POLITECNICO DI TORINO
Repository ISTITUZIONALE

Supervised global path planning for mobile robots with obstacle avoidance

Original

Supervised global path planning for mobile robots with obstacle avoidance / Indri, M.; Possieri, C.; Sibona, F.; Cen
Cheng, P. D.; Hoang, V. D.. - ELETTRONICO. - 2019-:(2019), pp. 601-608. (Intervento presentato al convegno 24th
IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2019 tenutosi a Zaragoza,
Spain nel September 10-13, 2019) [10.1109/ETFA.2019.8868950].

Availability:
This version is available at: 11583/2771072 since: 2019-12-03T16:05:17Z

Publisher:
Institute of Electrical and Electronics Engineers Inc.

Published
DOI:10.1109/ETFA.2019.8868950

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

25 April 2024

Supervised global path planning for mobile robots
with obstacle avoidance

Marina Indri, Corrado Possieri,
Fiorella Sibona, Pangcheng David Cen Cheng
Dipartimento di Elettronica e Telecomunicazioni
Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
{marina.indri,corrado.possieri,
fiorella.sibona, pangcheng.cencheng} @polito.it

Abstract—The presence of mobile agents in the industrial
environment is growing, introducing specific safety issues in
their path planning. This paper proposes the implementation
of a three-level path planning procedure, which allows: (i) the
imposition of a set of waypoints, tending to a safe path, generated
by a supervisory planner on the basis of a static map of the
environment (not necessarily fully updated), (ii) the generation
of a global path including such waypoints exploiting a cost-based
algorithm, taking into account also the obstacles not included
in the static map, but detected at the beginning of the global
planning phase, and (iii) the avoidance of dynamic obstacles
appearing during the robot motion, thanks to the action of a
local planner. The procedure has been experimentally tested to
plan the motion of a differential mobile robot.

Index Terms—Mobile robots, path planning, obstacle avoid-
ance.

I. INTRODUCTION AND STATE OF THE ART

Mobile robots are widely used in many applications, such
as surveillance, transportation and automation in industry.
In order to guarantee the safety of both the operators and
the robots within the industrial environment, path planning
with obstacle avoidance is required. While classical AGVs
(Automated Guided Vehicles) are typically constrained to
follow predefined paths, the adoption of autonomous mobile
robots in the industrial context implicitly introduces some
specific issues in the path planning operation, such as the
existence of preferred areas or paths within the available free
space for a safer simultaneous presence of humans, robots and
machineries in the plant, and a more efficient organization of
the working process itself.

In general, path planning for mobile robots is mainly carried
out at two levels: global planning and local planning. The
global planner computes (off-line) the path for a well known
environment map, so allowing the robot to move from a
starting point to the destination point avoiding the known static
obstacles, while optimizing specific objectives, like searching
the shortest path (so to reduce time traveling and energy
consumption). The local planner updates (on-line) the path of
the robot, taking into account the information coming from its
sensors, with the goal of letting it follow the path generated

The research activity has been partially supported by the HuManS — Human-
centered Manufacturing Systems project, funded by Regione Piemonte within
the MIUR-POR FESR 2014/2020 funding program.

Vinh Duong Hoang
School of Information and Communication Technology
Hanoi University of Science and Technology
Hanoi, Vietnam
vinhdh @outlook.com

by the global planner if possible, but modifying it to avoid
unexpected obstacles, which were not taken into account.

Depending on the environment and the tasks to be per-
formed, many researchers proposed and developed several
algorithms for path planning.

For example, there are heuristic-based algorithms, such as
the Dijkstra, A* and D* algorithms. The Dijkstra algorithm
[1] computes the shortest path between two nodes in a map;
however, its execution needs to evalutate too many nodes,
making it an overall low-efficiency process. This issue is
solved in the A* algorithm [2], a path planner based on
Dijkstra, which takes into account a function that evaluates the
distances between the nodes and their cost to reach the goal
point. Nevertheless, A* takes relatively long computational
time to execute, making it not suitable for performing sequen-
tial tasks in real time [3]. Such response time constrained
tasks can be carried out by using D* [4], a dynamic re-
planning algorithm based on the A*, considering the direction
of the robot position as expressed by a series of states, whose
values are updated each time the elements on the map change.
Nonetheless, this still requires high computational effort, since
the re-planning phase needs to calculate twice each state on
the environment [5].

