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Homogenization of some quasi-linear elliptic
equations with gradient constraints

Valeria CHIADO PIAT Marco ZOBOLI

Abstract We prove a homogenization formula for quasi-linear elliptic equations with gradient
constraints on a disperse set, within the framework of monotonic operator theory and compensated
compactness methods.

1 Introduction

The aim of this paper is to extend to quasi-linear elliptic equations of monotone type some classical
results obtained for the linear case by Cioranescu-SaintJean Paulin (see [6]), with application to the
torsion of a cylindrical elastic bar with several cylindrical thin cavities. The mathematical model for
a homogeneous isotropic material was first studied in [12]. For example, let @) be a cylindrical bar
with identical, periodically distributed cylindrical cavities having generators parallel to those of Q
and £ > 0 be a the size of the period. Let  be the cross-section of the bar, 2. the cross-section of
the domain occupied by the material (i.e. the perforated domain). Denoting by B! the cross section

of a single cavity, of size proportional to £ > 0, we have Q. = Q\ vajl Bt. According to [12], in the

linear homogeneous isotropic case, the study of the elastic torsion of this bar leads to the following
problem

—Au. =2u0 in Q.
u. = const on OB’
u: =0 on 9N

where p represents the rigidity modulus of the material, 6 is the twist’s angle and u. denotes the,
so-called, stress function, from which the stress tensor can be recovered. The results of [6], that deal
also with more general problems, in particular, characterize the response of the bar under torsion
for small €, proving that u. is close to the solution u of a well determined boundary-value problem
in the full domain €.

The above problem written in a variational form as

/Vu€~Vvdm:2u9/vd:E
0 0

for ue,v € H}(Q) and Vu., Vv = 0 in B, brings naturally to several generalizations. In this paper,
we replace Vu. with a vector of the form a (% Vug) that takes into account space oscillations and
non linear dependence on the gradient Vu. (see equation (3)).

In good agreement with what happens in the linear case ([6]), we prove that the solutions u. of the
nonlinear equation (3) are close in L?(Q) to the solution u of the homogenized problem (19), whose
coefficients involve the homogenization formula (15), obtained through the cell-problem (14).

In the proof we combine the extension tools provided by Cioranescu-Saint Jean Paulin in [6] for the
linear case, with the compensated compactness method ([15], [16]), that allows to pass to the limit
in the present nonlinear setting.

For simpllicity, the problem is studied in H*(£2), but natural generalizations to W1?(Q) are possible,
assuming appropriate growth and continuity conditions for the function a(y, £), following [8].



In a forthcoming paper, we will discuss the homogenization of variational inequalities arising from
minimum problems of the type

min{/Q (f (%,Vu) —2gu) dz :u € Vf} (1)

where V¢ C Hi () is a more general convex set of constraints, arising in the paper [4].

In addition to the cited model of elastic torsion of a bar, it worths to mention the more known
well established electrostatic model with periodical inclusions of conductors for which we refer, e. g.,
to the pioneering work of J. Rauch and M. Taylor [14], or to the more recent book [11]. Moreover,
we point out that several related results for minimum problems are obtained in the framework of
I-convergence theory. We mention in particular [1] about non-linear elastic materials with stiff and
soft inclusions, [3] for the homogenization of media with periodically distributed conductors, and
[7], for more general constrained variational problems.

The authors want to thank prof. Antonio Corbo Esposito for the interesting discussions on this
problem.

2 Statement of the problem and main result

Let © be a bounded open connected set in R™ with Lipschitz boundary 092 and let ¥ = [0,1]"
denote the periodicity cell. Let B be the closure of a given Y-periodic open set in R™ with Lipschitz
boundary. We assume that B is disperse, in the sense that BNY CC Y. We also assume that BNY
has a finite number of conneted components. Let us define the set of functions

K ={veHjQ): Vv(z) =0 ae. in eBNQ} (2)

where ¢ is a small positive parameter and eB = {x € R" : 7'z € B}. It is known that K¢ is a
closed subspace of H} ().
We consider the following variational equation for u. € K¢:

/a(E,Vug) V(pdxz/ggodx, Vo € K¢ (3)
Q € Q

where g € L*(Q2) and a = a(y, &) : R" x R® — R" is measurable and Y-periodic in y € R" for every
& € R™ and such that
a(y,0) =0 for a.e.y € R™. (4)

Moreover, we assume that a(y, -) is strictly monotone with uniform bound and Lipschitz continuous
uniformly in y, namely J«, L > 0 such that

alé — &P < (aly, &) —aly, &) - (&1 — &), for ae.y € R, V&, & € R™; (5)

la(y,&1) —a(y,&2)| < L|§ — &, forae .y e R",VE, & e R™. (6)

Our goal is to study the asymptotic behavior of the sequence {u.} as ¢ goes to zero and to prove
that the limit of the sequence satisfies, in a suitable sense, a (limit) variational problem, so-called
homogenized problem.

