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Abstract 
Ball vibration absorbers (BAs) are a simple, low-cost and compact way to realize the principle of tuned 
mass damping. The basic arrangement of a BA consists of a spherical mass rolling without sliding in a 
rubber-coated spherical cavity, and dissipating through rolling friction. In a conventional BA, the rubber 
coating is uniform along the cavity, and so is rolling friction. This makes the BA equivalent damping 
inversely proportional to the excitation amplitude, and its performance amplitude dependent. In this study, 
two new BA types are proposed. The first type, called the homogeneous BA (HBA), has a rolling friction 
radially increasing in proportion to the ball angular displacement. Hardly realizable in practice, this ideal 
friction model is homogeneous in the first order, ensuring an amplitude-independent optimal performance. 
The second type, called the discrete-homogeneous BA (DBA), is the stepwise approximation of the HBA. 
Not exactly homogeneous, its variable friction model can be easily realized through the juxtaposition of 
multiple coating regions, having different thickness or material quality. After establishing a unifying, fully 
nonlinear, nonholonomic analytical model, valid for various types of friction and viscous BAs, this paper 
first derives an optimal design procedure applicable to each type, then experimentally and numerically 
demonstrates (1) the validity of the homogeneous and discrete-homogeneous concepts, (2) their practical 
feasibility, (3) the accuracy of the proposed model, (4) the effectiveness of the design procedure, and (5) 
the superior performance of the HBA and the DBA over conventional friction absorbers.  
 
Keywords: passive structural control; ball vibration absorber; nonholonomic dynamics; rolling resistance; 
spatially variable friction; discretized homogeneous damping; optimal design; experimental validation. 
 
1 Introduction 
Dynamic vibration absorbers (DVAs), also known as tuned mass dampers (TMDs), are widespread 
passive control devices, extensively studied and applied on flexible, low-damped structures, to reduce 
their resonance response under various external dynamic disturbances, including wind, seismic, 
hydrodynamic, industrial, transport and other loads [1-13]. Conceived as single-degree-of-freedom 
(SDOF) linear appendages of the main structure, they absorb and dissipate vibrational energy from a 
selected (target) structural mode, if optimally tuned to its frequency and appropriately damped.  
Depending if their restoring force is elastic or gravitational, DVAs are categorized in spring and pendulum 
types, and pendulum types are further classified in hanging pendulums and supported pendulums, 
depending if their mass is suspended through ropes or bars, or constrained to move on a physical 
concavity. Supported pendulums, compact and geometrically versatile, are increasingly popular, and can 
be realized in a variety of configurations, including rolling, sliding, and rocking pendulums [14, 15], 
unbalanced pendulums [16], track nonlinear energy sinks (NESs) [17], and ball pendulums [18] (Figure 
1). Each configuration can be arranged as a unidirectional or a bidirectional system, in this latter case 
using either a pair of mutually orthogonal rails mounted in series, or one spatial pendulum surface, ideally 
non-axial-symmetrical if the two principal structural frequencies are different [19]. 
Among supported pendulum DVAs, the ball pendulum absorber (BA) (Figure 1f) is a simple, low-cost, 
compact and easy maintenance device, especially recommended on structures where a limited vertical and 
horizontal space is available for an absorber installation, such as TV towers, wind turbine towers, masts, 
antennas, and bridges [20]. Invented in the early ‘90s by Pirner, originally in the form of an oblong 
container with a heavy ball inside, aimed to reduce the transversal vibrations of a suspended footbridge 
[21], it is later installed by the same author on two TV towers, “as there was not enough space at the top of 
the tower for an absorber of the standard pendulum type” [18]. This time, it is in the form later become 
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typical of BAs: a rubber-coated steel dish shaped as a spherical cap, inside which a steel sphere of a 
smaller radius rolls without sliding. The difference of the two radii determines the rolling frequency, while 
the quality of the contact surfaces determines the energy dissipation properties. The device, enclosed in an 
airtight case, is virtually maintenance free. Its equivalent damping ratio is nearly inversely proportional to 
the ball motion amplitude, as shown through forced vibration tests on real scale prototypes [18, 20]. After 
Pirner, the BA concept is theoretically investigated by various authors [22-24], and recently applied to the 
vibration control of wind turbine towers and building structures. For example, in [25] a BA is proposed for 
installation in the nacelle of a wind turbine tower, after excluding a standard pendulum absorber because 
of space limitations. A 1/20-scale model of the tower-BA combined system is shaking-table tested, the BA 
consisting of single or multiple steel balls, rolling inside an uncoated plastic spherical container and 
dissipating through rolling friction and mutual impact. In [26], a BA is chosen for controlling an offshore 
wind turbine tower, preferred over a spring TMD because more compact and easier to maintain. Its 
effectiveness is proven through shaking-table tests on a 1/13-scale tower-BA model, the BA being in this 
case a unidirectional device, made of a steel ball rolling inside a cylindrical rubber-coated container. In 
[27], several BAs are supposed to be distributed in the hollow floors of a building structure, to reduce its 
seismic response. Each BA consists of a steel ball, embedded in a plastic hollow module of a biaxial 
voided slab, and rolling on its bottom surface, shaped as a spherical cap. The solution is simple and 
unobtrusive, and its efficacy is demonstrated numerically. In these examples [25-27], simulations are run 
using unidirectional dynamic models obtained through Lagrange’s equations, with the BA dissipation 
mechanism represented as a dry rolling friction. 
To the author’s knowledge, a common feature to existing BAs is the adoption of a uniform rolling surface, 
which can be that of the container itself or more often that of an adhered elastomeric layer. This is also the 
case for all known types of rolling ball isolation devices, i.e. base isolation systems consisting of single or 
multiple balls rolling between counter-facing surfaces (typically spherical, conical, or flat), for the seismic 
isolation of buildings, bridges or vibration-sensitive equipment [28]. For example, both the rubber-layer 
roller bearing (RLRB) system [29] and the rolling-ball rubber-layer (RBRL) system [30] comprise an 
array of steel balls interposed between flat surfaces covered with uniform rubber layers. Their rolling 
resistance can be simulated as a constant force model with a velocity-proportional transition at small 
velocities, while the rubber surface indentation effect caused by the ball pressure can be simulated as an 
additional nonlinear elastic spring model [31]. In [32], uniform elastomeric layers are proposed for non-
concentric rolling isolation systems, to increase damping and ensure contact. In [33], a heavily-damped 
ball-in-cone device (BNC), made of a steel sphere rolling between uniform rubber-coated conical surfaces, 
is simulated through a rolling friction model, fitted to experimental tests. Rolling resistance is expressed 
by the product of a load-dependent friction force times a velocity-dependent transition law, while the 
indentation effect is modelled as a modification of the nominal rolling surface. In [34], a BNC variant is 
tested in which a geometric pattern is engraved on the rolling surface to increase friction. Texturing the 
surface slightly increases the rolling resistance but introduces undesired high-frequency acceleration 
components. Anyway, the engraved surface is still uniform in a macroscopic sense. In [35], a detailed 
theoretical model is developed for the RBRL system, depicting the insurgence, at the contact area between 
the rolling ball and the deformed rubber layer, of a slip region, characterized by a macroscopic sliding 
between the two materials. Again, uniform rolling surfaces are considered.  
For a conventional BA, the disadvantage of a uniform rolling friction is that its equivalent damping ratio is 
inversely proportional to the amplitude of the ball displacement, and its effectiveness is amplitude 
dependent [36]. To avoid this inconvenient, following an idea originally presented in [37], Almazan et al. 
[38] invent a new type of hanging pendulum TMD, called the bidirectional and homogeneous TMD 
(BHTMD), in which a vertical friction damper is inserted between the pendular mass and the underlying 
structure. The first-order approximation of the resulting dissipative model turns out to be nonlinear but 
homogeneous, making both the equivalent damping ratio and the effectiveness of the device amplitude 
independent. To achieve the same result without recurring to a supplemental damper, Matta [39] proposes 
a new type of supported pendulum TMD, called the homogeneous tangential-friction bidirectional TMD 
(HT BTMD), characterized by a tangential (rolling or sliding) friction varying along the pendulum surface 
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proportionally to the surface gradient. In [40], the HT BTMD is shown to be more effective than the 
BHTMD if the pendulum surface is axial- or nearly-axial-symmetrical and if the absorber is 
bidirectionally excited.  
Noticeably, unlike ball absorbers, both the BHTMD and the HT BTMD are point-mass devices, i.e. 
characterized by a negligible rotational inertia.  
In this paper, following the variable friction concept presented in [39], two new types of ball absorber are 
proposed as an alternative to the conventional uniform BA (UBA). The first type, called the homogeneous 
BA (HBA), is characterized by a rolling friction radially increasing in proportion to the ball angular 
displacement. Hardly realizable in practice, this friction model is nonlinear but homogeneous in the first 
order, where it ensures an amplitude-independent performance. The second type, called the discrete-
homogeneous BA (DBA), is the discrete approximation of the HBA, characterized by a rolling friction 
radially increasing as a stepwise function of the angular displacement. Not exactly homogeneous, this 
friction model can be easily realized through juxtaposing multiple coating regions, with different thickness 
or material quality. For simplicity, the investigation is here confined to the assumption of a spherical 
rolling surface, although the concept could be applied in principle to any surface kind. With these 
premises, the following main points are addressed in the remainder of this work: (1) a unifying model is 
derived, valid for the three friction types (UBA, HBA and DBA) as well as for ideal viscous BAs (VBAs); 
(2) an optimal design procedure is formulated; (3) the results of experimental tests on small-scale 
prototypes of UBA and DBA are presented; (4) the results of numerical simulations of a real-scale case 
study are reported.  
 
2. The analytical model  
This section derives the fully nonlinear 3D model valid for viscous and friction BAs. The model is 
obtained for the BA alone and then augmented to include the main structure. Its first-order approximation 
is derived, which will be used in later sections to develop an optimal design methodology. The modelling 
framework, based on Gibbs-Appell nonholonomic formulation [41], is the one already adopted in [19], 
here focused on ball absorbers and extended to friction dissipation.  
 
2.1 The kinematic equations 
The model of a BA is schematized in Figure 2. It consists of a spherical ball of radius R, mass I and 
moment of inertia J around its centre of mass, which is subject to gravity g and rolls without sliding in a 
spherical cavity of radius L′. The cavity is integral with the structural support, supposed to translate 
without rotating. Denoting by O the at-rest position of the ball centre, and by u, v, and w the ball centre 
coordinates in the local Cartesian system xyz (centred in O and fixed to the structural support), the ball 
centre moves along the “virtual” spherical surface of radius L = L′ – R (in contradistinction with the 
“physical” cavity described by the contact point C), according to the kinematic holonomic constraint 
equation 02),,( 222 Lwwvuwvuh . Denoting by LwLvunnn TT

zyx /],,[],,[n  the normal 

versor at the surface in C, and by Twvu ],,[r  the ball centre relative displacement vector, the no-sliding 
condition is given by the following kinematic nonholonomic constraint equation: 

 nωr R  (1) 

which relates the ball centre relative velocity vector Twvu ],,[r  with the ball angular velocity vector ω =
T

zyx ],,[ . Developing the right-hand side of Eq. (1), the three components of the relative velocity 
vector are obtained as 

 xyyxzxxzyzzy nnRwnnRvnnRu  (2) 

whence the three components of the relative acceleration vector Twvu ],,[r are derived as 
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xyyxxyyx

zxxzzxxz

yzzyyzzy

nnnnRw
nnnnRv
nnnnRu

 (3) 

where xn , yn  and zn  are given by 

 LwnLvnLun zyx ///  (4) 

Finally, the absolute acceleration of the structural support is expressed by T
zyx aaa ],,[a . 

