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Abstract—We present an adaptive algorithm for the automated
generation of parameterized macromodels of electromagnetic
structures. The proposed framework is able to select a quasi
minimal distribution of simulation points over the parameter
space, which can be up to three dimensions. The effectiveness of
the proposed approach is demonstrated on a patch antenna.

I. INTRODUCTION

The use of parameterized macromodels has become more
and more popular in a wide variety of applications, includ-
ing antenna analysis and design [1]. The optimization of
electromagnetic structures, in fact, requires the evaluation of
the system response for different values of its constitutive
parameters, which can be related to geometry or material prop-
erties. A useful tool for this type of process is represented by
parameterized macromodels, which provide an approximation
of the frequency response of the structure, while reproducing
at the same time its dependence on a number of parameters.

Parameterized macromodels can be obtained by applying a
polynomial/rational fitting process to a number of frequency
responses sampled in the parameter space. After an identifica-
tion procedure, such models become a valid surrogate of the
original structure for system-level analysis, allowing for a fast
evaluation of the system response compared to a full-wave
simulation.

An accurate approximation of a parameterized system re-
quires a large number of full-wave reference simulations in
the parameter space, which generally come from first-principle
solvers. Since the computational cost and runtime of such
simulations may be considerable, an important objective is
to limit their number, so that only the strictly necessary data
required to generate an accurate behavioral model are actually
computed. Once the model has been generated, moreover, a
common requirement for it is to be both stable and passive,
so that it can be safely used in system-level simulations.

In this paper, we present an adaptive algorithm for the
identification of a minimal set of simulation points in the
parameter space. This set is used to generate a uniformly-
accurate multivariate macromodel, whose stability and pas-
sivity are checked and, if necessary, enforced. The choice of
simulation points is based on the evaluation of three different
metrics, which take into consideration the distribution of points
in space, the accuracy of the macromodel built during each
iteration and the in-band passivity violations of such model.

The main advancement with respect to the work presented in
[6] is the extension to the three-parameter case.

II. AN ADAPTIVE ALGORITHM FOR POINT SELECTION

The starting point for model construction is a set of fre-
quency responses of the structure provided by a field solver,
which we denote as

H̆k,m = H̆(jωk;ϑq), k = 1, . . . , k̄, q = 1, . . . , q̄, (1)

where ϑ = [ϑ1, ..., ϑρ]T ∈ Θ ⊂ Rρ represents a vector of ρ
external parameters. In this paper we consider the case where
the number of free parameters is set to ρ = 3. The model
built from (1) is obtained by means of the Parameterized
Sanathanan-Koerner (PSK) iteration [2], [3], [4], which seeks
for a model in the form

H(s;ϑ) =
N(s,ϑ)

D(s,ϑ)
=

∑n̄
n=0

∑¯̀

`=1 Rn,` ξ`(ϑ)ϕn(s)∑n̄
n=0

∑¯̀

`=1 rn,` ξ`(ϑ)ϕn(s)
(2)

where ξ`(ϑ) denotes some parameter-space basis functions
and ϕn(s) are the frequency-domain partial fraction basis
functions. Through an iterative process the numerator and
denominator coefficients, Rn,` and rn,`, are numerically de-
termined. The iterative process stops when the model is
sufficiently accurate, hence when the model-data error is below
a given threshold ε

E(ϑq) = max
i,j

√√√√1

k̄

k̄∑
k=1

∣∣∣Hij(jωk;ϑq)− (H̆k;q)ij

∣∣∣2 < ε ∀q

(3)
In addition, the final model is required to be uniformly stable
and passive, thus it must satisfy the Uniform Bounded Realness
conditions:

a) H(s,ϑ) regular for <{s} > 0 and ∀ϑ ∈ Θ,
b) H∗(s,ϑ) = H(s∗,ϑ) ∀s ∈ C and ∀ϑ ∈ Θ,
c) I−HH(s,ϑ)H(s,ϑ) ≥ 0 for <{s} > 0 and ∀ϑ ∈ Θ.
The aim is to construct a parameterized model H(s,ϑ)

using a minimal number of points q̄ in the parameter space,
which translates into finding the points ϑq associated to best
parameter combinations allowing to fully characterize the
system response. Such points ϑq are obtained through an
adaptive sampling algorithm, which iteratively selects the best
positions in the parameter space where new points should be



added to obtain a uniformly accurate model. This approach
is not new, as it was already presented in [6], [7]. The main
novelty in this paper is the extension to the tri-variate case.