Remark 2.1 Tt is interesting to notice that if g is replaced by

Je XR"\eB (7)

- _9
Y N B

where xgn\.p represents the characteristic function of the set R™\ ¢ B, the asymptotic problem does
not change. More precisely, let us replace g by g. = hxgrn\cp With h € L?(©), and compare the



behaviour of u. and v., the solutions of (3) corresponding to g and g. respectively. We observe that
by the strict monotonicity of a(y,-) (see (5)) it follows that

a/Q\VuE—VUEFdxg/Q[a (g,Vue) —a(g,v%)} - (Vue — Vo) dzx

= /(g — hxrrneB)(Ue — ve) dx
Q

then
0
/ (9 — hxmrren)(ue —ve) de === | (g — h|Y N B|)(u — v) dz,
Q Q

where |Y N B| denotes the Lebesgue measure of Y N B. If h = \YT9B| this yields u = v, which means
that the asymptotic behaviour of u. is the same as the one of v.. This situation is typical when
equation (3) models the behaviour of the electrostatic potential of conductors occupying the region
QN B.: in this case g. = 0 outside the conductiors and g. = —4mq, with ¢ the electric charge of
each conducting component (see, e.g., [10]). For a complete treatment of the electrostatic model in
the general case see [11].

Proposition 2.2 For fived e > 0 and g € L?(2) there exists the unique solution u. € K¢ of equation
(3). Such solution satisfies the following a priori estimates

”uE”Hé(Q) <6 (8)

D

where c = o lcp ||g||L2(sz) is independent of €, and cp denotes the constant for the Poincaré inequal-
ity in HL(Q).

<L 9
L2(Q)m ¢ ©)

From the a priori estimates (8), (9) and by Rellich’s theorem we have, up to a subsequence,
u. —u in HY(Q), (10)
a (g,V%) —~a in LXQ)", (11)

and it is natural to look for a characterization of the limits v and a through a suitable boundary-value
problem. As it is customary in homogenization, we expect to express the homogenized equation by
means of a suitable auxiliary equation in the periodicity cell Y. In order to determine such cell
problem, we have taken into account the homogenization of minimum problems of the type

min {/Q (IVul® — 2gu) dz :u € v&} , (12)

considered in [4] for a quite general convex set V¢ C H}(Q). When V¢ = K¢, then (3) with
a(y,§) = & is the Euler-Lagrange equation of (12). The results of [4] suggest then to choose the
Euler-Lagrange equation of the cell problem corresponding to (12) as a "good candidate" for the
cell problem in our case.

From now on, we denote by Hﬁ1 (Y) the subspace of H! (R™) of functions v that are Y-periodic and
have mean-value zero in the periodicity cell Y, equipped with the norm ||v| |Hul(y) = ||Vv||L2¢y). For

every given £ € R", we consider the following closed convex subset of Hul(Y)
Kg:{veHﬁl(Y):ﬁ—&—Vv(y):O a.e in B}, {eR™ (13)

In particular, for £ = 0, Ky is a closed subspace of Hﬁl(Y) In view of the above considerations, we
formulate the following cell problem in weak form

/a(y,§+Vw§) Vody=0, Vyoe Ky
Y
We EKg.

(14)



Proposition 2.3 For fited { € R™ there exists a unique solution we € K¢ of equation (14).

In order to formulate the main result concerning the homogenization of equation (3), we define the
homogenized operator apom-

Definition 2.4 We will call homogenized operator the function apom : R — R"™ defined as
ran(©) 1= [ aly €+ ) (4 V) dy, Ve B, (15)
Y\B

where we € K¢ and w, € K, are solutions of the cell problem (14).
Such operator has some properties summed up in the next proposition.

Proposition 2.5 The function apom : R™ — R™ defined by (15) is strictly monotone, coercive and
Lipschitz continuous. In particular it satisfies

ahom(o) =0 (16)
01\51 - 52‘2 g (ahom(fl) - ahom(fZ)) : (fl - §2)7 Vfl,& S an (17)
|ahom (€1) — anom (&2)] < L'|&1 — &af, V&1,& € R™. (18)

with Lipschitz constant L' = L3a=2y/2+ 61, § = dist(0BNY,Y).
At this stage we can state the main result.

Theorem 2.6 Let u. be the unique solution of the equation (3). Then u. — u weakly in H} (),
ue — u strongly in L*(Q) as € — 0, where u is the unique solution of the homogenized equation

/ ahom(Vu) - Vo dr = / gpdx, Y€ H&(Q) (19)
Q Q

with anem defined by (15).

Remark 2.7 The convergence in (10), (11) are not enough to pass to the limit in equation (3),
due to the nonlinearity in the equation and the fact that the test functions depend on €. The proof
of (19) is based on the classical energy method (see [15]), comparing the asymptotic behaviour of
F. =a(%,Vue) and G = a (£,£ + Vwe(£)), for any fixed £ € R™, with the help of compensated
compactness argumentsFor the reader’s convenience, we recall the useful statement in Proposition
2.8, that is a simple case of a more general result due to L. Tartar ([16]).As in the linear case (see
[6]), F-, G- have to be suitably modified (extended) in the sets Q' NeB, Q' CC Q, in order to satisfy
the assumptions that permit to pass to the limit by compensated compactness.