The computational burden of the three algorithms above
can be mitigated by using probabilistic methods, such as the
Probability Roadmap (PRM) [6] and the Rapidly-exploring
Random Tree (RRT) [7]. In PRM, the free spaces on the
world map are randomly sampled, and the planner tries to
connect the generated points into a roadmap feasible motion.
This method is commonly used in large maps, where the
use of other algorithms may increase the computational cost.
However, this method does not guarantee the shortest path [8].
In RRT, feasible trajectories are obtained growing expanding
trees starting from the initial point, going through random
points called seeds, until the tree is connected to the goal point.
Since the release of the original RRT algorithm, researchers
have proposed a variety of improved methods. For example,
the method presented in [9] consists in “planting” a tree in both
the starting and the goal points, and then expanding both trees
in the whole world map until an intersection point is found;
the algorithm presented in [10] controls the tree edges growth
direction and density of the RRT* variant (an RRT version

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

converging to the shortest path introduced by S. Karaman
and E. Frazzoli [11]). The main drawback of sampling based
stochastic searches is that, in general, path cost is not taken
into account, leading to a solution that is not guaranteed to be
optimal [12].

Other planning algorithms are inspired by natural phenom-
ena. One of the most popular is the Genetic Algorithm (GA)
[13], based on the natural selection theory and applied as a
path searching algorithm in the field of robotics. The cost
function for computing the best path is structured similarly to a
chromosome, where each location is considered as a gene [14].

Another widely used approach involves computing off-line
the considered safe path and controlling the robot in such a
way that it goes to the destination point following a set of
waypoints. In this case, it is possible to use the feedback
linearization technique in order to design a control system
for path following, like in the fuzzy logic based control archi-
tecture proposed in [15]. Similarly, some researchers proposed
navigation functions based on artificial potential fields to solve
the robot motion planning [16], and a feedback control law
ensuring that the robot reaches the destination point, avoiding
obstacles [17].

This paper exploits the features of the algorithm developed
in [18] (and validated there only in a pure theoretical context)
to address the peculiar characteristics of path planning in an
industrial-like scenario, proposing a possible implementation,
executed by a differential robot, within a complete planning
procedure based on three levels. In particular, the proposed
solution integrates the common two-level planning hierarchy
with a third level, which aims at reaching a given goal position
traversing a virtual track previously identified as safe.

The paper is organized as follows: Section II presents the
proposed procedure, at first providing some theoretical details
about the supervisory planner, then describing the full/practical
algorithm implementation including the obstacle avoidance
capability. The testing of the procedure is unfolded in Section
III, where the results obtained from three different test cases
are reported. Finally, Section IV draws some conclusions and
open issues.

II. SUPERVISORY ALGORITHM FOR PATH FOLLOWING
WITH OBSTACLE AVOIDANCE

The present section goes through the description of the de-
veloped and tested path planning procedure for path following
with obstacle avoidance.

The scenario is that of a mobile robot roaming within
a closed space, e.g., a warehouse or factory plant, where
some predefined routes are considered safe for the mobile
platform motion (no unexpected obstacle is assumed): the a-
priori desired path computed by the algorithm, proposed in
[18] and recalled in Section II-A, tends by construction to
a curve representing a safe route that takes on the role of
what guide tapes and wires represented in the most traditional
industrial mobile navigation set-up.

The path planning algorithm proposed in this paper has a
hierarchical structure based on three levels: the Supervisory
Global Planner (SGP), the Global Planner (GP) and the Local
Planner (LP). While traversing this hierarchy (Figure 1), we

get to an enhanced robot environment awareness, a sort of
transition from a “blind” planning (only based on the static
map) to a dynamic-obstacles aware system.

Supervisory Global Planner (SGP)

Static map based Path
traversing safe curve

Global Planner (GP)

Plan computation
with path following

Local Planner (LP)

Plan for path following
with obstacle avoidance

Fig. 1. Planning hierarchy schematics.

In fact, since the static map of the environment used at
the supervising level could be not fully updated, the planned
waypoints are integrated at a lower level within the GP,
which lets the robot actually follow the planned trajectory (if
possible) thanks to a cost-based algorithm. The avoidance of
unexpected obstacles that may appear during the robot motion
is left to the standard, lowest level LP, which further modifies
on-line the path computed by the GP, when necessary.

A. Supervisory algorithm theoretical development

In this section, we review the algorithm proposed in [18] to
design the path of a mobile robot in a known environment. The
goal of this algorithm is to generate a path that is collision free
(i.e., it does not intersect the curves describing the boundaries
of the obstacles) and that tends to a preassigned algebraic
curve, which is considered safe for motion.