 
2.2 The dissipative model  
In the absence of slippage, energy dissipation comes from rolling resistance, which results from the 
asymmetric pressure distribution arising at the interface between the ball and the physical surface, because 
of the viscoelastic deformations of the parts in contact [35]. Rolling resistance, in fact a resisting torque 
[42], is often modelled, in analogy with sliding friction and neglecting spinning friction, as a dissipative 
force acting on the centre of mass of the rolling body, in the opposite direction to its relative velocity. This 
dissipative force, conventionally called rolling friction (although no friction actually occurs), is generally 
expressed as the product of the normal contact force N times the rolling friction coefficient μ, whose value 
depends on several parameters, including the quality of the materials in contact, the value of the normal 
contact force, and the value of the relative velocity. 
In this paper, rolling resistance is indeed modelled as such a kind of dissipative force, applied to the ball 
centre (i.e. tangent to the virtual surface) and defined by 

 tf dd f  (5) 

where  T
dzdydxd fff ],,[f  is the dissipative force vector, df  is its modulus (called the dissipative force, 

for brevity), and T
zyx ttt ],,[t is the tangent versor to the relative motion of the ball centre, defined by t = 

0 if r = 0 and by t = rrr Twvu ],,[/  elsewise. To jointly represent the various dissipative 
mechanisms later addressed in this study, the dissipative force in Eq. (5) is conveniently expressed as 
follows: 

 ),,( rNff dd  (6) 

where N is the modulus of the normal contact force vector N = Nn, and θ is the ball angular displacement, 
defined as the positive angle between n and the z vertical axis (so that coszn ). For simplicity, the 
dissipative force in Eq. (6) is isotropic and memory-independent.  
Eq. (6) is then specialized to represent four main dissipative models, respectively incorporated in the 
following BA types: 
 Viscous BA (VBA), characterized by 

 rr cff dd )(  (7) 

where c is the viscous damping coefficient; combined with Eq. (5), Eq. (7) describes a force 
rtrf ccd  that does not really correspond to any practical arrangement of viscous dashpots, but 

rather represents a somewhat ideal viscous damper, always oriented as the local tangent vector [43]; 
 Uniform friction BA (UBA), characterized by 

 NNff udd )(  (8) 

where u  is the rolling friction coefficient, assumed uniform along the cavity; 
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 Homogeneous friction BA (HBA), characterized by 

 NNNff dd 0)(),(  (9) 

where 0)(  is the radially-varying rolling friction coefficient, assumed proportional to θ;  
 Discrete-homogeneous friction BA (DBA), characterized by 

 NNNff sdd )()(),(  (10) 

where )(s  is the radially-varying rolling friction coefficient, assumed stepwise increasing with θ. 
Of the four BA types introduced above, the VBA is the only one in which fd  depends on velocity. At low 
amplitudes, it coincides with the classical paradigm of a linear BA (LBA). In this paper, the VBA 
constitutes the ideal case of amplitude-independent damping, a useful benchmark to compare the 
performance of friction BAs rather than a commonly adopted, practical device. 
The other three BA types, instead, implement a Coulomb friction model, in which fd  is the product of N 
and μ. However, while for the UBA μ is constant along the cavity, for the HBA and DBA μ radially varies 
along it, in either a continuous or discrete way. The HBA, in particular, applies to ball absorbers the 
concept of variable friction recently proposed for point-mass pendulum TMDs in [39], with some 
improvements. In fact, while the friction law adopted in [39] implies a proportional increase of μ with the 
surface gradient, resulting for a spherical pendulum in tan)( 0 , the friction law proposed here 
implies a proportional increase of μ with θ, i.e. 0)( . The two laws tend to coincide as θ tends to 0, 
both ensuring a homogeneous first-order model (and thus an amplitude-independent performance), but the 
new law describes a more gradual increment of μ with θ, easier to realize in practice. Additionally, for an 
HBA obeying Eq. (9), it can be easily proven that: (i) as θ tends to 0, 10  is necessary and sufficient 
condition for the re-centring of the device; (ii) otherwise, 10  is sufficient but not necessary condition 
for its re-centring.  
The three friction BAs are schematically shown in Figure 3. In principle, μ can be varied along the cavity 
by varying the quality or thickness of its coating. While the UBA represents a conventional BA with a 
uniform coating [18, 25-27], the HBA represents an ideal continuously varying coating, and the DBA 
represents its discrete approximation, obtained through juxtaposing multiple uniform coatings. Evidently, 
the UBA can also be seen as a single-step DBA. 
Beyond the four dissipative models presented above, a variant of the UBA and the DBA will also be used 
in this paper, more suitable to match experimental tests. Accordingly, Eqs. (8) and (10) are modified as 
follows: 

 NNff
u

udd *tanh),(
r

r
r  (11) 

 NNff
s

sdd
)(

tanh)(),,( *r

r
r  (12) 

where *

u
r  and )(*

s
r  are material-dependent reference velocities, and the hyperbolic functions express a 

smooth transition of the friction force across zero velocity, opposed to the rigid-plastic models of Eqs. (8) 
and (10) [33]. 
To completely define fd in the above equations, N can be derived as follows. By applying Newton’s 
second law to the ball mass m subject to its own weight w = [0,0,-mg]T, to the contact normal reaction 
force N, and to the dissipative force df , the dynamic equilibrium equation is obtained as 

)( rafNw md , where ra  is the absolute acceleration of m. Denoting as 
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 )( raλ md  (13) 

the dynamic interaction force exchanged between the BA and its support, the same equation provides 
dd fwλN  and finally zmgnmN nra )( . 

 
2.3 The model of the ball absorber 
Using Gibbs-Appell formulation, the analytical model of the BA can be derived as follows. First, the 
acceleration energy S of the BA is evaluated as 

 ][
2

])()()[(
2

222222
zyxzyx

JwvumS  (14) 

and its portion S* is retained, that only depends on the second derivatives of the nonholonomic quasi-
coordinates, x , y , z . Then, the elementary work done by nonconservative and gravitational forces 
against a virtual variation of the dynamic equilibrium position is computed as 

 wmgwfvfufA dzdydx  (15) 

and eventually expressed in terms of the generalized forces 
x

P , 
z

P , 
y

P as 

 zyx zyx
PPPA  (16) 

where x , y , and z  are the nonholonomic quasi-coordinates defined by xx , yy , zz .  
At last, by substituting into Eq. (15) the elementary ball displacement components yzzy nnRu , 

zxxz nnRv , xyyx nnRw , by comparing the result with Eq. (16), and by imposing 
the Gibbs-Appell equations as 

 
zyx

PSPSPS
zyx

***

 (17) 

the following fully nonlinear model of the BA is finally obtained: 

 

)()(
])()[(

)()(
])()[(

)()(
])()[(

222

222

222

xyyxydxxdy

yzyxzxzyyxxyzyxzxzyxz

zxxzxxdzzdx

xyxzyzyzzxxxyxzyzyxzy

yzzyyzdyydz

zxzyxyxzzyyzxzyxyxzyx

nanamRnfnfR
nnnnnnnnnnnnnnmRJ

nanamRmgRnnfnfR
nnnnnnnnnnnnnnmRJ

nanamRmgRnnfnfR
nnnnnnnnnnnnnnmRJ

 (18) 

The three scalar Eqs. (18), complemented with the kinematic equations (2) and (4), and with the 
constitutive equation (5), completely define the dynamic model of the BA.  
 
2.4 The model of the ball absorber on an MDOF structure  
The equation of motion of a linear multi-degree-of-freedom (MDOF) structure coupled with a BA and 
subjected to external forces and ground accelerations can be expressed as 

 d
T

gsssssssss λLrRMfqKqCqM  (19) 

where qs is the vector of structural DOFs; Ms, Cs, and Ks are the structural mass, damping, and stiffness 
matrices; fs is the external force vector;  is the input topological matrix; T

gggg wvu ],,[r  is the ground 
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acceleration vector; L is a kinematic transformation matrix; and λd is the dynamic interaction force vector 
between the BA and its structural support. Recalling that λd is defined by Eq. (13) as )( raλ md , where 
r  is given by Eq. (3) and a is now given by 

 )( gss rRqLa  (20) 

it can be concluded that Eqs. (18) and (19), complemented with Eqs. (2) to (5) and with Eqs. (13) and 
(20), define the dynamic model of a linear MDOF structure equipped with a BA.  
In particular, assuming for simplicity an N-story building with two lateral DOFs per story (along x and y) 
and a BA attached to the jth story, and accordingly denoting by us and vs the said lateral DOFs, by msi the 
structural mass of the ith story, by Csx, Csy, Ksx and Ksy the damping and stiffness matrices along x and y, 
and by fsx and fsy the external force vectors along x and y, then the equations of motion of the ith story can 
be expressed, respectively along x and y, as follows: 

 )()(
)()(

vamfvvm
uamfuum

yijisysisysisysigis

xijisxsisxsisxsigis

vKvC
uKuC

 (21) 

where the subscript i denotes the ith row of a vector or a matrix, and the topological operator ij  is 1 if i = 
j, and 0 otherwise. Eqs. (18) and (21) provide the equations of motion of the coupled system, with the 
support accelerations given by sjgx uua , sjgy vva , and 0za , and with u  and v  given by Eqs. 
(3). Turning to a state space representation, Eqs. (18) and (21) can be transformed into a system of first-
order nonlinear ordinary differential equations, and then numerically integrated by a Runge–Kutta 
algorithm, which in this paper is done using a MATLAB ODE solver [44]. 
 
2.5 The first-order model  
Assuming low input and response amplitudes, the following first-order approximation of Eqs. (18) holds: 

 
ydy

xdx

maLmgvfvmRJ
maLmgufumRJ

/)/(
/)/(

2

2

 (22) 

where dxf  and dyf  are respectively given: 
 for the VBA, according to Eq. (7), as 

 ucfdx      vcfdy  (23) 

 for the UBA, according to Eq. (8), as 

 xudx mgtf      yudy mgtf  (24) 

 for the HBA, according to Eq. (9), as 

 xdx mgtf 0      ydy mgtf 0  (25) 

 for the DBA, according to Eq. (10), as 

 xsdx mgtf )(      ysdy mgtf )(  (26) 

Eqs. (22) are uncoupled and linear if complemented with Eqs. (23) (VBA model); coupled, nonlinear and 
nonhomogeneous if complemented with Eqs. (24) (UBA model) or Eqs. (26) (DBA model); coupled and 
nonlinear but homogeneous if complemented with Eqs. (25) (HBA model). Consequently, at low 
amplitudes the BA effectiveness is amplitude independent for the VBA and the HBA, and amplitude 
dependent for the UBA and the DBA. 
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2.6 The first-order 2DOF model  
To establish an optimal design method, two further simplifications are convenient. First, the motion is 
supposed to occur in one vertical plane, here taken with no loss of generality as the xz plane. Second, the 
structure is schematized as an SDOF system [1]. Eqs. (21) and (22) thus become 

 
)1/()(

)(2
2

2

sgdx

sgRgsxssxssxsxs

uuufu
uuumufuuu

 (27) 

where ssxsx mk /  is the structural circular frequency; )2/( ssxsxsx mc  is the structural damping 

ratio; ssxsx mff /  is the mass-normalized external force; sR mmm /  is the BA mass ratio; )/( 2mRJ  
is the BA inertia coefficient;  is the BA circular frequency, defined by 