Proposition 2.8 (Compensated compactness) Let u.,u € H'(Q) be such that u.—u weakly in
HY(Q) and F.,F € L?*(;R"™) be such that F.—F weakly in L*(Q;R"), and divF. — divF strongly
in H=1(Q). Then

/F€~Vu5g0dx—>/F~Vu<pdx Vo € C5° ().
Q Q

3 Proofs

Proof of Proposition 2.2
Let us consider the operator

Ac: K (K

u— A.u = —div (a (; Vu)) ’ (20)



for fixed u € K¢, defined by the pairing

(Acu,v) = /Qa (g, Vu) Voudz.
With this notation, equation (3) can be equivalently expressed as
Acus =g. (21)
For fixed v € K¢, by the assumption (5) we have

(Acu — Ao, u —v) =/

A [a (g,VU) —a (E,VU)} (Vu — Vo)dz

(22)
2@/ |Vu — Vol? dz,
Q

then A, is strictly monotone. In particular, from this fact, it follows that equation (3) cannot have
more than one solution.
On the other hand, A, is hemicontinuous, in the sense that, for fixed u,v,w € K¢, the function

R3t— (A (u+tv),w) :/

T
A a (g, Vu+ th) Vuwdz, (23)

is continuous in t. In fact, for fixed ¢1,t2 € R, by the Cauchy-Schwarz inequality and assumption
(6) we have

[{Ac(u+t1v), w) — (A (u + tav),w)| =

/ {a <§,Vu+t1Vv) —a (g,Vu—l—thU)} Vwdzx
Q

(24)
< Lty = to| V]| p2qyn VWl 20y
i.e., A, is hemicontinuous.
Furthermore, by the assumptions (4) and (5), for any u € H}(Q), we have
(Acu,u) = / a (E,V’u) Vudxr > a/ |Vul|? da, (25)
Q € Q
Then, we can conclude that A. is coercive, i.e.,
A
{Aeu,w) — +o0, (26)
||U|\H3(Q)

In view of the previous steps, by the Hartman-Stampacchia’s theorem (see, for example, [9] or [13]),
we obtain that A. is surjective, hence 3!u. € K* solution of (3).

A priori estimates (8), (9) follow easily from assumptions (4), (5),(6). In fact, since a(y, -) is strictly
monotone, by the Cauchy-Schwarz inequality and assumption (4) we have

o1y = [ Vel da
T
</a<7,Vu€) Vu. dx
Q 13

= / que dx
Q

< cepllgll 2o Vel L2 )n »
where cp denotes the constant for the Poincaré¢ inequality in Hg (£2), whence

cp ||9||L2(Q)

||ue||H3(Q) = Hvu8||L2(Q)" < o (27)



that is the estimate (8) with ¢ = a~tcp 9]l £2()- Moreover, since a(y, ) is Lipschitz-continuous, by
the Cauchy-Schwarz inequality and the assumption (4) it follows that

/ ’ %, vu.)

then, from (27) and (28) we have (9). O

dx <IL? / |Vue|? da, (28)

Proof of Proposition 2.3

In order to prove that (14) has at most one solution, we note that it is possible to choose test
functions of the form ¢ = we + ¢, with ¢ € K_¢. Then, if wi, w, are two solutions of (14) for the
same value of £ € R™, we have

0

/ (a(y,& + Vwy) — a(y, & + Vws)) (Vwy + Vi) — (Vws + Vo)) dy =
Y
= [ (ol + V) — aly + V) (Vs — V) dy =
Y
> a/ |Vw;, — Vws|? dy,
Y
from which it follows that w; = ws. In order to prove the existence result, given £ € R™, we fix

an arbitrary test function ¢ € K_¢, and we introduce the new unknown z¢ = we + ¢¢. Clearly,
z¢ € Koy. Then, we is a solution of problem (14) of and only if z¢ solves the following problem:

/ a(y,§ — Ve +Vze) - Vody =0, Vo€ Ky
Yy

k73 S Ko.

(29)

It remains to prove the existence of a solution z¢. To this end, for the fixed ¢, € K_¢, let us consider
the operator

At Ko — (Ko) (30)
U A%/l\gu = —div (a(y,{ — Ve + Vu)),

defined by the pairing
<2§u, U> = / a(y, & — Ve + Vu) Vody.
Y

Arguing as in the proof of Proposition 2.2, we can show that /Tg is monotone, hemicontinuous and

coercive. Hence, by the Hartman-Stampacchia’s theorem, we can show that 25 is surjective, which
yields the existence of a function z¢ € K solution of (29), and completes the proof. O

Remark 3.1 From (14), choosing particular test functions ¢ € C§°(Y'\ B), extended by the constant
0 in B, it follows that divy (a(y, & + Vwe(y))) = 0in Y\ B. Hence, denoting by vg the exterior unit
normal vector to the boundary of the set E, for a general test function ¢ € Ky, we have

0

/ a(y, & + Vwe)Vody =
Y\B

- / divy (a(y, € + Vwe(y))) pdy — / a(y,§ + Vwe) - vy\ppdo =
Y\B d(Y\B)