In particular, assume that the aim of the supervisory algo-
rithm is to obtain a path that tends to the planar curve

V= {x € R*: p(z) = 0}, (1)

where p(z) is a given polynomial function. By using the
algorithm given in [19] (omitted here for brevity), it is possible
to compute two vector fields ¢(x) and v(z), whose entries
are polynomials in x, such that the curve V given in (1) is
attractive and invariant with respect to the dynamical system

€= 8(8) +9(&)a(f), 2)

where «(€) is an arbitrary function. Although the trajectories
of system (2) converge to the set V), they are not necessarily
collision free. Thus, in order to ensure collision avoidance,
the results given in [19] are coupled with classical navigation
functions [16].

Let b(x) be a function describing the boundaries of the
obstacles (i.e., b(§) = 0 implies that the point & belongs to
the boundary of one of the obstacles) and let

W= {z € R* : b(z) > 0}

be the workspace of the mobile robot, which is assumed to be
a connected set. Furthermore, we assume that

VN{zeR?:b(z) =0} =0,

i.e., that V is actually safe for motion. Thus, define

p2(€) o)\
be) M”(%)'

Note that, by construction, the function r(§) is nonnegative
for all £ € W, it is zero if £ € V, and it tends to +oo if &
tends to V. This implies that, letting 3(£) be a nonnegative
function such that b(§) = 0 = B(&) # 0, the trajectories of

£=-n(&)B(E) 3)

are collision free (see [18, Prop. 2]).

Hence, the supervisory algorithm is obtained coupling sys-
tems (2) and (3). Namely, letting ((£) be an arbitrary function
(which is amenable for further optimization, see [17]) and
k be a positive constant, it is possible to guarantee that the
trajectories of the dynamical system

£ =b2(&)p(&) + *(OV(OCE) — kp*(On(E) @)

tend to V while avoiding collisions with the obstacles.

It is worth noticing that, if the objective is to steer the robot
to V and, additionally, to let it stop for some & € V), then such
a goal can be pursued by designing the function (&) in (4),
following [19, Alg. 2].

GE

B. Integration with ROS Global and Local Planners

In this section some high-level software details about the
implementation of the SGP and the integration of the dynamic
obstacle avoidance capability are given. In order to adapt the
theoretical algorithm to a physical implementation, the super-
visory algorithm has been executed using the real environment
map, in place of a hypothetical one, taking into account the
physical dimensions of the performing robot. Note that, at this
level of description, we will omit map details and parameters
tuning/adjustment specific to the chosen robot (more details
about the physical set-up are given in Section II-C) to highlight
the general validity of the approach.

The SGP algorithm has been written in MATLAB, while
the navigation driving the robot exploits ROS (Robot Oper-
ating System) [20] tools. In particular, the ROS Navigation
Stack [21] provides the user with off-the-shelf packages ready
for mapping, localization, navigation and reference frames
tracking. To ensure a correct interpretation of the supervisory
algorithm output (i.e., a set of 2D desired points converging
to the preassigned safe curve to be traversed on the static
map), the ROS /world frame origin (reference frame for
the whole ROS coordinate frames transform tree, managed by
the t £ package) has been aligned to the frame origin used in
MATLAB. Then, the output plan has been conveniently packed

in an array of desired positions stored on the ROS Parameter
Server, exploiting the MATLAB Robotics System Toolbox™
[22]. The ROS framework provides the actionlib library
stack [23], that allows the user to interact through a stan-
dardized interface with preemptable tasks, which in our case
correspond to the desired poses for the mobile platform to
reach. A custom Python ROS node is in charge of sending
through a ROS Action Client a request to the Action Server,
via a message containing the details of the next goal position to
be reached. Note that ROS actions represent the ideal Client-
Server-based mechanism for goal achieving, since while the
whole operation is brought on, a feedback message about its
status can be sent to the client node. A sketch of the software
set-up is presented in Figure 2.

%% ROS environment

Navigation Stack command
velocities
MATLAB
) \ —
environment
move_base .
rviz
MATLAB i
ROS Toolbox ~ ©

ROS actionlib /

Fig. 2. Software setup for implementation of the proposed algorithm.

