gröbner basis is {ζN,j}, ζN,j ∈ K[xj ], by
the same reasoning used in Section II, j = 1, . . . , n. The
following theorem shows how the polynomials ζN,j can be
used to characterize the existence of a rational map KN (ye,N )
such that (14) holds.

Theorem 3. There exists a rational map such that (14) holds
for “almost all” (x, µ) ∈ Rn × R if and only if

LT(ζN,j) = xj , j = 1, . . . , n. (18)

Theorem 3 provides a computational tool to verify whether
there exists a left-inverse of the observability map of sys-
tem (14) that is independent of the parameter µ. If such an
inverse exists, then it can be used to design observers for
system (14) that are independent of µ. In particular, an estimate
of the state of system (14) is given by

x̂(t) = KN (ŷe,N (t)), (19)

where ŷe,N is an estimate of ye,N . Note that also the estimator
for ŷe,N can be designed independently of the parameter µ
(e.g., by using the high-gain observer given in [13]), thus
allowing to estimate the state of system (14) also in the case
that it is used to approximate the solutions to system (12) (i.e.,
when µ→ +∞).
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IV. APPLICATION TO A PHYSICAL SYSTEM

In this section, the techniques outlined in Sections II and III
are used to design an observer for a physical system.

Consider the mechanical system depicted in Figure 2, which
is constituted by a body moving horizontally and by a spring
whose stiffness doubles when compressed.

Fig. 2: A mechanical system with a spring.

Assuming unitary values of the physical constants, the
dynamics of this plant are given by

ξ̇ ∈ F (ξ) :=

{
[ ξ2 −ξ1 ]>, if x1 > 0,

[ ξ2 −2ξ1 ]>, if x1 6 0,
(20)

where ξ1 denotes the position of the body with respect to the
rest point of the spring and ξ2 denotes its velocity. Let the
available measure be y = ξ2. Thus, letting ψ(s) = exp(s)−1

exp(s)+1 ,
consider the ψ-regularization R(ξ, µ) of F (ξ),

R(ξ, µ) =

[
ξ2

ξ1

(
− 1

exp(µ ξ1)+1 − 1
) ]

.

Since R(ξ, µ) ∈ E[ξ, µ], there exists an injective immersion
Φ(ξ) that recast the system in polynomial form. Indeed,
consider the immersion x1

x2

x3

 = Φ(ξ) :=

 ξ1
ξ2

tanh
(
µ ξ1

2

)
 .

Such an immersion recasts the elementary system ẋ = R(x, µ)
into the parametric polynomial form

ẋ1 = x2, ẋ2 = 1
2x1x3 − 3

2x1, (21a)

ẋ3 = − 1
2µx2x

2
3 + 1

2µx2, y = x2. (21b)

Thus, the tools given in Section III can be used to determine
whether there exists a rational map such that (15) holds. In
practice, let N = 4 and define the ideal I4 as in (16). Hence,
by computing the reduced Gröbner basis of I4 with respect
to the Lex order, with x1 � x2 � x3 � y(0) � y(1) �
y(2) � y(3) � y(4), and retaining only the entries that are
independent of x, one obtains that E4 = 〈η4〉, where η4 is a
homogeneous polynomial of degree 14 whose leading term is
256(y(0))12(y(4))2 (the explicit expression of this polynomial
is omitted for brevity). This implies that the time derivatives
up to order 4 of system (21) are algebraically dependent and
η4 is an embedding of system (21).

Let Rb = R[ye,4], let Rc = Rb/E4, let K be the field of
all the rational functions whose numerator and denominator
are in Rc, and let Rd = K [x]. Thus, by coercing I4 into
Rd and computing the reduced Gröbner basis GK4,j

= {g4,j}
of K4,j = I4 ∩ K[xj ], j = 1, . . . , 3, one obtains that the
condition given in (18) holds. Hence, by Theorem 3, there
exists a rational map K4(ye,4) such that (15) holds for “almost
all” (x, µ) ∈ R3×R. The polynomials g4,j can be directly used

to obtain such a map. In particular, one obtains that x1 can be
expressed as a rational function of ye,4 whose numerator is a
homogeneous polynomial of degree 9 and whose denominator
is a homogeneous polynomial of degree 8, whereas x3 can be
expressed as a rational function of ye,4 whose numerator and
denominator are homogeneous polynomials of degree 8 (the
explicit expression of such polynomials is omitted for brevity).