/ a(y,& + Vwe) - vy\p pdo
dBNY

provided a(y, { + Vwe) is smooth enough to perform the integration by parts. Since ¢ has constant
trace on the connected components I" of the boundary 9B NY, and is Y-periodic, it follows that

/ a(y,& + Vwe) -vpdo = 0. (31)
r



More generally, since F(y) = a(y, + Vwe(y)) € L*(Y \ B)", and divF € L?*(Y \ B)", then
F.-ve H'Y2(9(Y \ B)) and

—/ divF, dy:/ F-Vody+(F-vy\p,¢) V€ Ko,
Y\B Y\B

from which we can say that
<a(y7£ + vwﬁ) VB, SO> = 07 VQD S K07 (32)
where (, ) denotes the duality pairing between H'/2(9(Y \ B)) and H~'/2(9(Y \ B)).

We state now an extension result, that we will use to pass to the limit by compensated compactness
in the proof of Theorem 2.6. The proof can be found in [6, Lemma 2] if n = 2, [10, Chapter 3,
Section 3.2] if n > 2.

Lemma 3.2 Let z € L*(Y \ B)" and g € L*(Y) such that
—divz =g in D'(Y'\ B), (33)

/ z~V¢dy:/g¢dy Ve CE(Y): Vels =0, (34)
Y\B Y

then there exists Z € L*>(Y)"™ such that

—divi=g inY and in D'(Y), (35)
Z=z inY \ B, (36)
z-vg=2-vg inY NIB, (37)

/ |z|2dy<c</ g2 dy + / |z|2dy>. (38)
BNY Y Y\B

where vg denotes the unit normal vector to the boundary of B, and c is a constant independent of
z and g.

Remark 3.3 The result is invariant up to translations of the domain Y in R™. Moreover, if g = 0
the lemma defines a linear and continuous extension operator
T: LAY\ B) — LA(Y)"
zr—Tz=2z
such that
||TZHL2(Y)" S CTHTZHL?(Y\B)?L, (39)
with e¢p > 0. This operator will be considered on Y*¢ =Y + i, with i € Z"™.

From here on, we prepare the tools that we will use in the proof of Theorem 2.6 to pass to the limit
in the equation (3) by compensated compactness. To this end, we need to modify the flux

be(@) = a (Z, Vur(x) (40)

over the sets eB.
If we set Q. = Q\ B and we take in particular ¢ € C§°(€2.) extended by 0 in Q@ NeB in (3) we
obtain

/bg(m)Vgpdx:/ gpdr Yo e C°(Q). (41)
Q. Q.

which means
—divb.(z) = ¢ in D'(9.) and in L?(€2,) (42)



Proposition 3.4 Let z.(y) = bc(ey), with b. defined by (40). Then there exists an extension Z. €
L2(Y)™ of z. € L*(Y*\ B)", fori € I.(Q) = {k € Z" : Y* C Q}, such that

—divZ(y) = eg(ey) in D'(Y"), (43)

3. =2 inY*\ B, (44)

/ |ss|2dy<c</ leg(ew) [ dy + / |z5|2dy>, (45)
B yi Yi\B

with ¢ independent of eg and z..

Proof: We observe that, for any i € I.(Q)
—div z.(y) = eg(ey) in Y'\ B. (46)

Moreover, setting Y = eV, from (3) we have

/ be(m)Vgodx:/ gpdr Yo € CF (YY) :Vo=0ineBNY. (47)
Yi\eB Yi

Performing the change of variable z = ey in (47) we obtain

/ ze(Y) Ve dy = / egley)pdy Yo € C(Y') : Vo =0ineBNY.. (48)
Yi\B '

i

Then, by Lemma 3.2 there exists z. € L?(Y?)" satisfying (43), (44) and (45). O

In order to pass to the limit in (3) it is necessary to obtain equations and estimates in €2, or at least
in any relatively compact open subset Q' of §2, using the notation ' CC Q. Let us fix Q' cC Q
and set J.(Q) = {k € Z" : Y N Q' # ¢}. Then, there exists g9 = £9(€') > 0 such that Ve < &g
if k € J.(Q) then Y* C Q. For e < gy the function Z. defined by Proposition 3.4 makes sense
Vi e J(). More precisely

Proposition 3.5 Let ' CC Q, € < eo(Y') and b.(x) defined by (40). Then for all i € J. (V') there
exists an extension bt € L2(Y2)™ of b. € L*(Y2 \ eB)" such that

—div, b (x) = g(x) in Y7, (49)

bi=b. inY'\eB, (50)

/ 0% (z) 2 de < ¢ (/ \5g(x)|2dm+/ |b8(x)|2dx> , (51)
eB Y} Yi\eB

with ¢ independent of €,g and b..

Proof: Since b, € L*(Y!\eB)", g € L*(Y/), setting z.(y) = b-(cy), then the extension Z(y) defined
by Proposition 3.4 satisfies (43)-(45). Hence, setting b! = Z.(%), and performing the change of
variable z = ey in (43)-(45), conditions (49)-(51) follow.