ROS package move_base, as part of the ROS navigation
stack, provides several ready-to-use global planners. In our
case, the GP main role is that of generating a plan that must be
as close as possible to the path computed by the SGP. On the
other hand, the LP algorithm is in charge of locally updating
the robot trajectory, computing a short-term plan based on
a local cost map, taking into account a predefined portion
of the GP-generated long-term plan, and using sensors’ data
to guarantee obstacle avoidance of unexpected objects (either
moving or fixed). Moreover, the whole planning performance
depends on a set of cost map parameters, which can be
accordingly tuned based on the final planning aim and on the
physical characteristics of the robot.

By default, the global planner loaded by ROS adopts the
Dijkstra’s algorithm, which finds the shortest path from the
starting pose to the desired destination. Another widely used
algorithm for pathfinding is the A* algorithm. A* search
algorithm is a combination between Dijkstra’s algorithm and
Best First Search algorithm, meaning it is a weight-based
process, or informed algorithm, where the graph is explored
and expanded only in nodes resulting convenient, based on
an assigned cost with heuristic content. Indeed, A* inher-
its the benefits of a uniform-cost search from Dijkstra’s,
adding heuristics to efficiently find an optimal solution in less
time [24].

We have developed a GP algorithm built upon the A* cost-
based structure: the default global planner of the navfn pack-
age has been replaced exploiting the ROS plugin mechanism,
in order to have access to a simpler standalone piece of code.
As the ROS global planner plugin implementation guidelines

recommend, we have used the ROS cpp library to adhere
to the nav_core: :BaseGlobalPlanner C++ interface
provided by the nav_core package (by overriding some
specific methods) and employed by the move_base package
to drive the mobile platform. With the purpose of forcing the
robot to follow the set of waypoints computed by the SGP
within the GP, the proposed algorithm assigns low costs to
the preferred points to be traversed.

Before going through the description of the resulting algo-
rithm, we will briefly outline the cost mechanism of the A*
search algorithm. Consider a pathfinding problem, where an
optimized path must be found between two points on a 2D
cost map: at each main loop, starting from the source cell the
algorithm expands the most suitable, and for construction most
“convenient”, cell depending on a function f(c), defined as

fe) = g(e) + h(c) 5

where c is the currently expanded cell, g(c) denotes the cost
from the source position to the current one, and h(c) represents
the heuristic estimated cost from the current cell to the goal
(destination) cell. At each iteration the expanded cell, i.e., the
cell whose neighbour cells are visited and their costs computed
(Figure 3), is the one having the lowest f(c).

6th 5th
Neighbour | Neighbour | Neighbour

Neighbour

Neighbour

Neighbour | Neighbour | Neighbour

Fig. 3. Expansion of the most convenient cell.

Therefore, the f(c) function encloses an estimated path cost
from the source cell to the destination cell, traversing cell c.
While g(c) can be easily calculated, h(c) computation usually
involves an approximation method, since the exact heuristics
computation, i.e., computing the value attained by the cost-to-
go function at cell ¢, would take an excessive amount of time.
Among the available approximated heuristic functions (e.g.,
Manhattan, Euclidean and diagonal distances), the Euclidean
distance has been chosen; thus, the function h(c) has been
defined as:

h(c) = \/(c.x — dest.z)? + (c.y — dest.y)? (6)

where dest is the destination cell and the expressions .z and
.y extract the fields corresponding to the x and y coordinates
of the considered cell, respectively.

In order to perform path following, the idea is to use a
cost-based algorithm that acts as A* when far from the SGP-
computed path, while a low cost is associated to the positions
produced by the SGP, so to guarantee their presence in the
output plan. In particular, the passage on these positions is
favoured by the introduction of a new cost hyy p, defined as

hwp(c) = /(cx — WP.x)? + (cy — WPy)?2 (1)

where W P is the next expected waypoint and the expressions
.x and .y extract the fields corresponding to the x and y
coordinates of the considered cell, respectively. The quantity in
(7) is the Euclidean distance from the next expected waypoint,
and assigns costs which penalize positions far from the desired
path, based on four possible cases:

1) The currently visited neighbour cell n is a waypoint.
2) The currently expanded cell ¢ is a waypoint.

3) All waypoints have been already traversed.

4) None of the previous conditions is valid.

Note that we consider all discrete points making up the
supervisory algorithm output path as waypoints that we would
like the robot to traverse when in their proximity.