 )]1(/[Lg  (28) 

and dxf  is the normalized BA dissipative force, that is defined by 

 )]1(/[mff dxdx  (29) 

and that can be expressed, according to Eqs. (23) to (26) and because )sgn(utx  and Lu / , as 

 ufdx 2  (30) 

 )1/()sgn(ugf udx  (31) 

 uufdx )sgn(2
0  (32) 

 )1/()sgn()/( ugLuf sdx  (33) 

for, respectively, the VBA, the UBA, the HBA and the DBA. In Eq. (30), the VBA viscous damping is 
introduced as )]1(2/[ mc . 
Eqs. (30) to (33) are the unidirectional analogue of Eqs. (23) to (26). They represent a dissipative force 
that is always opposed to the absorber velocity, and whose modulus is respectively: (i) proportional to the 
BA velocity (VBA); (ii) constant (UBA); (iii) proportional to the BA displacement (HBA); (iv) and 
stepwise increasing with the BA displacement (DBA).  
The first of the two Eqs. (27) is the classical equation of a linear SDOF structure coupled with an SDOF 
appendage. Its last right-hand side term is the inertial force of the appendage reacting on the structure. The 
second equation is the equation of a linear SDOF system subject to a base acceleration input, whose 
amplitude is, however, reduced 1+κ times with respect to the actual acceleration of the structural support. 
According to Eqs. (28) and (29), the same reduction affects 2  and dxf . In short, the ball rolling inertia J 
reduces, through the rolling coefficient κ, the extent of the structure-absorber interaction and therefore the 
BA efficacy, and at the same time the BA frequency and the BA equivalent damping ratio [18]. 
Obviously, κ depends on the mass distribution within the ball, and equals 0 for a point-mass sphere, 2/5 
for a homogeneous sphere, 2/3 for a hollow sphere. If the model is used to simulate cylindrical bodies 
rolling on a cylindrical surface, other possible values of κ include 1/2 for a homogeneous cylinder, and 1 
for a hollow cylinder. 
Interestingly, Eqs. (27), (31), and (33) show that the UBA and the DBA remain inactive as long as the 
support acceleration sg uu  does not exceed, respectively, gu  and gs1 , having denoted with 1s  the 
friction coefficient pertaining to the first coating region of the DBA. 
 
3. The optimal design 
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In this section, based on the first-order 2DOF model derived in Section 2.6, an optimal design procedure is 
proposed for the four BA types. First, an H∞ design method is presented for VBAs, UBAs and HBAs, 
ensuring the minimal worst-case steady-state structural response to harmonic excitations. Then, a 
procedure is established to identify the DBA that most closely approximates the optimal HBA. Because 
the first-order 2DOF model is only an approximation of the fully nonlinear model derived in Section 2.3, 
the proposed design procedure is truly optimal in the small-amplitude domain but only approximately 
optimal in the large-amplitude domain. The proposal of a design method which, accounting for geometric 
nonlinearity, should be optimal even in the large-displacement regime is not in the scope of this paper. 
However, the role of geometrical nonlinearities on BAs optimized in such an approximated manner will 
be properly accounted for in Sections 4 and 5, respectively on experimental and numerical bases. 
 
3.1 The optimal design of VBAs, UBAs and HBAs  
An optimal design procedure is here presented for VBAs, UBAs and HBAs. The combined structure-BA 
system is supposed to obey in each direction the 2DOF model described in Section 2.6. For simplicity, the 
structure is also admitted to have the same frequency and damping ratio along x and y, so that the same 
BA will be optimal in both directions. If this were not the case, either a suboptimal BA should be accepted 
in at least one direction, or a non-axial-symmetrical cavity should be adopted instead of the spherical one 
[19]. This circumstance is not in the scope of this paper. 
Optimization is formulated as a classical H∞ design problem. Its aim is to minimize the worst-case steady-
state structural response to a harmonic input of unknown frequency, i.e. the H∞ norm of an appropriate 
input-output transfer function (TF). The input amplitude is irrelevant for the VBA and the HBA, 
characterized by homogeneous models, but decisive for the UBA, its constant dissipative force making its 
transfer function amplitude dependent. For the three BA types, the procedure is thus formalized as 
follows. First, the design scenario is established by assigning (i) the input-output TF representative of the 
control objectives; (ii) only for the UBA, the design input amplitude; and (iii) the structural damping ratio

sx  (derived from experimental identification), the mass ratio Rm  (based on cost-benefit expectations) 
and the inertia coefficient  (dependent on the ball type). Then, the minimization of the H∞ norm of the 
TF is obtained by optimizing the remaining two BA parameters, i.e. the frequency ratio sxR /  and, 
depending on the BA type, the damping ratio  (VBA), or the friction coefficient u  (UBA), or the 
friction ratio 0  (HBA). Namely, denoting with ω* the input circular frequency, with |TF(ω*)| the TF 
modulus (normalized so that its maximum is 1 for the uncontrolled structure), and with R∞ = max |TF(ω*)| 
the response ratio, the optimization problem is formalized as follows:  
(i) for the VBA:  

 optRoptopt RTFR
RR

,min)(maxmin
,

*

, *
    (34) 

(ii) for the UBA: 

 uoptRoptopt RTFR
uRuR

,min)(maxmin
,

*

, *
 (35) 

(iii) for the HBA: 

 optRoptopt RTFR
RR

0,

*

,
,min)(maxmin

0
*

0

 (36) 

For the VBA and the HBA the optimal solution is amplitude independent, while for the UBA is not. For 
the UBA, however, because of the particular form of Eq. (31), dxf  is at the same time: (i) independent 
from the input amplitude; (ii) independent from the first optimization parameter, i.e. R ; and (iii) 
proportional to the second optimization parameter, i.e. u . This circumstance favourably makes the UBA 
optimal frequency ratio, Ropt , amplitude independent, and the UBA optimal friction coefficient, uopt , 
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amplitude proportional. Therefore, solving Eq. (35) for a single input amplitude solves the problem for 
any other input amplitude.  
In Appendix A, Eq. (34) is solved for a variety of design scenarios, until deriving practical fitting formulas 
for optimizing VBAs under either force or ground acceleration input.  
In the remaining of this subsection, Eqs. (34) to (36) are instead solved for only two design scenarios, i.e. 
adopting a force-to-displacement TF and assuming sx = 1%, Rm = 1%, and either κ = 0 (point mass, 
scenario 1) or κ = 0.4 (homogeneous sphere, scenario 2). For the VBA, the amplitude of the harmonic 
response, |TF(ω*)|, is computed in closed form, using Eq. (A.1) in Appendix A. For the UBA and HBA, 
instead, it is computed by points, i.e. simulating the nonlinear system separately under each harmonic 
input frequency, until stabilization of the response amplitude. For simplicity, a unit input amplitude is 
assumed. In all cases, the optimization problems expressed by Eqs. (34) to (36) are solved numerically, 
using a branch and bound search algorithm followed by a nonlinear least-square solver. 
For the two said design scenarios, the results of the optimization are reported in Figure 4a and in Table 1. 
Figure 4a shows the optimal TFs obtained for the three BA types and for the two κ values. For each κ 
value, the three curves reach approximately the same maximum, representing the response ratio Ropt. 
Expectedly, Ropt is smaller for κ = 0 than for κ = 0.4, due to the reduced structure-absorber interaction 
caused by the BA rotational inertia. The curves are nearly identical for the VBA and the HBA, and 
favourably narrower for the UBA, which shows a better performance for frequencies just outside the 
resonance bandwidth.  
The corresponding optimal parameters and response ratios are reported in Table 1. Regarding the VBA 
and the HBA, as observed in [40] for viscous and homogeneous point-mass pendulums, it is here 
confirmed, for both κ values, that: (i) the optimal frequency ratio, Ropt , is closer to 1 for the HBA than for 
the VBA; (ii) the so-called HBA equivalent viscous damping, /0opt , is only slightly less than opt  [40]; 
(iii) the optimal response ratio, Ropt, is very slightly lower for the HBA than for the VBA. Regarding the 
UBA, it is observed, for both κ values, that: (i) Ropt  is comprised between the Ropt  values obtained for, 
respectively, the VBA and the HBA; (ii) uopt , because of its proportionality with the input amplitude 

0sxf , is conveniently expressed by the ratio ])1/[( 0sxuopt fg , which is amplitude independent; and (iii) 
Ropt is just slightly larger than for the VBA. In general, by comparing the results obtained for κ = 0 and κ = 
0.4, it appears that: (i) Ropt  slightly increases with κ for the VBA and the UBA, whereas slightly 
decreases with κ for the HBA; (ii) for the three BA types, the optimal damping decreases by about 20% as 
κ increases from 0 to 0.4; (iii) for the three BA types, Ropt increases by about 14% as κ increases from 0 to 
0.4. For the VBA, these trends perfectly fit into the more general trends described in Appendix A.  
From Figure 4a and Table 1, it can be concluded that the three optimal BAs are substantially equivalent in 
their H∞ performance, which moderately decreases with increasing κ. 
 
Table 1. H∞ optimal VBA, UBA and HBA under force input, for sx = 1%, Rm = 1% and either κ = 0 or κ = 0.4. 

 Type Ropt  opt  
0)1( sx

uopt

f
g

 opt0  optR
 

0.0 
VBA 0.9886 0.0625 - - 0.2274 
UBA 0.9906 - 7.496 - 0.2281 
HBA 0.9971 - - 0.0619 0.2261 

0.4 
VBA 0.9902 0.0531 - - 0.2597 
UBA 0.9917 - 6.079 - 0.2603 
HBA 0.9964 - - 0.0528 0.2586 
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This substantial equivalence actually results from the similar amount of energy dissipated per cycle by the 
three optimal BAs. For κ = 0.4, Figure 4b shows the steady-state dissipative force-displacement loops of 
the three BAs, obtained applying to the structure a harmonic force input )sin()( 0 tftf sxsxsx  ( 0sxf  being 
here the amplitude for which the UBA is optimal). For convenience, the dissipative force )(tfdx  is 
normalized to 0sxf , and the absorber relative displacement u(t) is normalized to the static structural 
displacement 2

00 / sxsxs fu . The three loops have a similar area, i.e. a similar cyclic energy dissipation, 
but different shapes, in fact elliptical, rectangular and triangular, for, respectively, the VBA, the UBA and 
the HBA. These differences, scarcely relevant if 0sxf  is as presumed in design, become important 
otherwise. In fact, whereas the VBA and the HBA loops are invariant with 0sxf , the UBA loops become 
thinner than optimal if 0sxf  increases (underdamped absorber), and thicker than optimal if 0sxf decreases 
(overdamped absorber). 
The effect is shown for κ = 0.4 in Figure 4c, where the UBA transfer function is computed for various 
scaling factors of the 0sxf  value used for optimization. For a unit factor, the TF is the same already shown 
in Figure 4a. As the factors increase from 1 to 8, the UBA becomes increasingly underdamped, as 
revealed by the increasingly high TF resonance peaks. As the factors decrease from 1 to 1/8, the UBA 
becomes increasingly overdamped, until nearly stuck to the structure.  
In conclusion, the design procedure provides optimal VBAs and HBAs which are substantially equivalent 
to each other and amplitude independent, and optimal UBAs whose performance strongly depends on the 
input amplitude, their optimality being achieved only when the input is the one assumed in design.  
These conclusions have been obtained using an H∞ design approach, aimed at minimizing the structural 
response to deterministic sinusoidal excitations. Alternatively, optimization might be carried out using an 
H2 design approach, aimed at minimizing the expected root-mean-square (rms) structural response to a 
stationary random input. The same H∞ and H2 approaches have been recently compared by the author in 
[40], where they were used to optimize bidirectional point-mass pendulum TMDs of viscous or 
homogeneous friction types. They were shown to lead to similar optimal solutions, with the H∞ option 
only slightly more robust than its H2 counterpart. Because the system was nonlinear, the H2 objective 
function, which for a linear system would be simply computed by solving a classical Lyapunov equation, 
was instead evaluated through Monte Carlo simulations, by averaging the rms response of the system to a 
sufficient number of realizations of the stochastic input process. The same H2 procedure could be applied 
to BAs, probably confirming the main conclusions drawn above. This investigation is however left for 
future study.  
 