Corollary 3.6 For any ¥ CC Q, € < g9(€), there exists an extension b, € L2(¥)" of b.|q, such
that

—divyb () = g(z) inD'(Q), (52)
b.=b. inQ\eB (53)

7 2 2 2
o |be ()] dx < ¢ (/Q leg(z)|* dx + -/Q\EB |6 ()] dx) . (54)



Proof: Setting

be(w) = > xvi(2)bi(@), (55)
1€J(Q)

statements (52) and (53) are straightforward, whereas estimate (54) follows from (55) and the fact

that ' CU{Y}:ie J(Q)} C Q. O

Proposition 3.7 Let {Q;} be an increasing sequence of open subsets of ) such that Q; CcC Q and

U; Q2 = Q. Let b9 be the function defined in Corollary 3.6 by (55) when ¥ = Q. Then there exists
be L (Q)" and there exists a subsequence of ¢ — 0 (not relabelled), such that for all j > 1

loc
b —~ b weakly in L*(2)", (56)
—divgd9) — —divyb  strongly in H (), Vj, (57)
—div,b9) (z) = g(x) = —divyb  in D'(Q)) fore < eo(€)). (58)

Proof: For j =1 we choose a subsequence €1 of ¢ such that the extension BS) of be, ‘Qel defined by
(55) for ' = Q) satisfies 3
b — b weakly in L*(Q))", (59)

as €1 — 0. For j = 2 we repeat the procedure extracting a subsequence €5 of the previous one g1,
so that the extension bg) (of be, 0., ) satisfies

b — b weakly in L*(925)", (60)
as g2 — 0. Since Q} CC Q) the limits coincide in the smaller domain, i.e.,
b =pM in Q.

For any j > 2 we can proceed from Q;-_l to Q; in the same way, getting a further subsequence ¢;

such that the extension 5&{) satisfies

SG) G N N

by — b9 weakly in L*(€))", (61)
as e; — 0 and bU) =bl=Y in Q) . For any j > 1 we now define

b(z) = b9 (z) Vae Q) (62)

loc
then —divxgg) = g in Q} and hence, by (61) and (62) also —div,b = g in Q, for all j > 1. In
particular, this implies that for all j > 1,

We observe that b € L2 ()", since bl9) € L2(Q})", Vj > 1. Moreover, by construction, if & < £o(£2})
—divw?)g) — —divyb strongly in H~'(2)) (63)
as €; — 0. The choice of the diagonal subsequence of ¢;, j > 1, concludes the proof. O

Now, for any given { € R”, we consider the solution we of the cell problem (14). Using its
periodic extension to R™ we define the functions

x x x
vg(:ﬁ):zs[wg (g)+§g} = cwe (g>—|—§x (64)

In virtue of (64) we have
ve = &-x  strongly in LE (R™), (65)
Vv, = Vywe + € — € weakly in L2 .(R™), (66)



ase — 0.
We are now in the position to introduce an auxiliary operator a’ : R™ — R™ (see below (78)) that
will be the essential tool to prove Theorem 2.6. To this end, we define by 8 = ((y, &) the function

By, €) = a(y,&+ Vwe(y)). (67)

For any ¢ € R, the function §(-,€) € [LE . (R™)]", it is Y-periodic, and has the following properties:
—div, B(y,§) =0 in D'(Y'\ B), (68)

B(y,§) Vedy=0, YoeD(Y\B): Vy|p=0. (69)

Y\B

Hence, by Lemma 3.2 (with g = 0) there exists an extension

B=B(¢) e L*(Y)" (70)
such that R
—divB(y,§) =0 inY, in D'(Y), (71)
f=5 my\B, (72)
/ \B|2d:v<c/ 182 dax, (73)
B Y\B
with ¢ independent of .
Let us define ) e
Be@) =B (%) (74)
The Y -periodic function BE has the following properties
—div3. = 0in R", (75)
~ €T . n
Be(z) =5 (E) in R"\ eB, (76)
and )
@gm/mmwymeMMW> (77)
Y

Proposition 3.8 Let a” : R™ — R" be the function defined by
a’(§) = /Yﬁ(y,é) dy (78)

where B(y,§) = a(y,§ + Vwe), we € K¢ solves the cell problem (14), and B e L2(Y)™ denotes the
extension of 3, by means of the operator introduced in Remark 8.3. Then a° is strictly monotone,
coercive and Lipschitz continuous. More precisely,

a®(0) = 0; (79)
al¢ —n)* < (a®(€) —a(m) - (€ —n), VE&EneR™ (80)
a°(&1) — a®(&)| S L'jé1 — &of, V&i,& €R™ (81)

with Lipschitz constant L' = cpL3a™2v2 +6-1, § = dist(BNY,Y), and ¢ > 0 given by (39).

In the proof of Proposition 3.8 we will use the following Lemma.