More details on how the costs have been assigned to achieve
an overall equilibrated and suitable cost system are given
in Algorithm 1, reporting the pseudocode for the proposed
algorithm. Handling of the above enumerated possible cases
can be found at lines 14, 16, 18 and 20, respectively. Note that
highlighted lines point out edits with respect to the original
A*, to have a direct comparison. The inputs to the algorithm
are the environment map and the start and destination cells,
while the output is represented by the computed path. The
proposed GP boasts the capability of reaching a goal position
not necessarily in the shortest way, but as safely as possible.

The employed local planner exploits the
TrajectoryPlannerROS wrapper, which adheres to
the nav_core::BaselLocalPlanner interface. This
local planner version implements the so called trajectory
rollout algorithm: the robot’s control space is discretely
sampled and, for each sampled velocity a forward simulation
is performed using the current robot state as starting point,
to predict the robot motion if the considered velocity were
applied for a restricted period of time. Each simulated
trajectory is assessed on the basis of some evaluation
parameters, e.g., proximity to the global path, to obstacles,
to the goal, and the speed. Among the evaluated trajectories,
those which would cause a collision with obstacles are
discarded, while the trajectory obtaining the highest score
is chosen and the relative velocities are sent to the mobile
robot. This procedure is looped at each motion step [25].
The LP represents the last planning level and improves the
robot’s awareness about its surroundings, ensuring a reaction
to obstacles that are not present in the static map, or are
unknown when the global planning path is computed.

Moreover, in order to ensure that the resulting path tracks
as precisely as possible the desired algebraic curve, the knowl-
edge of the LP about the GP long term path is reduced, influ-
encing the short-term plan generation, since a wider overview
on the tracked plan would result in local path optimization.

C. Hardware/Software setup and testing

In order to test the supervisory algorithm with path fol-
lowing and obstacle avoidance we have decided to employ
a Pioneer 3DX mobile robot [26] equipped with a SICK
LMS200 laser range finder [27] with 10-meter range and

scanning angle of 180 degrees, a Raspberry Pi [28] 3 Model
B mounting an ARM Cortex-A53 (x4 core) CPU (1.2 GHz)
and 1-GB RAM, which takes the role of a processing unit for
receiving data and controlling the robot (Figure 4).

Fig. 4. Complete robot set-up used for the practical execution of the algorithm.

Note that the physical specifications of the robot (Figure 5)
are crucial for modelling the kinematic equations necessary for
executing the supervisory algorithm, to suitably adapt ROS
visualization and map inflation parameters, and to generate
proper commands taking into account the maximum allowed
speeds and accelerations.

26 cm swing radius

Fig. 5. The Pioneer3Dx mobile base dimensions [26].

Figure 6 represents the interactions between hardware com-
ponents: the Raspberry Pi receives environment states via
laser scan data and sends proper commands to the robot.
Simultaneously, the robot states and environment information
are exchanged between the Raspberry Pi board and a com-
puter: on both processing units are running specific processes
(nodes) of the ROS framework, respectively the ROS master
node and sensor drivers nodes on the former, and navigation
and visualization nodes on the latter, making up a typical
distributed ROS system.

As already said, the first step for the SGP theoretical to
practical transition has been that of feeding the algorithm im-
plemented in MATLAB with the real map of the environment
in which the robot can move, thus conservatively isolating
fixed obstacles, by describing their boundaries. The map has
been generated by ROS through the gmapping [29] package,
which provides laser-based SLAM (Simultaneous Localization
and Mapping) built upon the OpenSlam’s Gmapping algorithm
[30]. The output map (saved as a .pgm file) describes the
environment according to the binary occupancy grid format,

Laser scan
data Driving

Commands

i ROS Master

Robot & Environment
Information

1%

rviz request

3 ROS Navigation Stack
Fig. 6. General schema mapping hardware to the software distributed system.

in which a black-coloured cell represents an occupied area
(obstacles), while a white one indicates free space. Such
described map is interpreted by the ROS rviz tool [31] to build
up the cost map that inflates costs, based on the occupancy grid
information and physical features of the performing robot. In
our case the original map of the whole research laboratory has
been restricted to an area where unexpected obstacles are less
probable, to fall within the assumed conditions, leading to a
160x190 cells grid with a resolution of 0.05 m/cell (Figure 7).

Binary Occupancy Grid

.
8 =T S o,

i
w Ef-

Y [meters]

X [meters]

Fig. 7. Employed portion of the mapped laboratory in Politecnico di Torino.