3.2 The optimal design of DBAs  
Still assuming the first-order 2DOF model, an optimal design procedure is here developed for DBAs. It 
consists in finding the DBA that best approximates, in energetic terms, the optimal HBA of equal mass 
and equal rolling coefficient, as obtained in Section 3.1. Namely, once the optimal HBA parameters Ropt  
and opt0   are obtained from Eq. (36), the DBA optimal frequency ratio is posed as Ropt , and the DBA 

optimal stepwise friction law )()( s  is determined that most closely fits the optimal HBA friction 
law opt0)( , under given constraints on )(s , regarding the number n of coating regions (i.e. of 
steps) and either their extension or their friction coefficient. 
In fact, denoting by si  the value of θ delimiting the ith region of the n-step DBA, and by si  the friction 
coefficient pertaining to that region, and introducing as 

 dNLLdNfE d
00

)(4),(4)(  (37) 
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the steady-state cyclic energy dissipated by a BA oscillating with amplitude θ, and as )4/()()( NLEE  
the corresponding normalized dissipated energy, that is expressed by 

 2
0

0
00 2

1)( optopt dE  (38) 

for the HBA, and by 

 )()()()( 11
0

sisisisss EdE   ,   sisi 1 ,    i = 1, …, n (39) 

for the DBA, then the DBA parameters si  and si  are defined optimal if they make )(sE  fit )(0E  
with a minimum mean square error over the entire coated surface (i.e. for sn0 ) or, equivalently, if 
they minimize the following objective function: 

 dE
dE

dEE
F

sn

sn

sn

opts
snopt

s

ob
0

22
052

0

0

2
0

0

2
0

]2/1)([20

)(

)]()([
 (40) 

under certain constraints on n, si , and/or si .  
The first constraint regards the choice of a reasonable value of n. For n = 1 the DBA degenerates into a 
UBA, for n → ∞ into an HBA. Evidently, the larger is n, the more accurate is the fitting.  
If n = 1, obF  in Eq. (40) becomes 

 
2

10

1

10

1

3
2051

sopt

s

sopt

s
obF  (41) 

and its minimization provides the following closed-form optimal relation among opt0 , 1s  and 1s :  

 101 8
3

sopts  (42) 

If opt0  is assigned, Eq. (42) either provides 1s  for a given 1s , or 1s  for a given 1s . Recalling that the 

1-step DBA is in fact a UBA, the proportional relation between 1s  and 1s  expressed by Eq. (42) 
confirms the one found between uopt  and 0sxf  in Section 3.1.  
Eq. (42) is used in Figure 5, where the optimal HBA and its best fitted 1-step DBA are compared, in terms 
of, respectively, their friction laws )(  (Figure 5a) and their normalized dissipated energies )(E  
(Figure 5b). The design can proceed in two ways, depending if either 1s  is assigned (“direct” approach) 
or 1s  is assigned (“inverse” approach), as it will be better explained next for n > 1. In either way, 1s  is 
3/8 times the maximum friction coefficient 10 sopt  reached by the HBA in 1s  (Figure 5a), and )(sE  is 

only a rough approximation of )(0E  (Figure 5b), with the 1-step DBA clearly overdamped for 

14/3 s , and underdamped for 14/3 s . 
If n > 1, obF  in Eq. (40) can be easily minimized numerically. Although other design approaches are 
possible, two main cases are here considered, each constituting an n-dimensional optimization problem: 
(i) the “direct” approach: given the n values of si , find the n values of si  which minimize obF ; 
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(ii) the “inverse” approach: given the n values of si , find the n values of si  which minimize obF . 
The direct approach is conceptually and computationally simpler, and useful for a preliminary design. For 
example, sn  can be assigned as the maximum angular stroke expected for the optimal HBA, and the other 

si  as evenly distributed between 0 and sn , according to si  = ni sn / . Under these assumptions, the 
optimal solution is shown in Figure 6 for n = 5. With respect to the 1-step DBA of Figure 5, the 5-step 
DBA clearly ensures a much better fitting of )(0E  (Figure 6b), achieved through an uneven distribution 
of si , comprised between 101 079.0 sopts  and snoptsn 0888.0  (Figure 6a). Intuitively, while for n 

= 1 the optimum is snoptsns 01 375.0 , for n → ∞ the optimum is 1s  → 0 and sn  → snopt0  

(implying also obF  → 0). In general, the direct approach simulates the preliminary stage of a DBA design, 
through which the ideal desired friction coefficients are determined, based on the expected BA strokes. Its 
solution may be used to identify the most appropriate candidates of coating materials, or instead to 
exclude the feasibility of a DBA application, when the resulting friction coefficients were in fact 
unrealistic. In any case, the obtained optimal si  are unlikely to exactly match the friction coefficients of 
the available coating materials.  
On the other hand, the inverse approach simulates the constructive stage of a DBA design, in which the 
coating regions are optimally tailored depending on the friction coefficients of the selected materials. The 
inverse approach is more complex than the direct approach, because sn  is both a design variable and the 
upper bound of the interval over which fitting is enforced. If the adopted si  are far from the theoretical 
values provided by the direct approach, then sn  will be far from the expected angular stroke. If, in 
particular, the adopted si  are lower than desired, fitting will be optimal only for BA excursions up to sn

: for larger excursions, supposing the coating remains the same as in the nth region and no other dissipation 
mechanism intervenes (e.g. an end buffer), then the DBA will be underdamped.  
In the remaining of this paper, the inverse design approach will be applied twice: first, in Section 4, to the 
real design of a DBA (for n = 3); then, in Section 5, to the simulated design of a DBA (for n = 5). For 
better clarity, the results of the first application are here anticipated in Table 2 and in Figure 7. According 
to the inverse approach, based on the known values of opt0  (here equal to 0.1421, see Section 4) and si  

(see Table 2, column 3), the optimal si  are determined (Table 2, column 5). Comparing Figure 7 with 
Figures 5 and 6, an intermediate fitting accuracy is obtained, due to the intermediate value adopted for n. 
Because the optimal 3ssn  is only 0.525 rad (30.1°) while the DBA is to be tested under larger strokes, 
the outer region is extended beyond that value, up to 0.873 rad (50°). Clearly from Figure 7, the DBA will 
be underdamped in this extra region. The study of possible countermeasures, such as the incorporation of 
an end buffer to increase damping, is not in the scope of this paper. 
 
Table 2. Coating features of the 3-step DBA prototype designed in Section 4. 

n Type si  (‰) 
*

si
r  

(mm/s) 
si  (rad) 

1 Material 1 12.4 15 0.182 
2 Material 2 34.0 25 0.322 
3 Material 3 59.0 40   > 0.525 

 
4. Experimental testing  
To demonstrate the applicability of the homogeneous friction concept to ball absorbers, a small-scale 
prototype of DBA is built and tested on a cantilever tubular structure, and compared with a similar 
prototype of UBA. After preliminary experiments of the uncontrolled structure, the two prototypes are 
first tested in fixed-support conditions, for design and identification, and then on the structure in free- and 
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forced-vibration conditions, for performance evaluation. The tubular structure loosely represents a tower-
like structure or an antenna. 
 
4.1 Preliminary testing of the uncontrolled structure 
 
4.1.1 Setup description  
A general view of the experimental setup is shown in Figure 8. The structure is a steel vertical cantilever 
beam, having a tubular section with external diameter of 20 mm and thickness of 1 mm, and a total height 
of 1200 mm. Its lowest section is welded to a steel plate (100x100x8 mm3) that is glued to a rigid steel 
pedestal (360x360x50 mm3), on its turn bolted to the upper face of a small unidirectional shaking table. 
An assemblage of 12 steel plates, each 100x100 mm2 wide and 5 or 6 mm thick (for a total thickness of 68 
mm), with a central circular hole with diameter of 20 mm, is inserted on the tubular structure, at a distance 
of 71 mm from its top. On top of the structure, a removable hemispherical plastic cap is mounted through 
a steel tubular segment, glued to the cap and coaxially fitted to the tubular beam. The cap is made of 
transparent PVC, has internal radius of 57.75 mm and thickness of 1.75 mm. A triaxial  accelerometer is 
attached onto the shaking table (S1), and another onto the top of the plate assemblage (S2). The significant 
masses are: 560 g for the tubular structure, 5020 g for the plate assemblage, 130 g for the DBA cap 
(included the mass of the rubber coating, as detailed next), and 30 g for the accelerometer. 
The xyz reference coordinate system is oriented as follows: x in the shaking direction, y in the transverse 
direction, z in the vertical direction. The accelerometers and the plate assemblage are oriented accordingly, 
while the pedestal is rotated around z in such a way that the two principal structural modes (having not 
exactly coincident frequencies because of the inevitable geometrical imperfections) are parallel to x and y. 
Visible in Figure 8a but irrelevant in this experiment, a second tubular beam is mounted on the same 
pedestal. Its frequency is so high and the pedestal so rigid that its dynamics are uncoupled from those of 
the system under study, and can be neglected. 
 
4.1.2 Testing program 
The system described above, with no ball in the hemispherical cap, represents the uncontrolled structure. 
For convenience, the masses of the cap and of the accelerometer S2 are included in it.  
The uncontrolled structure is dynamically identified through preliminary free- and forced-vibration tests. 
The identified frequency and damping of the structural target mode are required to trigger the BA design 
procedure. They are also used to calibrate the amount and position of the plate assemblage so to achieve a 
fine tuning of the absorber (in a real application, tuning would be achieved by changing the radius L of the 
virtual rolling surface).  
 
4.1.3 Results 
Several free- and forced-vibration tests are repeated on the uncontrolled structure. In Figure 9 the results 
of a free-vibration test are reported. An initial displacement is imposed to the top of the structure in the x 
direction and, after release, the free top acceleration along x, ax, is measured by S2. The time history, ax(t), 
is shown in Figure 9a for a duration of 600 s, and the modulus of its Fourier transform, |Ax(ω*)|, in Figure 
9b. Also, the time-frequency spectrogram of ax(t) is shown in Figure 9c [44], while the instantaneous 
equivalent structural damping ratio sx , obtained through the logarithmic decrement method, is shown in 
Figure 9d, as a function of the instantaneous acceleration amplitude ax

*. Figure 9c indicates that the 
natural frequency of the target mode, sx , is constant with time and therefore with the response amplitude, 
while Figure 9d shows that its damping ratio is amplitude dependent (in the range 0.3÷4.0‰). 
By averaging the results of several tests, frequencies and damping ratios are finally identified for the two 
uncontrolled fundamental modes as sx = 2π∙1.981 rad/s, sy = 2π∙1.993 rad/s, and sx ≈ sy ≈ 1‰. 
Through calibrating a finite element model of the uncontrolled structure (details here omitted for brevity), 
the effective mass of these fundamental modes, defined according to Warburton as a function of the 
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absorber attachment point [1], is sm  = 4255 g, i.e. equal to 74% of the total structural mass. The structure 
is basically a SDOF system (the experimental and simulated natural frequencies of the second flexural 
modes along x and y are around 53 Hz), and sm  is not a larger percentage of the total structural mass, 
mainly because the mass of the plate assemblage is located 105 mm below the absorber attachment point.  
 