10



Lemma 3.9 Let G € [L2.(Y)]". If

per

/ G -Vody=0, VYo Hi(Y) (82)
Y

then
/ G-Vedy=0, VoeH,,(Y). (83)
Y

Proof: We split the proof into two steps.
Step 1 Let G € C2.(R™). For any ¢ € C5°(Y) we have

per

/G-V(pdy:O,
Y

so that
divG =0 in D'(Y). (84)

Ifpe Héer(Y) then, integrating by parts , by (84) and the periodicity of G we have

/G-Vgady:—/(divG)gody—i— G-npdo =0, (85)
Y Y Yy

so (83) is proved for G € Cpg, (R™).

Step 2 Let G € [L2,.(Y)]". We will proceed by approximating G by convolution. Let pj, € Cg°(R")
be convolution kernels such that pp, > 0, spt (prn) C B% (0) and fph =1.

We first show that Gy, = G * py, is Y-periodic, and satisfies (82). Then from step 1, it follows that

/ Gh-Vedy=0, forall peH., (V). (86)
Y

and then, passing to the limit as h — 400, we obtain (83). In order to prove periodicity, let us
denote by (e;)!"_; the canonical basis of R and consider

(Gxpu)(z) = /B o, GOz =)y

and
(Gx pn)(x + €5) = / G)on (e + i —y) dy, (87)
B%(O)

for any i. Using the periodicity of G and performing the change of variable y = z 4 ¢; in (87) we
have

/ G(y)pn(x +ei —y) dy:/ G(z 4+ e;) pulx — 2) dy
51(0) B1(0)

_ /B o GO =2)dy = (G p)(a).

1
h

(88)

which means that G * pj, is Y-periodic. We recall that Gy, = G*p € C*°(R™) and G, — G strongly
in L2 _(R™).

loc
Now we prove that G}, satisfies (82) for smooth test functions, i.e.,

/Gh~V<pdy:0, Ve CY). (89)
%
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In fact, let ¢ € C§°(Y), by Fubini’s Theorem and (82) it follows that

/ Gn - Vipdy = / (G * pn)(w) Voly) dy
Y Y

_ / / Gy — 2)pn(e) de | Violy) dy
Y B%(O)

_ /B . ( /Y Gly — 1)V (y) dy) () da = 0,

where the last equality is due to the fact that
/ Gy —x)Veoly)dy = G(z)Ve(x 4+ z)dz =0,
Y Y —x

because the support of (z) = ¢(x + z), which is a subset of Y — z, is also contained in Y when
z € By and h is sufficiently large. Finally, (89) implies (82) for G}, hence by Step 1 we have (86)
for G}, and passing to the limit as h — oo we obtain (83) for G. O

Proof of Proposition 3.8 In order to show (79), let us consider the solution of the cell problem
(14) for £ =0, i.e.,
/ a(y, Vwo) - Vepdy =0, Ve € Ko
Y

wo € K.

(90)

Since a(y,0) = 0 (see assumption (4)) then wp=const. is solution of the problem (90). Hence,
recalling the definition (78) of a°, from estimate (73) we have

/Y a(y,0) dy‘

0< Ja(0)] = ‘/YB@,(» dy] -

! (91)
< (C/ la(y,0)[? dy> =0,
Y\B
from which (79).
Now, we prove that a is strictly monotone. Let &, 7 € R™ be fixed. Considering the identity
(a®(€) = a’(n),€ —n) =
— [ a0 + V) v+ V)6 + Ve == Vi) dy
- (92)
+ [ a6+ Tue) (T, - Tue) dy
Y
+ [ alvon+ Vo) (Vue - Vu)dy,
Y
we can first show that the last two terms are zero, i.e.,
/Yd(y, £+ Vwe)(Vw, — Vwe)dy =0 = /Y a(y,n + Vwy,)(Vwe — Vwy,) dy. (93)

In fact, since
y = a(y,§ + Ve () € [Lpe, (V)]
from (71) it follows that

/ a(y,& + Vwe)Veody =0, ¢ € D(Y).
Y
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Then, in view of Lemma 3.9 it follows that

/ a(y, & + Vwe)Vuw, dy = / a(y, & + Vwe)Vwe dy =

Y v (94)

= / a(y,n + Vw,)Vwe dy = / a(y,n + Vw,)Vw, dy = 0.
Y Y

From (92), (94), and the fact that £ + Vwe = 0 = n + Vw,, in B, by the monotoniciy assumption
(5) for a we have

(a®(€) —a®(n), € —n) =
= /Y[&(yaf + Vwe) —a(y,n + Vwy)](§ + Vwe —n — Vuw,) dy

= /Y\B[a(y,é + Vwe) — ay,n + Vuwy) (€ + Vwe —n — Vw,) dy

>a/ €+ Vg — 1 — Y, P dy,
Y

which proves that a°(¢) is monotone.
Moreover, since wg,w, are Y-periodic, then

/ Vwe dy =0 :/ Vuw, dy,
Y Y
and hence the integral in the last line of (95) can be estimated as
/ €+ Vwe —n — V[ dy =/ \f—nlzdzﬂr/ [Vwe — Vw,|* dy > / € —nl* dy,
Y Y Y Y
which completes the proof of the strict monotonicity inequality (80).