III. EXPERIMENTAL RESULTS

In this section the obtained results are presented through
the analysis of three test cases: in the first one no unexpected

obstacles (i.e., not present in the static map) are involved,
in the second one we go through the algorithm execution
in the presence of an unknown object (not included in the
static map, but detected before the GP path computation), and
finally the third one deals with the appearance of an obstacle
during the robot motion (i.e., after the GP has computed the
path). The explored test cases represent a preliminary set of
experiments: the authors want to demonstrate the capability
of the robot of reaching the desired goal position traversing
the safest path as soon as possible. Notice that, in general, the
overall algorithm execution time depends on (i) the chosen
GP and LP, (ii) the computational capability of the computer
executing the navigation and planning instructions, and (iii) the
goal to be reached. The given execution times (relative to each
specific test case) are to be considered for our specific choice
of planners, for reaching a specific goal position, and running
the heavier algorithm nodes on a high-performing computer.

All the considered test cases results take advantage of the
rviz visualization tool for directly comparing the planned path
with the desired SGP trajectory. As mentioned, the LP local
cost map, i.e., the portion of the global plan of which the LP
has knowledge, has been restricted. The chosen values for the
cost map dimensions represent a tradeoff for ensuring (i) a
faithful tracking of the GP plan and (ii) obstacle avoidance.
For all the tests, the starting and destination points (expressed
in meters) with the format (z,y) have been set to (4,7)
and (2.5,2), respectively (Figure 8); the blue dashed line
in the figure indicates the desired safe curve to which the
path planned by the SGP (green solid line) tends, avoiding
any intersection with the boundary curves (red lines) of the
obstacles.

Binary Occupancy Grid

Y [meters]

X [meters]

Fig. 8. MATLAB simulation plot for the SGP algorithm. A subset of the
computed waypoints is highlighted with green dots.

Furthermore, with the aim of demonstrating the achieved
results, the execution of the algorithms in all test cases has
been collected in the video that can be found in [32].

A. Test Case 1: absence of unexpected obstacles

The results obtained from the execution of the proposed
algorithm in the first test case are reported in Figure 9.

Fig. 9. rviz view during Test Case 1 execution.

As it can be seen, the GP (green line) faithfully tracks the
SGP generated path, and the LP also follows precisely the
GP as a consequence of the ad-hoc tuning performed on the
local cost map parameters. Consider that, if the A* algorithm
were used, it would generate a plan going straight to the goal
position: however, we search for an optimal solution (in terms
of safety) that leads the robot to reach a safe virtual track as
soon as possible, making it part of the plan. This expected
behaviour can be viewed within the “Test Case 1” section of
the video: the time needed to reach the goal position is 43.05 s.

B. Test Case 2: behaviour with obstacles not in static map

The resulting behaviour generated by the execution of the
proposed algorithm in the second test case is reported in
Figure 10.

The reported screenshot shows that the GP-generated path
deviates from the desired path since the sensor data detected
an unexpected obstacle; being the global cost map updated
with this new information, the traversed path going backwards,
i.e., from the destination point to the starting point, will be the
same. The test case execution is shown in the “Test Case 2”
video section: the execution time is 57.34 s.

C. Test Case 3: behaviour with dynamic obstacles

The execution results of the proposed algorithm in the third
test case are reported in Figure 11.

As shown, at first the GP computes a path coherent with
the desired one, due to the absence of new obstacles from the
beginning. Instead, when an unexpected obstacle is detected
by the laser range finder during the robot motion, the LP
re-plans the path in order to avoid it, trying to go back to
the desired curve, when possible. The present test case has
been considered in order to show that, while the robot moves
towards the safety curve, if something or someone enters the

Fig. 10. rviz view during Test Case 2 execution.

scene, a safe behaviour is preserved, as shown in the “Test
Case 3” section of the video, in which a human operator
appears at 05:55 and the reaction of the LP lets the robot
avoid him. The overall execution time in this case is 52.39 s.

IV. CONCLUSIONS AND FUTURE WORKS

This paper presents a global planning algorithm ensur-
ing path following and obstacle avoidance, implemented by
modifying the well-known A* algorithm to follow a set of
waypoints, tending to a safe path, generated by a supervisory
planner. Thanks to a three-level planning procedure, the goals
of the supervisory planner are imposed, while taking into
account possible differences between the real scenario and
the a-priori map used by the SGP, as well as unexpected
obstacles to be avoided on-line. The overall planner algorithm
has been experimentally tested employing a differential robot
to demonstrate its usability in practice.