4.2 Design, construction and testing of the UBA and DBA prototypes  
After the identification of the uncontrolled structure, the ball absorbers can be designed and constructed. 
The DBA prototype is designed as explained in Section 3.2, starting from the design of the optimal HBA. 
The UBA prototype is obtained by extending to the entire rolling surface the intermediate coating material 
of the DBA prototype.  
 
4.2.1 HBA optimal design  
According to Section 3.1, the optimal HBA is designed by numerically solving Eq. (36), assuming as the 
TF input the ground acceleration instead of the applied force, coherently with the way the excitation will 
be imparted in shaking-table tests. 
A stainless steel homogeneous sphere is chosen as the rolling ball, having radius R = 10 mm, mass m = 
32.9 g, and inertia coefficient κ = 0.4. With the target mode having an effective mass sm  = 4255 g, the 
mass ratio is therefore Rm  = 0.7728 ≈ 0.77%. For Rm  = 0.77%, sx = 1‰ and κ = 0.4, the optimal HBA 
parameters are Ropt = 0.9964 and opt0 = 0.1421. Noticeably, the simplified VBA formulas in Appendix A, 
combined with the friction-viscous equivalence formulation, would provide optopt0 = 0.1433, which 
is very close to the exact numerical optimum. 
 
4.2.2 Preliminary DBA optimal design (direct design approach) 
Once the optimal HBA is determined, its frequency and friction ratios respectively provide the dimensions 
and the friction properties of the DBA rolling surface.  
Regarding the surface dimensions, and focusing on the x direction, the structural frequency sx = 2π∙1.981 
rad/s and the optimal frequency ratio Ropt = 0.9964 imply the absorber optimal frequency ω = 2π∙1.9739 
rad/s, and consequently the optimal virtual radius L = 45.54 mm and the optimal physical radius L′ = L + R 
= 55.54 mm. Considering that the internal radius of the adopted PVC cap is 57.75 mm, the optimal coating 
thickness turns out to be 57.75-55.54 = 2.21 mm. In the y direction, where sy = 2π∙1.993 rad/s, the same 
procedure gives L′ = 54.67 mm, and therefore an optimal coating thickness of 3.08 mm. 
Regarding the surface friction properties, the direct design approach explained in Section 3.2 allows for a 
rough estimation of the desired range of friction coefficients. For example, assuming sn  = 30° = 0.5236 
rad as the maximum expected angular stroke, and still letting undefined the number n of coating regions,

opt0 = 0.1421 would imply: for n = 1, a unique coating region with 101 375.0 sopts  = 27.9‰; for n = 5, 

five coating regions with si  ranging from 101 079.0 sopts  = 5.9‰ to snoptsn 0888.0 = 66.1‰.  
 
4.2.3 Experimental characterization of possible coating layers 
After preliminary tests here not discussed for brevity, four materials are selected as possible candidates for 
coating:  

- material 0: PVC coated ordinary adhesive tape, 0.13 mm thick; 
- material 1: styrene-butadiene rubber layer, 2.0 mm thick; 
- material 2: adhesive closed-cell EPDM sponge rubber layer, 2.6 mm thick; 
- material 3: adhesive net-reinforced closed-cell foamed rubber layer, 2.7 mm thick. 

Correspondingly, four UBA prototypes are built, each consisting of (i) a PVC hemispherical cap identical 
to the one described above, (ii) one layer of the respective material adhered to its inner surface, and (iii) 
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one steel ball, of variable diameter. Every UBA, its base being anchored to a fixed support, is then 
subjected to free-vibration tests, conducted by releasing the ball from an initial displaced position. By 
keeping the initial ball velocity at a minimum, the ball motion is ideally contained in a vertical plane (with 
no loss of generality, the xz plane), which permits to reduce the coated surface to a sufficiently large 
stripe, centred on that plane. In each test, the ball trajectory is recorded from above by a video camera 
aligned on the cap vertical axis, at a height of 220 mm on the cap equator. The camera acquires 2MP 
frames at 25 fps. To enhance contrast between the ball and the cap, and between the cap and the 
background, because the four materials are black or dark grey, the ball is painted white, and the cap 
surface that would be uncoated is covered with black tape. The video is processed using MATLAB’s 
Image Processing Toolbox [44]. An appropriate nonlinear map is determined from pixel coordinates to 
physical coordinates, accounting for the varying distance of the ball from the camera during oscillations. 
As a result, each video provides the time-history u(t) of the ball horizontal displacement along x, sampled 
at 25 Hz.  
Tests are conducted for each material using three different ball radii, i.e. R = 10, 12.5, and 15 mm. For 
each combination of material and radius, tests are repeated several times to improve data consistency. For 
example, Figure 10 refers to the combination of material 2 and radius R = 10 mm. Figure 10a shows a 
picture of the tested cap. Figure 10b shows 6 consecutive frames after processing, with the fitting circles 
identifying the relative location of the ball and the cap equator. Figure 10c shows the resulting ball time 
response, after the nonlinear mapping application.  
Then, for each combination of material and ball radius, the experimental ball response is fitted using the 
fully nonlinear BA model derived in Section 2.3, with the UBA friction law defined by Eq. (11) to account 
for the velocity-dependent friction transition across zero velocity. All modelling parameters are set to 
equal their nominal value, except for the friction coefficient u  and the reference velocity *

u
r , which are 

calibrated on the experiment. Figure 11 compares the experimental and simulated ball displacement time-
histories obtained after fitting, for the four materials and for R = 10 mm. Table 3 reports the average 
values of the fitting parameters u  and *

u
r , after repeated testing. Both friction parameters progressively 

increase from material 0 to 3, showing instead limited variations with the ball radius.  
 
Table 3. Experimentally fitted UBA friction parameters as a combination of material and ball radius. 

Material R (mm) u  (‰) 
*

u
r  (mm/s) 

 
0 
 

10.0 5.9 1.5 
12.5 4.7 1.5 
15.0 5.3 1.5 

 
1 
 

10.0 12.4 15 
12.5 11.7 15 
15.0 12.4 15 

 
2 
 

10.0 34.0 25 
12.5 32.2 30 
15.0 32.5 30 

 
3 
 

10.0 59.0 40 
12.5 53.0 40 
15.0 47.5 47 

 
4.2.4 DBA optimal design (inverse design approach) and manufacturing 
With the friction properties experimentally identified above, the DBA prototype can be designed using the 
inverse approach explained in Section 3.2. As anticipated in Section 4.2.1, the design is conducted 
assuming a 10mm-radius ball, in fact the only one that will be tested on the structure. For constructive 
reasons, material 0 is finally discarded, because its sensibly lower thickness would require a modification 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 17 

of the shape of the uncoated cavity [39], here excluded. Therefore, only materials 1 to 3 are used. The 
results of the design procedure are reported in Table 2 and in Figure 6, and have already been commented 
in Section 3.2. The friction properties in Table 2, columns 3 and 4, are those reported in Table 3 for 
materials 1 to 3 and for R = 10 mm. The angles delimiting each region are reported in column 5. To 
account for extra strokes, material 3 is extended beyond 3s , up to 0.873 rad (50°).  
The resulting 3-step DBA prototype is shown in Figure 12a, together with the UBA prototype coated with 
material 2. These are the only two BAs that will be tested on the structure. The DBA is manufactured by 
juxtaposing the three material layers, adhered to the cap surface through the interposition of additional 
adhesive tapes, meant to compensate for the different thickness of the three layers. The resulting uniform 
thickness of the DBA coating is about 3.0 mm. Because tests will be unidirectional, the UBA coating is 
made, for simplicity, of a single rubber stripe, centred on the plane of motion, and conservatively 
prolonged until u  ≈ 60°. To reproduce the complexity of a real design, the DBA coating is instead 
arranged in three-dimensions.  
Figure 12b compares the free experimental response of the DBA (with R = 10 mm), obtained as described 
above for the UBAs, with the corresponding simulated response, computed using the fully nonlinear 
model derived in Section 2.3, with the DBA friction law being defined by Eq. (12). The friction 
parameters are given in Table 2, the other parameters are taken as nominal. In dotted blue line, the 
simulated response is also reported for the ideal optimal HBA. A good correspondence exists between the 
experimental and the simulated DBA responses, although the experimental response appears slightly more 
damped, probably because of the unavoidable irregularities in between adjacent regions. A satisfactory 
agreement is also observed between the DBA and the HBA responses, except at small displacements, 
where the DBA proves expectedly more damped.  
 
4.3 Experimental testing of the structure coupled with the UBA and DBA prototypes  
Finally, the UBA and DBA prototypes (Figure 12a, with R = 10 mm) are mounted on the structure, and 
free- and forced-vibration tests are performed on the coupled system, by imparting along x either an initial 
displacement of the top of the structure or a unidirectional acceleration of its pedestal.  
The results of free-vibration tests are reported in Figure 13. 21 tests are shown for the UBA-controlled 
structure (black and green curves), and 21 tests for the DBA-controlled structure (red curves). For the 42 
tests, Figure 13a shows the first 20 seconds of the top acceleration time-histories ax(t); Figure 13b shows, 
for better clarity, the time-histories of the instantaneous acceleration amplitudes; and Figure 13c shows the 
instantaneous equivalent viscous damping ratio as a function of the acceleration amplitude, computed with 
the logarithmic damping method. In fact, Figures 13a and 13c are the controlled analogues of Figures 9a 
and 9d. Depending on the imparted initial displacement, the maximum acceleration amplitudes at the 
beginning of the records vary between 0.23 m/s2 and 1.36 m/s2 for the UBA, and between 0.22 m/s2 and 
0.92 m/s2 for the DBA. Larger amplitudes resulted in the ball exiting the rubber coating, so the relative 
tests are not reported. Despite the apparently identical testing conditions, the UBA-controlled structure 
exhibits two distinct behaviours, highlighted in different colours. In 11 of the 21 tests (black curves), the 
UBA activates as expected: the structural response gets reduced in a few seconds until reaching a 
threshold acceleration amplitude of about 0.20 m/s2, after which the ball relative motion gets practically 
annulled, and the structure oscillates as if uncontrolled. Accordingly, the equivalent damping ratio gets as 
high as 25÷40‰ during the first instants of motion, dropping to about 1‰ in the virtually uncontrolled 
regime (in agreement with Figure 9). In the remaining 10 tests (green curves), unexpectedly, the UBA 
does not activate, and the structure oscillates from the beginning as if uncontrolled, with an equivalent 
damping ratio progressively decreasing from 2‰ to 1‰. This remarkable difference, not clearly related 
with the initial displacement amplitude (three black curves have a lower initial amplitude than most green 
curves), nor with the order of testing (green curves correspond to tests #1÷3, 5, 7, 9, 11, 14, 15, 21, and 
the time between two successive tests have been kept constant), might be attributed to not perfectly zero 
velocity initial conditions, thus reflecting some kind of chaotic behaviour, whose investigation is however 
left for future work. As far as the DBA is concerned (red curves), instead, the absorber activates in all 21 
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tests, as for the black UBA curves. The equivalent damping ratio, however, is increased up to 40÷70‰, 
and the threshold acceleration amplitude is favourably reduced to 0.07 m/s2, thus demonstrating the 
superior effectiveness of the DBA over the UBA device. Noticeably, the two threshold acceleration 
amplitudes are in good agreement with the friction parameters identified in Tables 2 and 3. In the 
assumption of a dry-friction model, those thresholds would equal gu = 0.33 m/s2 for the UBA, and gs1

= 0.12 m/s2 for the DBA (see again Section 2.6). The respective experimental values, 0.20 m/s2 and 0.07 
m/s2, are about 40% lesser, coherently with the identified smooth transition law, that reduces friction at 
small velocities.  
Finally, the results of forced-vibration tests are reported in Figure 14. A unidirectional random base 
acceleration is imparted through the shaking table to the structure, in either uncontrolled or controlled 
conditions, and the corresponding linearized input-output TF is computed from sensor S1 to sensor S2. 
Tests are repeated for increasing levels of shaking, each test lasting 600 s. The rms of each base 
acceleration time-history is reported in the figure legend, expressed in cm/s2, ranging from 2.0 to 9.8 
cm/s2. The green curve refers to the uncontrolled structure, the black and the red curves refer to, 
respectively, the UBA- and the DBA-controlled structure. In the presence of the UBA, the TFs 
significantly vary with the input level, their peak value ranging from 181 (for a rms of 2.0 cm/s2) to 31 
(for a rms of 6.2 cm/s2). In the presence of the DBA, the TFs appear flat for any input level (with their 
peak ranging from 22 to 31), except for the lower level (rms = 2.0 cm/s2), when the TF peak increases to 
60, probably because the ball motion is in this case confined to the inner coating region, in fact 
experiencing a uniform friction. These results confirm the superior and substantially amplitude-
independent performance of the DBA prototype, also suggesting that further improvements could be 
obtained including material 0 too into the surface coating.  
 