Let us show that a°(¢) is Lipschitz continuous. We split the proof into 3 steps.
Step 1 Let &,& € R™ be fixed, then

€1 + Vwg, — & — Vw§2||L2(Y) el —&+ vw§17§2||L2(Y) . (96)

We choose two test functions M; and My defined as

My = we, + we, —¢, — We, 97)
My = we, — we, —¢, — we,. (98)

where w,, € K, denotes the solution of the cell problem (14), for n = &, & and & — &> respectively.
Clearly M;, M5 € Hy, then substituting (97) and (98) into (14) we obtain

/ a(y7§1 + wal) : (Vw§2 + vw£1 &2 T wal) dy = 0, (99)
Y
/ Cl(y7 & + waz) ’ (wal - vwﬁl &2 T waQ) dy = 0. (100)
Y
Adding up (99) and (100) we obtain

/ [a(y, &1+ Vwe,) — aly, S + Vwg,)] - (Vwe, + Vwe, ¢, — Vg, ) dy = 0,
Y

that is equivalent to

A= / [a(%fl + vwfl) - a(ya€2 + Vw&” . (51 + V’UJ& - 52 - V?JJ&,) dy
Y (101)
= /Y [a(y, &1+ Vwe,) — a(y, &2 + Vuwg,)] - (&1 — & + Vwg, —¢,) dy = B.
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Since a(y, -) is strictly monotone we have
a/ |€1 + Vw& - 52 - Vw§2|2 dy = Hfl + vwfl - 52 - waz”iﬂ(y) y (102)
Y

on the other hand by the Cauchy-Schwartz inequality and since a(y,-) is Lipschitz continuous we

get
B< ( / |a<y,51+wgl>—a<y,@+w@>|2dy) ( / |£1—52+Vw5152|2dy)
Y

1 1
) 3 ) 2 (103)
L[ 1+ Ve — &= Vualay) ([l =+ Vueelay
Y
= L& + Vwe, — & — Vw&”Lz(y) 161 — & + vw§1_£2||L2(Y)

Nl=

Finally, from (101), (102) and (103) we obtain (96) where ¢; = —

Step 2
1€ + Vel o vy < c2lé], VEER™ (104)

Let £ € R™ be fixed. We consider the following test function

—£-y if ye B,
d={- (1 dist(y. B) )(g y) + BB, i < dist(y, B) < 6, (105)
e dist(y, B) > 0,

where ,ug is chosen so that z5 has zero mean-value in Y. We observe that z5 € K¢. Since |Vz§\
€] (1+ &) we have

1
1952 agrye <161 (1+3)- (100

Then, since a(y, -) is strictly monotone and Lipschitz continuous, by the Cauchy-Schwarz inequality,
assumption (4) and taking into account (14) with ¢ = we — zg we have

a/ |£+Vw§|2dy</a(y7§+Vw5)~(§+Vw§)dy
Y Y

:/ a(y.€ + Vwe) - (€ + V22) dy (107)
Y

< LJE+ VU’&”B(Y) H§ + VZgHIﬂ(Y)

Then, by (106) and the fact that zg € K¢ we have

e+ 9850y, = 6P + [ 1V5ER ay

1 2
< <2+5> €]

b G
([le+vueear) < £ (2+5) lel (109)

1\
(2+3)

(108)

Finally from (107) and (108) we obtain

which is (104) with ¢ =

QI
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Step 3 Now, we prove that a® is Lipschitz continuous and satisfies (81). Recalling the definition
(78) of a, using the Cauchy-Schwarz inequality, we have

|a%(€1) = a®(&2)] = M/[&(y,fl + Vg, ) — a(y, &2 + V)] dy'

1
2

< (/ la(y, & + Vwe,) — a(y, & + Vug, )| dy) (110)
Y

1

2

<or (/ |a(y7fl + vw§1) - a(y7§2 + wa2)|2 dy) ;
Y\B

where the last inequality is due to the continuity of the extension operator (see Remark 3.3). Then,
by the Lipschitz-continuity (6) of a, estimates (96), and (104) with £ = & — &, we conclude that

la°(&1) — a®(&)| < Lereo &1 — &

13 2 (111)
=cr— <2+> & — &,
Q@ )

I3 1 1/2
that is (81) with L' = pel (2 + 6) cr. O

In the following proposition we show that the function a° introduced in (78) does not depend on

the extension operators nor on the particular subsequence and actually coincides with the function
anom defined by (15).

Proposition 3.10 Let a° and anom be defined by (78) and (15) respectively. Then a° = apom, i.e.
&) -n= /Y\B a(y,& + Vwe) - (n+ Vwy)dy, VE&mneR" (112)

Proof: Here, for simplicity of notation, we assume the function a(y,& + Vwe) regular enough to
perform standard integrations by parts (see Remark 3.11 below). We split the proof into three
steps.