The presented algorithm can be seen as an improvement of
the global planning in the sense that introduces the capability
of following a set of pre-defined waypoints while ensuring a
collision free motion. Indeed, the traditional global planning
algorithms with path tracking do not include the capability
of avoiding unpredicted obstacles, which is a fundamental
requirement in the upcoming industrial scenario that features
human operators and mobile platforms.

Furthermore, the developed algorithm employs the A* path
search (including obstacle avoidance) when the mobile robot
is located significantly far away from the waypoints. In such a
way, whenever the platform is sufficiently close to one of the
desired waypoints, it is “attracted” by the path computed by
the SGP. Nevertheless, one of the waypoints can be reached
by simply sending a specific goal position to the mobile base,
through the Action server provided by ROS.

The role of this work is mainly the implementation of a lab-
oratory real robot demonstrator executing the SGP algorithm.
At this stage, the SGP plan computation is performed off-
line, but a possible improvement would include the algorithm

Fig. 11. rviz view during Test Case 3 execution. The top figure reports the
plan before the obstacle appears, while the bottom one shows the re-planning
action.

execution with an on-line re-planning behaviour involving the
SGP as well.

Moreover, one of the objectives of our future work is
to extend the proposed navigation paradigm to multi-agent
scenarios. Indeed, by exploiting the results given in [17],
the supervisory algorithm reviewed in Section II-A can be
adapted to coordinate multiple mobile robots with the aim
of patrolling selected paths with a prescribed formation, while
avoiding collisions with each other and with fixed obstacles in
the environment. Such an extension of the proposed planning
procedure is aimed at meeting the main requirements of the
Smart Factories of the future, in which a growing presence
of autonomous mobile robots is expected to enhance the
flexibility of the production lines.

ACKNOWLEDGEMENTS

The authors would like to thank Stefano Primatesta for his
invaluable suggestions in the experimental application of the
approach.

Algorithm 1: Proposed algorithm with path following.

1 Input: map, start position, goal position
2 Output: path
/* Set—-up cell expansion lists */
3 openList ; // Declare the open list
4 closedList ; // Declare the closed list
/* Insert starting cell in the open list */
5 openList.insert(start)
6 while openlList is not empty do

/* Pop cell c with lowest f(c) off the openList
*/
7 ¢ = openList.pop()
/* Push cell c into the closedList */
8 closedList.push(c)
9 foreach neighbor n of cell c do
10 if neighbor n is the destination cell then
11 n.parent = ¢ ; // Assign parent node
12 Stop searching
13 else if neighbor n ¢ closedList and is not
blocked then
14 if n is a waypoint then
15 Assign minimum values to n.g, n.h and
TL.hWP
16 else if c is a waypoint then
17 L Assign minimum values to n.h and
n.th
18 else if waypoints have been traversed all
then
19 L Assign minimum values to n.hy p
20 else
21 if (n € openList) and (new f(n) >
old f(n)) then
2 | Ignore n
23 else
24 n.g = n.g + distance from c to n
25 n.h = distance from n to destination
cell
26 n.hy p = distance from n to next
waypoint
/* Compute f(n) */
27 n.f=n.g+nh+nhwyp
/* Assign parent cell */
28 n.parent = ¢
/* Insert cell n in the openList
*/
29 openList.insert(n)

/* Trace the output path from the destination cell
*/
30 p = dest
31 while p.parent is not null do

32 Path.push(p)
33 p = p.parent

34 Path.push(p)

[1]
[2]

[3]

[4]
[5]

[6]

[7]
[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269-271, 1959.

J. Yao, C. Lin, X. Xie, A. J. Wang, and C.-C. Hung, “Path planning
for virtual human motion using improved A* star algorithm,” in 2070
Seventh international conference on information technology: new gen-
erations. 1EEE, 2010, pp. 1154-1158.

M. Korkmaz and A. Durdu, “Comparison of optimal path planning
algorithms,” in 2018 14th International Conference on Advanced Trends
in Radioelecrtronics, Telecommunications and Computer Engineering
(TCSET). IEEE, 2018, pp. 255-258.

S. Koenig and M. Likhachev, “D™* Lite,” Aaai/iaai, vol. 15, 2002.

D. Ferguson, M. Likhachev, and A. Stentz, “A guide to heuristic-
based path planning,” in Proceedings of the international workshop
on planning under uncertainty for autonomous systems, international
conference on automated planning and scheduling (ICAPS), 2005, pp.
9-18.