5. Numerical case study: wind mitigation of the Nagasaki Airport Tower 
The Nagasaki Airport Tower is a wind-sensitive building, on which tuned liquid sloshing dampers (TLSD) 
were temporarily installed in the ‘80s to reduce wind-induced vibrations [45, 46]. This section simulates 
the wind response of the Nagasaki Airport Tower, comparing the uncontrolled case with five alternative 
controlled cases, each corresponding to a different type of ball absorber, namely the LBA, the VBA, the 
HBA, the DBA, and the UBA, this latter proposed in three different variants. Because the tower is 
modelled as a linear MDOF structure, the uncontrolled case and the LBA-controlled case admit the linear 
model given by Eqs. (21) and (22), whereas the remaining four controlled cases are described by the fully 
nonlinear model expressed by Eqs. (18) and (21). Obviously, the LBA and the VBA cases coincide as 
long as the device works in the low-amplitude domain. 
 
5.1 The structure  
The structural model of the Nagasaki Airport Tower is based on the description provided in [45, 46]. The 
tower is a 42 m tall, steel-framed, doubly-symmetrical building. It consists of a 38.5 m tall tower (having a 
5.15 m x 5.15 m square section), and of a 3.5 m tall air-traffic control room placed on top of it (having a 
7.40 m x 7.40 m square section). The total mass of the tower is 1.7∙105 kg. Its fundamental vibration 
modes along x and y have identical natural frequencies of 1.07 Hz and damping ratios of about 0.9%. A 
TLSD system was installed in the control room for two weeks in 1987. It consisted of an assembly of 25 
cylindrical multi-layered vessels partially filled with water, having a total mass of 950 kg tuned to the 
fundamental modes. Rms response reductions of about 50% were observed under medium wind velocities. 
Based on data regression, it was estimated that the uncontrolled tower would exceed the acceleration 
limits provided by several international codes, instead achieving full conformity in the presence of the 
TLSD system. 
In this paper, the tower is modelled as a 12-element cantilever Euler-Bernoulli beam, identical in the two 
directions, with constant flexural stiffness along the height and with variable mass, lumped at the nodes. 
Main modelling data are summarized in Table 4. The first three modes in each direction have natural 
frequencies of 1.07 Hz, 7.73 Hz and 22.47 Hz, and participating masses of 67.7%, 17.9% and 5.9%. 
Damping ratio is assumed at 1% in every mode. 
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Table 4. Main structural data of the numerical model of the Nagasaki Airport Tower.  

Node number Height above the 
ground Mass Flexural stiffness  Cross-section 

average side  
Tributary wind 

area 
(-) (m) (kg·103) (Nm2·1010) (m) (m2) 
1 3.5 12.0 7.00 5.15 18.03 
2 7.0 12.0 7.00 5.15 18.03 
3 10.5 12.0 7.00 5.15 18.03 
4 14.0 12.0 7.00 5.15 18.03 
5 17.5 12.0 7.00 5.15 18.03 
6 21.0 12.0 7.00 5.15 18.03 
7 24.5 12.0 7.00 5.15 18.03 
8 28.0 12.0 7.00 5.15 18.03 
9 31.5 12.0 7.00 5.15 18.03 
10 35.0 12.0 7.00 5.15 18.03 
11 38.5 30.0 7.00 6.28 21.96 
12 42.0 20.0 7.00 7.40 12.95 

 
5.2 The ball absorber  
The absorber is supposed to be a steel homogeneous sphere rolling without sliding in a spherical 
container, attached to the roof of the control room (node #12 in the structural model). The ball radius R is 
taken as 300 mm, as in the prototype designed by Pirner [18]. Consequently, the ball mass is m = 888 kg, 
equal to 0.52% of the mass of the tower, and slightly less than the mass of the TLSD system installed in 
1987. According to Warburton’s approach [1], the corresponding effective mass ratio is Rm  = 1.40% in 
both directions. 
For the VBA and the HBA, the frequency and damping ratio are obtained through the design procedure 
explained in Section 3.1, adopting Rm  = 1.40% and sx  = 1.0%. They are reported in Table 5, together 
with the corresponding pendulum frequency and main dimensions. For the VBA type, R  and  are very 
close to those provided by Eqs. (A.3) and (A.4) in Appendix A (with an error of 0.3‰ in frequency and 
10‰ in damping). Also, /0  is only slightly less than , which confirms what obtained in Section 3.1 
(Table 1), and shows the usability of those fitting formulas as an approximate design tool for HBAs too.  
 
Table 5. VBA and HBA parameters. 

Type R   /0  )2/(  L L′ 
(-) (-) (-) (Hz) (mm) (mm) 

VBA 0.9865 0.0628 - 1.0556 159.2 459.2 
HBA 0.9951 - 0.06163 1.0648 156.5 456.5 

 
For the DBA, R , L, and L′ are the same as for the HBA, but instead of the continuous friction pattern, n = 
5 coatings are assumed, characterized by friction coefficients si  ranging from 5‰ to 90‰, and by a very 

small uniform reference velocity **

ssi
rr 0.1 mm/s. Details are reported in Table 6, columns 3 and 4. 

Column 5 reports the corresponding si  values, obtained through the inverse design approach explained in 
Section 3.2. In fact, 5s  is assumed also for 5s . 
For the UBA, R , L, and L′ are also the same, but only a single coating is assumed on the rolling surface. 
As reported in Table 6, three options are considered, denoted as UBA-1, UBA-2 and UBA-3, wherein u  

respectively equals the DBA friction coefficients 2s , 3s , and 4s , and *

u
r  equals *

s
r .  

For better clarity, the HBA, the DBA and the three UBA options are compared in Figure 15, in terms of 
friction laws and dissipated energies.  
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Table 6. DBA and UBA parameters. 

Type R  si  , u  
*

si
r  , 

*

u
r  si  )2/(  L L′ 

(-) (‰) (mm/s) (rad) (Hz) (mm) (mm) 
  5  0.0524    
  15  0.1264    

DBA 0.9951 35 0.10 0.2430 1.0648 156.5 456.5 
  60  0.3871    
  90    > 0.5336    

UBA-1 0.9951 15 0.10 - 1.0648 156.5 456.5 
UBA-2 0.9951 35 0.10 - 1.0648 156.5 456.5 
UBA-3 0.9951 60 0.10 - 1.0648 156.5 456.5 

 
5.3 The wind load  
The structure-BA system is simulated under four wind flows of increasing intensity, lasting 10 minutes 
each and blowing in the x direction. For each intensity, deterministic wind load time-histories are applied 
to each structural node, computed as the realization of a stationary nonhomogeneous stochastic process, 
comprising both along-wind and across-wind fluctuating force components, so as to simultaneously excite 
the tower in the two directions. For each horizontal component, the wind force time-history at node i is 
computed as follows [47]: 

 )cos(2)()( **

1 1

*
jkkk

i

j

N

k
kiji ttF

s

,           i = 1, 2, …, N  (43) 

where N = 12 is the total number of nodes; Ns = 214 is the total number of frequency intervals; *
k = 

0.01 rad/s is the frequency interval; ** )1( kk k  is the generic input frequency; jk  is the phase angle, 

randomly distributed between 0 and 2π; and Γ( *
k ) is the lower triangular matrix obtained through the 

Cholesky’s factorization of the corresponding stochastic cross-spectrum matrix SFF( *
k ), on its turn 

expressed by Davenport’s spectrum for the along-wind component [48], and by Vickery and Clarke’s 
spectrum for the across-wind component [49]. In this study, the along-wind and across-wind SFF( *

k ) 
matrices are defined according to Eqs. (38) to (41) of ref. [40], and computed based on the following 
values of the relevant aerodynamic parameters: a = 1.23 kg/m3; α = 0.25; Cd = 1.2; C1 = 7.0; K0 = 0.01; Cl 
= 0.20; S = 0.12; Bs = 0.26; α1 = 0.5; α2 = 5.0. Additionally, the reference mean wind velocity at 10 m 
above the ground, 10V , is taken as, respectively, 15, 20, 25, and 30 m/s, for the four considered wind load 
intensities. 
 
5.4 Results and discussion 
Results are reported in Tables 7 to 10, for the four wind intensities. In each table, 8 cases are compared, 
corresponding to the uncontrolled structure and to the 7 controlled configurations. For each case, the 
following response quantities are reported as a measure of the absorber performance, expressed in both 
maximum and rms terms: su , sv  and sr , respectively denoting the x (along-wind) component, the y 
(across-wind) component, and the overall (modulus) tower top displacement; su , sv  and sr , respectively 
denoting the x and y components and the overall (modulus) tower top acceleration; and r, denoting the 
overall (modulus) relative ball displacement.  
 
Table 7. Maximum and rms responses for 10V  = 15 m/s – Comparison of the uncontrolled and controlled cases. 

Case  max su  rms su  max sv  rms sv  max sr  rm s sr  max su  rms su  max sv  rms sv  max sr  rm s sr  maxr  rmsr  
(mm) (mm) (mm) (mm) (mm) (mm) (m/s2) (m/s2) (m/s2) (m/s2) (m/s2) (m/s2) (mm) (mm) 
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Unc. 7.97 2.33 2.14 0.67 8.04 2.43 0.301 0.093 0.018 0.006 0.301 0.093 - - 
LBA 6.10 1.67 2.15 0.68 6.10 1.81 0.222 0.058 0.018 0.006 0.222 0.058 16.04 4.94 
VBA 6.10 1.67 2.15 0.68 6.10 1.81 0.222 0.058 0.018 0.006 0.222 0.058 16.00 4.94 
HBA 6.11 1.67 2.15 0.68 6.12 1.80 0.224 0.058 0.018 0.006 0.224 0.058 16.27 4.98 
DBA 5.85 1.74 2.15 0.68 5.86 1.86 0.234 0.061 0.017 0.006 0.234 0.061 17.09 4.32 
UBA-1 7.48 2.23 2.15 0.68 7.48 2.33 0.275 0.087 0.018 0.006 0.275 0.087 9.22 0.80 
UBA-2 7.83 2.34 2.15 0.68 7.85 2.43 0.297 0.092 0.018 0.006 0.297 0.092 0.02 0.00 
UBA-3 7.83 2.34 2.15 0.68 7.86 2.43 0.298 0.092 0.018 0.006 0.298 0.092 0.01 0.00 
 
Table 8. Maximum and rms responses for 10V  = 20 m/s – Comparison of the uncontrolled and controlled cases. 