Step 1 Let us show that

a’(€)-n= / a(y,§ + Vwg) - ndy
Y

(113)
— [ atn&+ Vo) ndy— [ aly+ Vuo) vt pd. Vene R
Y\B B
where v$%® denotes the outward unit normal to B. We observe that
/Y a(y, & + Vwe) -ndy = /Y\B aly, & + Vwe) - ndy + /B a(y, & + Vwe) - ndy, (114)

furthermore, integrating by parts the second integral of the right hand side with n = V(5 - y) we
have

/ a(y, &+ Vwe) -ndy = —/ a(y, €&+ Vuwg) - v§5'(n-y) do +/ div a(y, & + Vwe)(n-y) dy. (115)
B OB B

But div a(y, § + Vwe) = 0 by Lemma 3.2 with 2(y) = a(y, £ + Vwe(y)) and g = 0, so that

/Bdiv a(y, &+ Vwe)(n-y)dy =0,
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and then
/Bd(y,er Vwe) -ndy = — /OB a(y, &+ Vwe) - v (n - y) do. (116)

Hence, by (114), (115) and (116) statement (113) follows.
Step 2 Let us show that

/ a(y, &+ Vwe) - Vw, dy = / a(y, &+ Vwe) - vt wydo, V& neR", (117)
Y\B 9BNY

where v5® denotes the outward unit normal to 0B.
Since by (14)

—diva(y,{ + Vwe) =0in Y \ B, (118)
with we € K¢ we have
/ diva(y, £ + Vwe)w, dy =0, (119)
Y\B
with w, € K,,.
Then, integrating by parts (119) we obtain
/ a(y, & + Vwe)Vw, dy + / a(y, &+ Vwe) - Vf,s{B wy do = 0. (120)
Y\B a(Y\B)
Now, taking into account that the integral on dY is zero by the periodicity, replacing V?,S{ 5= V5"

we get (117).
Step 8 By Step 1 and Step 2, we have

ahom () - = /Y\B a(y,& + Vwe) - (n+ Vw,) dy

:a°(£)~77+/ oy, € + V) - vt -y do
oOBNY (121)

—|—/ a(y, &+ Vuwe) - Vet wy do
aBNY

— (¢ ~77+/ a(y,€ + Vue) v (0 -y + wy) do.
oBNY

Since the function (- y+w,,) has constant trace on (the connected components of) 0BNY', by (31),
(32) the last integral of (121) is zero and (112) follows. O

Remark 3.11 In the previous proof, in the general case all boundary integrals can be understood
in the sense of the duality between H'/? and H~1/2.

Corollary 3.12 The function anem has the same properties of a®.

Proof of Theorem 2.6
Let {€2}} be an increasing sequence of open subsets of {2 as in Proposition 3.7.Since a(y, -)is monotone,

it follows that
(a (g, Vug(ac)) —a (g, va(x))> - (Vue(z) — Voe(z)) 20, for ae xz €,

where u, is the solution of (3) and v, is defined by (64). Then, for anyfixed ¢ € D(Q), with ¢ > 0
there exists j > 1 such that sptp C Q) CC Q and we have

/Q (a (g Vus(x)) —a (g Vvs(x))> (Ve (z) — Voo (z))p(z) dz > 0. (122)
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Moreover, we observe that Vu. — Vv, = —(£ + Vwe(y)) = 0 in eBN Q. Then considering the
extensions Egj)(x) of b. defined by (55) for Q" = Q; and the periodic extension of 3(Z) = a(%, Vu.(x))
to R™ defined by (74),inequality (122) can be cast as

/Q/ (39 () ~ Be(@) - (Vue(w) — Ve (@))olr) da > 0. (123)

In view of Remark 2.7, (56), (57), (58), (65), (66), (75), (78) and Proposition 3.10 we have

U —Ve ~u—E 2 weakly in H'(Q),
B9 — B = b(@) — anom(€)  wealdy in L(2)",
—divbY) — divf. =g — g  strongly in HH()).

Then, recalling Proposition 2.8, we can pass to the limit in (3) using compensated compactness and
we get

| 00) = anam©) - (Vu(o) = (@) >0 ¥ € CF(@), ¢ 20, (124)
which implies
(b(x) = anom(§)) - (Vu(z) =€) 20 VE€ Q™ Vo € Q\ N, with [Ne| = 0. (125)
Now, denoting N = Ugcqn Ne it follows that
(b(x) — anom(€)) - (Vu(z) —€) =0 ¥Ee Q™Yo e Q\ N, with |N| =0, (126)

which means
(b(z) — anom(§)) - (Vu(z) =€) 20, ae. in, V€€ Q". (127)

By the continuity of anom (see Proposition 2.5) it follows that
(b(x) — anom (§), Vu(z) — &) 20, ae. inQ, Ve R™ (128)

Choosing £ = Vu(z) + tn, diving by ¢, separately for ¢ > 0, t < 0, and then letting ¢ — 0, by the
continuity of apen, we get
(b(x) = anom (Vu(z)),n) =0 (129)

and from the arbitrariness of n € R™ we conclude that

b(x) = anom (Vu(x)). (130)
In view of the strict monotonicity of apem (see Proposition 2.5 and 3.10) we can conclude that the
whole sequence u. tends to the unique solution w of the homogenized equation (19). O
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