L. Kavraki and J.-C. Latombe, “Randomized preprocessing of con-
figuration for fast path planning,” in Proceedings of the 1994 IEEE
International Conference on Robotics and Automation. 1EEE, 1994,
pp. 2138-2145.

S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

P. Corke, Robotics, Vision and Control: Fundamental Algorithms In
MATLAB® Second, Completely Revised. Springer, 2017, vol. 118.

J. Kuffner and S. LaValle, “An efficient approach to path planning using
balanced bidirectional RRT search,” Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, Tech. Rep, 2005.

E. Taheri, M. H. Ferdowsi, and M. Danesh, “Fuzzy Greedy RRT Path
Planning Algorithm in a Complex Configuration Space,” International
Journal of Control, Automation and Systems, vol. 16, no. 6, pp. 3026—
3035, 2018.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research, vol. 30,
no. 7, pp. 846-894, 2011.

Z. Tahir, A. H. Qureshi, Y. Ayaz, and R. Nawaz, “Potentially guided
bidirectionalized RRT* for fast optimal path planning in cluttered
environments,” Robotics and Autonomous Systems, vol. 108, pp. 13-27,
2018.

J. Tu and S. X. Yang, “Genetic algorithm based path planning for a
mobile robot,” in 2003 IEEE International Conference on Robotics and
Automation (Cat. No. 03CH37422), vol. 1. 1EEE, 2003, pp. 1221-1226.
B. Herndndez and E. Giraldo, “A Review of Path Planning and Control
for Autonomous Robots,” in 2018 IEEE 2nd Colombian Conference on
Robotics and Automation (CCRA). 1EEE, 2018, pp. 1-6.

G. Antonelli, S. Chiaverini, and G. Fusco, “A fuzzy-logic-based ap-
proach for mobile robot path tracking,” IEEE Transactions on Fuzzy
Systems, vol. 15, no. 2, pp. 211-221, 2007.

E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial
potential functions,” IEEE Transactions on Robotics and Automation,
vol. 8, no. 5, pp. 501-518, 1992.

C. Possieri and M. Sassano, “Patrolling and collision avoidance beyond
classical navigation functions,” in European Control Conference (ECC).
IEEE, 2018, pp. 1821-1826.

, “Motion Planning, Formation Control and Obstacle Avoidance for
Multi-Agent Systems,” in 2018 IEEE Conference on Control Technology
and Applications (CCTA). 1EEE, 2018, pp. 879-884.

C. Possieri and A. Tornambe, “On polynomial vector fields having
a given affine variety as attractive and invariant set: application to
robotics,” International Journal of Control, vol. 88, no. 5, pp. 1001-
1025, 2015.

M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

ROS Navigation Stack Official Documentation. Accessed: April 2019.
[Online]. Available: http://wiki.ros.org/navigation

MATLAB Robotics System Toolbox ROS Interface Doc-
umentation. Accessed: April 2019. [Online]. Avail-
able: https://www.mathworks.com/help/robotics/robot-operating-system-
ros.html

ROS actionlib Official Documentation. Accessed: April 2019. [Online].
Available: http://wiki.ros.org/actionlib

S. Baldi, N. Maric, R. Dornberger, and T. Hanne, “Pathfinding Optimiza-
tion when Solving the Paparazzi Problem Comparing A* and Dijkstra’s
Algorithm,” in 2018 6th International Symposium on Computational and

Business Intelligence (ISCBI). 1EEE, 2018, pgg 16-22.
B. P. Gerkey and K. Konolige, “Planning and control in unstructured

terrain,” in ICRA Workshop on Path Planning on Costmaps, 2008.

M. Inc, Pioneer 3 Operations Manual.

S. A. Waldkirch, PLMS200/211/221/291 Laser Measurement Systems.
Raspberry Pi site. Accessed: April 2019. [Online]. Available:
https://www.raspberrypi.org/

[29]

(30]

[31]

(32]

ROS gmapping Official Documentation. Accessed: April 2019. [Online].
Available: http://wiki.ros.org/gmapping

G. Grisetti, C. Stachniss, W. Burgard et al., “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE transactions
on Robotics, vol. 23, no. 1, p. 34, 2007.

ROS rviz Official Documentation. Accessed: April 2019. [Online].
Available: http://wiki.ros.org/rviz

Test Cases with the Pioneer3DX. Accessed: April 2019. [Online].
Available: https://youtu.be/ZnBrdG6uKfw