Case  max su  rms su  max sv  rms sv  max sr  rm s sr  max su  rms su  max sv  rms sv  max sr  rm s sr  maxr  rmsr  
(mm) (mm) (mm) (mm) (mm) (mm) (m/s2) (m/s2) (m/s2) (m/s2) (m/s2) (m/s2) (mm) (mm) 

Unc. 16.9 4.8 5.4 1.6 16.9 5.0 0.732 0.201 0.110 0.029 0.732 0.203 - - 
LBA 10.3 3.1 5.7 1.6 10.4 3.5 0.455 0.116 0.117 0.028 0.458 0.120 35.5 10.2 
VBA 10.3 3.1 5.7 1.6 10.4 3.5 0.454 0.117 0.117 0.028 0.457 0.120 35.1 10.2 
HBA 10.3 3.1 5.5 1.6 10.3 3.5 0.455 0.116 0.109 0.028 0.457 0.120 35.0 10.2 
DBA 10.2 3.1 5.5 1.6 10.4 3.5 0.457 0.117 0.109 0.028 0.460 0.120 35.0 10.0 
UBA-1 11.7 3.5 5.5 1.6 11.7 3.9 0.497 0.139 0.111 0.029 0.497 0.142 49.3 8.5 
UBA-2 17.1 4.6 5.4 1.6 17.2 4.9 0.743 0.192 0.107 0.030 0.743 0.194 34.1 3.2 
UBA-3 19.1 5.0 5.4 1.6 19.1 5.3 0.838 0.210 0.107 0.030 0.838 0.212 3.0 0.1 
 
Table 9. Maximum and rms responses for 10V  = 25 m/s – Comparison of the uncontrolled and controlled cases. 

Case  max su  rms su  max sv  rms sv  max sr  rm s sr  max su  rms su  max sv  rms sv  max sr  rm s sr  maxr  rmsr  
(mm) (mm) (mm) (mm) (mm) (mm) (m/s2) (m/s2) (m/s2) (m/s2) (m/s2) (m/s2) (mm) (mm) 

Unc. 26.4 7.0 25.4 6.7 28.5 9.7 1.07 0.29 0.96 0.27 1.12 0.39 - - 
LBA 18.3 5.1 17.5 4.9 19.5 7.1 0.82 0.19 0.54 0.17 0.83 0.26 57.8 23.6 
VBA 18.3 5.1 17.6 4.9 19.7 7.1 0.82 0.19 0.55 0.17 0.82 0.26 58.8 23.4 
HBA 18.6 5.2 18.5 5.1 20.2 7.3 0.77 0.20 0.58 0.18 0.77 0.27 59.6 21.7 
DBA 18.6 5.2 18.4 5.1 20.1 7.3 0.77 0.19 0.58 0.18 0.78 0.26 60.2 21.8 
UBA-1 18.9 5.3 17.8 5.3 19.6 7.5 0.86 0.20 0.64 0.19 0.86 0.28 108.4 32.8 
UBA-2 24.5 6.0 21.7 5.8 24.5 8.3 0.94 0.23 0.72 0.22 0.94 0.32 60.6 13.4 
UBA-3 27.3 7.0 24.8 6.8 28.5 9.7 1.03 0.28 0.94 0.27 1.04 0.39 38.1 2.8 
 
Table 10. Maximum and rms responses for 10V  = 30 m/s – Comparison of the uncontrolled and controlled cases. 

Case  max su  rms su  max sv  rms sv  max sr  rm s sr  max su  rms su  max sv  rms sv  max sr  rm s sr  maxr  rmsr  
(mm) (mm) (mm) (mm) (mm) (mm) (m/s2) (m/s2) (m/s2) (m/s2) (m/s2) (m/s2) (mm) (mm) 

Unc. 38.2 11.0 78.3 20.2 81.5 23.0 1.60 0.47 3.34 0.88 3.45 1.00 - - 
LBA 28.7 7.4 42.2 11.3 42.2 13.5 1.16 0.29 1.72 0.46 1.73 0.55 178 54.1 
VBA 30.7 7.7 44.3 11.9 44.5 14.2 1.29 0.31 1.86 0.49 1.89 0.58 141 52.0 
HBA 30.3 7.8 42.7 11.9 45.6 14.2 1.16 0.31 1.77 0.49 1.85 0.58 133 48.8 
DBA 30.7 7.7 42.7 11.9 44.8 14.2 1.20 0.31 1.76 0.49 1.85 0.58 144 49.7 
UBA-1 43.9 11.4 49.9 14.0 53.5 18.0 1.80 0.48 2.11 0.59 2.37 0.76 156 84.8 
UBA-2 42.4 8.9 46.1 12.7 52.1 15.5 1.98 0.37 1.98 0.53 2.21 0.64 156 62.8 
UBA-3 33.7 8.6 49.1 13.3 49.1 15.9 1.37 0.35 2.07 0.56 2.09 0.66 153 42.4 
 
Tables 7 to 10 above are summarized in Table 11, where the average overall response ratios, Rav, are 
reported for the 7 controlled cases and for each wind intensity, computed dividing the controlled to the 
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uncontrolled overall tower top response, and then geometrically averaging between displacements and 
accelerations, and between maximum and rms values. Obviously, Rav = 1 for the uncontrolled case, and 
the smaller Rav, the better the control effectiveness. 
 
Table 11. Average overall response ratios, Rav, for the 7 controlled cases. 
Case 10V  = 10 m/s 10V  = 20 m/s 10V  = 25 m/s 10V  = 30 m/s 
LBA 0.71 0.63 0.70 0.54 
VBA 0.71 0.63 0.70 0.57 
HBA 0.71 0.63 0.71 0.57 
DBA 0.73 0.63 0.71 0.57 
UBA-1 0.93 0.71 0.73 0.72 
UBA-2 0.99 0.99 0.84 0.65 
UBA-3 0.99 1.09 0.98 0.64 
 
Figure 16 shows the Fourier spectra of su and sv  when 10V  = 25 m/s, respectively in the uncontrolled, the 
DBA-controlled and the UBA-2 controlled cases. Both the along-wind (Figure 16a) and the across-wind 
forces (Figure 16b) induce significant structural vibrations at low frequencies, i.e. outside the effective 
bandwidth of the absorbers. This explains the limited control efficacy of all BAs in this case study, if 
compared with their harmonic steady-state performance highlighted in previous sections. In the y 
direction, this effect is even more evident for 10V  = 15 m/s or 10V  = 20 m/s, when the wind action is 
substantially uncoupled from the first modal resonance (the vortex shedding frequencies being much 
lower than the first structural frequency), and all BAs are practically ineffective. 
With this in mind, Tables 7 to 11 can be commented as follows: 

1) In the uncontrolled case, the structural response is dominated by the along-wind component for 

10V  = 15÷20 m/s and by the across-wind component for 10V  = 30 m/s, while it is equally 
contributed by both components for 10V  = 25 m/s. As 10V  increases from 15 m/s to 30 m/s, the 
overall structural displacements and accelerations, sr  and sr , increase about 10 times, both in 
maximum and rms terms. 

2) The LBA, representative of an ideal linear absorber, is quite effective, considering the limited 
coupling between the structure and the wind load, and the very small value of the mass ratio. The 
response is reduced to Rav = 63÷71% for 10V  = 15÷25 m/s, and to Rav = 54% for 10V  = 30 m/s, 
with the device slightly more effective in controlling accelerations than displacements. Depending 
on 10V , significant differences exist between the along-wind and the across-wind performance, 
according to the wind load frequency content: for 10V  = 15÷20 m/s, the device reduces the along-
wind average response to 66%, but cannot reduce the across-wind vibrations; for 10V  = 25 m/s, it 
reduces the two components to, respectively, 71% and 66%; and for 10V  = 30 m/s it reduces them 
to, respectively, 69% and 53%. Depending on 10V , the maximum and the rms ball displacements, 

maxr  and rm sr , range, respectively, from 16 mm to 178 mm (this latter value being larger than the 
VBA virtual radius L, in fact equal to 159.2 mm, see Table 5) and from 5 mm to 54 mm.  

3) The VBA, the HBA and the DBA show approximately the same performance as the LBA, except 
for a small control loss for 10V  = 30 m/s, when Rav increases from 54% to 57%. This loss is due to 
second-order effects caused by the large angular displacements exhibited by the ball at this 
excitation level (with maxr  around 90% of L). Evidently, for 10V  ≥ 30 m/s, a first-order model is no 
longer adequate. 
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4) The three UBA options, instead, show severe performance losses with respect to the LBA, varying 
for each option with the wind intensity. For 10V  = 15 m/s, the UBA-2 and the UBA-3 are virtually 
inactive, because of their excessive friction, while the UBA-1 is only partially activated and 
clearly overdamped, exhibiting small ball displacements and a limited control effectiveness (Rav = 
93%). For 10V  = 20 m/s, the UBA-3 is still inactive (and even detrimental, with Rav = 109%) and 
the UBA-2 starts being activated but is still largely overdamped (Rav = 99%), while the UBA-1 is 
fully activated and yet less effective than its viscous or homogeneous counterparts (Rav = 71% 
instead of Rav = 63%), because in fact respectively overdamped or underdamped according if the 
ball displacements are small or large. For 10V  = 25 m/s, the UBA-1, UBA-2 and UBA-3 are 
respectively slightly underdamped, slightly overdamped, and largely overdamped, with 
respectively Rav = 73%, 84%, and 98% (instead of Rav = 70÷71% for the other types). Finally, for 

10V  = 30 m/s, the UBA-1 and UBA-2 are respectively largely underdamped and slightly 
underdamped, while the UBA-3 is overdamped at small ball displacements and underdamper at 
large ball displacements, with respectively Rav = 72%, 65%, and 64% (instead of Rav = 54% for 
the LBA and Rav = 57% for the other types). Part of this control loss may be due to second-order 
effects, due to the large ball displacements exhibited at this excitation level (with maxr  close to 
100% of L). 

In conclusion, this case study shows the adequacy of the HBA and of the DBA to replicate the control 
effectiveness of the VBA, and their advantages over a conventional, constant friction, UBA, whose 
performance can be nearly optimal only at a certain vibration amplitude. Furthermore, it shows the need of 
using a fully nonlinear model to account for the possible control loss related to second-order effects. 
 
6. Conclusions 
The main conclusions of this paper can be summarized as follows: 

1) The ball absorber (BA) is a simple, compact and low-cost vibration control device, only slightly 
less effective, because of its rotational inertia, than a point-mass pendulum absorber. 

2) The conventional, uniform BA (UBA), having a constant friction along the cavity, shows an 
amplitude-dependent control performance, its equivalent damping being inversely proportional to 
the input amplitude as far as its response is confined into the low-amplitude domain.  

3) The new, homogeneous BA (HBA), having a friction that varies along the cavity in proportion to 
the ball angular displacement, shows a performance that is amplitude independent in the low-
amplitude domain, its equivalent damping being constant with the input amplitude. In the large-
amplitude domain, the friction increase is advantageously more gradual than in similar solutions 
recently proposed for point-mass pendulum absorbers. 