The map K4(ye,4) can be used to design an observer for
system (21) that is independent of the parameter µ, and that
therefore can be used also to estimate the state of system (20).
In particular, a high-gain “practical” observer for the time
derivatives of y that does not require the knowledge of the
parameter µ is given by [13],

˙̂ye,4 =

−k1ε
−1 1 0 0 0

−k2ε−2 0 1 0 0

−k3ε−3 0 0 1 0

−k4ε−4 0 0 0 1

−k5ε−5 0 0 0 0

 ŷe,4 +

 k1ε
−1

k2ε
−2

k3ε
−3

k4ε
−4

k5ε
−5

 y, (22)

where k1, . . . , k5 are such that the roots of the polynomial
λ5 + k1λ

4 + · · · + k5 have negative real part, ε > 0 is a
sufficiently small parameter, and ŷe,4 is an estimate of ye,4.
By coupling system (22) with the expression given in (19), it is
possible to obtain an estimate x̂ of the state x of system (21).
Finally, an estimate ξ̂ of the state ξ of system (9) is ξ̂ =
Φ−1(x̂).

A numerical simulation has been carried out to test the
proposed design strategy to estimate the state of system (20).
In particular, letting y be the output of system (20), the
high-gain observer (22) has been used to estimate the time
derivatives of the signal y up to order 4, while the map
KN (ye,4), coupled with the inverse of the immersion Φ,[

ξ1
ξ2

]
= Φ−1(x) :=

[
x1

x2

]
,

has been used to obtain the estimate ξ̂ = Φ−1(KN (ŷe,4)) of
the state of system (20). Figure 3 depicts the results of such a
numerical simulation in which the following parameters have
been taken: ξ(0) = [ 1 3 ]>, ŷe,4(0) = 0, k1 = 5, k2 = 10,
k3 = 10, k4 = 5, k5 = 1, and ε = 10−3.

−4
−2
0
2
4

ξ1
ξ2

−20

0

20
ŷ(0)

ŷ(1)

ŷ(2)

ŷ(3)

ŷ(4)

0 5 10 15 20
−8 · 10−4

0

8 · 10−4

t

ξ̂1 − ξ1

ξ̂2 − ξ2

Fig. 3: Results of the numerical simulation.

Apart from small transient errors that occur for each time
t at which ξ2(t) = 0 (due to the fact that the signal ye,4(t)
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is discontinuous at such times, whereas, by construction, the
signal ŷe,4(t) is continuous), the proposed observer is able to
“practically” reconstruct the state of system (20). Indeed, by
[13], the high-gain observer (22) is such that the estimation
error ye,4− ŷe,4 can be made arbitrarily small in an arbitrarily
small amount of time, by letting the parameter ε > 0 be
sufficiently small. Thus, since the rational function K4(ye,4)
is absolutely continuous in its domain and x = K4(ye,4) for
“almost all” ye,4 ∈ Y4, the error ξ− ξ̂ can be made arbitrarily
small in an arbitrarily small amount of time by letting ε > 0
be sufficiently small.

CONCLUDING REMARKS

In this paper, it has been shown that algebraic geometry
tools can be used to characterize the observability and to
design observers for a class of continuous-time dynamical
systems having discontinuous right-hand side. In particular,
it has been shown that such tools can be efficiently employed
to determine whether there exists a rational inverse of the
observability map of a polynomial system. Hence, by showing
that many systems arising from practical application can be
recast into polynomial form through an injective immersion
and that several systems having discontinuous right-hand side
can be approximated by a 1-parameter family of elementary
systems, the tools developed for polynomial plants are adapted
to determine whether there exists a rational inverse of the ob-
servability map of the 1-parameter family that is independent
of the parameter governing the approximation.

It is worth noticing that the proposed methods allow one
also to design observers for polynomial, elementary and dis-
continuous systems. As a matter of fact, a state observer for
these systems can be designed by coupling any tool that is able
to estimate the time derivatives of the output of a system (such
as high gain observers [13], [15], [32], sliding mode tools [18],
and super twisting algorithms [26]) with a left inverse of the
observability map, which can be computed directly by using
the methods given in this paper.

Note that, in order to apply the proposed method, one has
to check whether the condition given in (18) is satisfied for
N ∈ {n− 1, n, n+ 1, . . . , N̄}, where N̄ is a sufficiently large
integer. Therefore, the drawback of the proposed technique is
that the (off-line) computational complexity of the proposed
method may be large if the integer N̄ is large.

Furthermore, it is worth mentioning that, although comput-
ing the Gröbner bases is an EXPSPACE-complete problem
[33], the proposed observation scheme requires to compute
such bases just once and off-line. Hence, it can be readily used
to design computationally efficient observers for nonlinear
plants having discontinuities.
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