4) The new, discrete-homogeneous BA (DBA), obtained by juxtaposing n coating regions with 
radially-increasing friction so as to approximate the HBA friction linear variation, degenerates in 
the UBA if n = 1, and in the HBA if n tends to infinity, showing a nearly amplitude-independent 
control performance if n is sufficiently large. 

5) The proposed fully nonlinear analytical model can adequately simulate viscous BAs (VBAs), 
UBAs, HBAs and DBAs on generic linear structures. A special variant of the friction model, 
incorporating a velocity-dependent transition law, is also formulated, that better fits experimental 
tests.  

6) The first-order approximation of the model, rigorously valid in the low-amplitude domain, reveals 
the main features of the four BA types, and permits the development of an optimal design 
procedure. 

7) For the VBA, UBA and HBA, the optimal procedure consists in an H∞ design. The optimal 
solution is amplitude independent for the VBA and the HBA, but amplitude dependent for the 
UBA, its optimal friction being amplitude-proportional. While the optimal VBA and HBA are 
nearly equivalent, the UBA underperforms them if the input amplitude differs from that assumed 
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in design. Fitting many optimal solutions, practical design formulas are derived for the VBA, 
approximately valid for the HBA as well. 

8) For the DBA, the optimal design procedure consists in finding the DBA that best fits the optimal 
HBA, for a given n. The optimization problem can be formulated either directly or inversely, 
depending on which DBA parameters are chosen as the design variables, and can be solved 
analytically for n = 1 and numerically otherwise.  

9) The feasibility of the DBA concept, the validity of the analytical model and the effectiveness of 
the design procedure are demonstrated through building and testing a scaled prototype of DBA, in 
comparison with a similar prototype of UBA. The DBA proves more efficient and robust than the 
UBA. 

10) The simulated design of different BAs for the wind control of an airport tower shows the 
adequacy of the HBA and of the DBA to replicate the effectiveness of an optimal VBA, and their 
superiority over a conventional UBA, whose performance is highly affected by the vibration level.  
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Appendix A. Practical design formulas for determining the H∞ optimal parameters of a VBA  
This appendix provides practical design formulas for determining the H∞ optimal parameters Ropt   and 

opt  of a VBA as a function of the structural damping ratio sx , the mass ratio Rm  and the inertia 
coefficient κ. These formulas are derived by fitting, through a least-square minimization, the values of 

Ropt  and opt  obtained by numerically solving the min.max problem in Eq. (34) for all the possible 

combinations of 5]/100 2, [1,sx , 100]/100:5:9,10:1:1.8,2:0.2:0.9,1:0.1:[0.1Rm  and 
1,2/3]:0.1:[0  (with a total of 3∙41∙12 = 1476 design scenarios). Two cases are considered in the 

sequel, according as the transfer function TF(ω*) is chosen as the force-to-displacement TF or as the 
ground acceleration-to-displacement TF. 
 
A.1 Force input  
For a VBA satisfying Eqs. (27) and (30), the modulus of the normalized TF from the force input sxf  to 
the structural displacement su  is given by 

 
)1(21
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2

2
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where sx/*  and  
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21
1

RxR ζi
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Thus, the numerical solution of Eq. (34), repeated for the said combinations of sx , Rm  and κ, provides 
the optimal values of Ropt  and opt , whose dependence on sx , Rm  and κ can be conveniently 
approximated by the following expressions: 
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where the functions Ai are defined as 
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and their fitting coefficients p1 to p13 are given in Table A.1. 
Noticeably, for 0sx  Eqs. (A.3) and (A.4) reduce to, respectively, )1/(1)(1 RRRopt mmA  and 

)]1(8/[3)(4 RRRopt mmmA , i.e. to the classical Warburton’s formulae [1], indeed exact for an 
undamped structure and a null ball rotational inertia. 
For example, the optimal parameters and their corresponding response ratios are reported in Figure A.1 as 
a function of Rm , for sx = 2% and for different values of κ. The dots indicate the numerical optima while 
the continuous lines indicate their fitting expressions in Eqs. (A.3) and (A.4).  
 
Table A.1. VBA design for a force input. Optimal fitting coefficients in Eqs. (A.5) and (A.6).  

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 
1.1527 .3881 .9325 .2332 .6505 0.6344 .01242 .0001 .1351 .2304 .08020 .09793 0.7265 

 
A.2 Ground acceleration input  
For a VBA satisfying Eqs. (27) and (30), the modulus of the normalized transfer function from the ground 
acceleration input gu  to the structural displacement su  is given by 
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where  Γ is still given by Eq. (A.2). In this case, the numerical solution of Eq. (34) can be approximated 
by  
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and their fitting coefficients q1 to q22 are given in Table A.2. 
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Again, for 0sx  Eqs. (A.8) and (A.9) reduce to, respectively, )1(2/1)(1 RRRRopt mmmB  

and )]2/1)(1(8/[3)(4 RRRRopt mmmmB , i.e. to the classical Warburton’s formulae [1]. Results 

are exemplified in Figure A.2 for sx = 2% and for different values of κ.  
 
Table A.2. VBA design for a ground acceleration input. Optimal fitting coefficients in Eqs. (A.10) and (A.11).  

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 
.6423 .002455 0.0001 2.0875 8.4404 .5979 3.071 .3958 2.363 .6050 2.1150 

 
Table A.2. (continues) 

q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 
.03170 .0001 1.239 .1422 1.253 .8145 6.620 4.522 .2939 .3850 0.7325 
 
A.3 Discussion  
Equations (A.3) and (A.4) for the force input case and (A.8) and (A.9) for the ground acceleration input 
case constitute useful design formulas for deriving the H∞ optimal parameters of a VBA. They fit the 
numerical optima with a good accuracy. The average error (over all the examined 1476 design scenarios), 
respectively in terms of Ropt , opt , and R∞opt, is equal to 1.2‰, 6.6‰, and 3.3‰ for the force input, and 
to 2.4‰, 7.5‰, and 5.2‰ for the ground acceleration input. The influence of the ball rotational inertia, 
expressed by κ, on the VBA optimal design parameters and control effectiveness is demonstrated in 
Figures A.1 and A.2. The derivation of similar expressions for friction-type BAs is left for future work.  
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Fig. 1. Typical pendulum vibration absorbers: (a to c) classical supported pendulums; (d) unbalanced 
pendulums [16]; (e) track NES [17]; (f) ball pendulum [18]. 

Fig. 2. Schematic xz meridian section of the ball absorber in its deformed position. 

Fig. 3. Schematic planar view of the cavity coating with superimposed the corresponding friction law, in 
the case of: (a) uniform friction (UBA); (b) homogeneously varying friction (HBA); (c) discretely varying 
friction (DBA).  

Fig. 4. Steady-state response of the first-order 2DOF model under a harmonic force input. Comparison of 
the VBA, the UBA and the HBA, for sx = 1%, Rm = 1% and either κ = 0 or κ = 0.4: (a) TFs for the three 
optimal BAs (for κ = 0 or κ = 0.4); (b) dissipative force-displacement loops for the three optimal BAs (for 
κ = 0.4); (c) TFs for the UBA, under increasing scaling factors of the input amplitude used for 
optimization (for κ = 0.4). 

Fig. 5. Optimal design of a 1-step DBA by fitting an optimal HBA: (a) HBA and DBA friction laws )( ; 
(b) HBA and DBA dissipated energies )(E . 

Fig. 6. Optimal design of a 5-step DBA by fitting an optimal HBA, according to the direct approach: (a) 
HBA and DBA friction laws )( ; (b) HBA and DBA dissipated energies )(E . 

Fig. 7. Optimal design of a 3-step DBA by fitting an optimal HBA, according to the inverse approach: (a) 
HBA and DBA friction laws )( ; (b) HBA and DBA dissipated energies )(E . Results refer to the 
optimal design of the DBA prototype detailed in Section 4. 

Fig. 8. The overall experimental setup: (a) photo; (b) schematic drawing.  

Fig. 9. Free acceleration response at the top of the uncontrolled structure along x, measured by S2: (a) time 
response; (b) Fourier transform; (c) spectrogram; (d) instantaneous equivalent damping ratio as a function 
of the acceleration amplitude. 

Fig. 10. Free-vibration tests of the UBA prototype with material 2 and ball radius R = 10 mm: (a) photo of 
the tested cap; (b) image acquisition and processing of the video recordings, for six consecutive frames 
(dimensions in pixels); (c) reconstruction of the experimental ball displacement time-history (dimensions 
in mm).  

Fig. 11. Experimental and simulated ball displacement time-histories for the four UBAs, with R = 10 mm.  

Fig. 12. (a) Photo of the UBA and DBA prototypes later tested on the tubular structure. (b) experimental 
and simulated ball displacement time-history for the fixed-base DBA. Added in dotted line: the simulated 
response of the ideal optimal HBA.  

Fig. 13. Experimental free-vibration testing of the structure coupled with either the UBA or the DBA 
prototypes: (a) top structural accelerations measured by S2; (b) corresponding instantaneous acceleration 
amplitudes; (c) instantaneous equivalent viscous damping ratio as a function of the acceleration amplitude. 
Black lines: 11 UBA tests where the absorber gets activated. Green lines: 10 UBA tests where the 
absorber remains inactive. Red lines: 21 DBA tests.  

Captions and Figures
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Fig. 14. Experimental shaking-table testing of the structure, with or without the UBA or DBA prototypes. 
Numbers in the legend denote the rms of each base acceleration time-history, in cm/s2.  

Fig. 15. Comparison of the HBA, the DBA, and the three UBA options, as characterized by Tables 5 and 
6: (a) friction laws )( ; (b) dissipated energies )(E . 

Fig. 16. Fourier spectra of the top displacement in the x (a) and y (b) directions when 10V  = 25 m/s, for the 
uncontrolled, the DBA controlled and the UBA-2 controlled cases. 

Fig. A.1. VBA design for a force input. Optimal VBA parameters Ropt  (left) and opt  (middle), and their 

corresponding response ratio R∞opt (right) as a function of Rm , for %2sx  and for different values of κ 
(κ = 0: point mass; κ = 2/5: homogeneous sphere; κ = 2/3: hollow sphere; κ = 1: hollow cylinder). Dots: 
numerical optima; continuous lines: fitting curves. 

Fig. A.2. VBA design for a ground acceleration input. Optimal VBA parameters Ropt  (left) and opt  

(middle), and their corresponding response ratio R∞opt (right) as a function of Rm , for %2sx  and for 
different values of κ (κ = 0: point mass; κ = 2/5: homogeneous sphere; κ = 2/3: hollow sphere; κ = 1: 
hollow cylinder). Dots: numerical optima; continuous lines: fitting curves. 
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Fig. 3.  
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Fig. 5.  
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Fig. 6.  
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Fig. 7. 
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Fig. 8.  
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Fig. 9.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t (mins) 

ax (t) 
(m/s2) 

ω*/(2π) (Hz) 

| Ax (ω*) | 
(m/s2/Hz) 

ax
* (m/s2) 

sx  
(‰) 

t (mins) 
ω*/(2π) (Hz) 

1.981 Hz 
(a) 

(c) 

(d) 

(b) 



 12 

 
 
 

                        
 

      
 

 
Fig. 10.  
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Fig. 11. 
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Fig. 12.  
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Fig. 13.  
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Fig. 14. 
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Fig. 15. 
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Fig. 16. 
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Fig. A.1.  
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Fig. A.2.  
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