The algorithm starts by selecting a small set of q0 points
Q0 = {ϑ1, . . . ,ϑq̄0} randomly distributed on the parameter
space Θ, where each point ϑq = [ϑ1

q, ϑ
2
q, ϑ

3
q] corresponds to

a specific combination of parameter values, in turn associated
to a specific configuration of the structure under analysis. The
aim of the algorithm is to identify at each i-th iteration a
set of new simulation points Pi, so that the total set becomes
Qi = Qi−1∪Pi. In order to do so, at each i-th iteration of the
algorithm the space is subdivided into its Voronoi tessellation
[5] using the available simulation points ϑq as seed points,
giving rise to a set of disjoint cells Ci;q . The cells that will
host the new points ϑq ∈ Pi are identified by means of three
metrics, which at every iteration are evaluated and properly
combined for an adaptive choice of new points. The selected
cells, in fact, are those where the weighted sum of the three
metrics is higher. A detailed description of such metrics is
given below.

A. Exploration

The exploration metric aims at positioning new points in
the undersampled areas, which have not been explored yet and
might need further simulation points [5]. This is measured in
practice by considering the normalized volume of each cell
Ci;q , meaning the relative portion of space occupied by each
cell with respect to the parameter space Θ. The exploration
metric can then be defined as

Λ′i;q =
|Ci;q|
|Θ|

. (4)

B. Model-data Error

At each i-th iteration, once the set of new points Pi has
been identified, an intermediate macromodel is constructed
exploiting the modeling procedure presented in (2). This model
is then used to calculate the second metric, which consists of
the error between the intermediate model and the simulation
data at each point ϑq . The model-data error metric can be
formulated as

Λ′′i;q =
Ei(ϑq)∑q̄i
q=1 Ei(ϑq)

. (5)

where the error E(ϑq) is the one reported in (3). The use of
such metric is based on the assumption that new points must
be added in the regions where the intermediate model is less
accurate [6], [7]. Since the algorithm takes care that proper
orders are selected both for the frequency-domain and the
parameter-space bases, an inaccurate model is most probably
the result of an insufficient amount of data, leading to poor
fitting.

C. Passivity violations

The two metrics presented above ensure that the new
simulation points are selected targeting a final model which
is uniformly accurate over the parameter space. However, this
is not sufficient to ensure also the stability and passivity of

the model, which is the final goal in this paper. Assuming
that simulation data coming from a field solver are passive,
the intrinsic nature of the fitting process as an approximation
procedure can lead to a non-passive model. Moreover, the
model error metric presented in II-B has a strong limitation,
due to the fact that it can be evaluated only in those points
where simulation data are present, while no value can be
inferred on the remaining parameter space. These are the main
motivations behind the use of a third metric, which is based
on the evaluation of passivity violations of the intermediate
macromodels [6], [7]. A model built starting from passive data,
in fact, turns out to be non-passive in those regions where
the model is physically inconsistent, thus highly inaccurate:
passivity violations can then be used to detect such regions,
which consequently need further sampling. The third metric,
thus, consists in evaluating the extent of passivity violations,
directly linked to the extent of model inaccuracy.

Recalling the Uniform Bounded Realness conditions pre-
sented in Sec. II, it can be inferred that a model is passive
at (jω,ϑ) if σmax(H(jω,ϑ)) ≤ 1, where σmax indicates the
maximum singular value of model response. If a passivity
violation occurs, it can be located at a frequency ω inside the
modeling band Ω, or it can be out-of-band. For our purpose,
only in-band violations are relevant, as they directly come from
poor model accuracy. Thus, the extent of a passivity violation
can be expressed as

S(ϑp) = max
ω∈Ω

σmax(Hi(jω,ϑp)). (6)

The engine that we use to find the worst-case passivity vio-
lations is the Skew-Hamiltonian/Hamiltonian (SHH) adaptive
sampling scheme presented in [8], [9]. This is based on the
construction of the SHH matrix pencil (MS(ϑ),KS), defined
as

MS(ϑ) =

[
A(ϑ) BBT

−CT(ϑ)C(ϑ) −AT(ϑ)

]
KS =

[
ET 0
0 E

] (7)

and on the extraction of its purely imaginary eigenvalues. If
any such eigenvalues are found, their imaginary part corre-
sponds to the frequencies at the onset of passivity violations.
The algorithm in [9] is here used to detect the location of
the non-passive points ϑ̂p across the entire parameter space,
corresponding to local passivity violation maxima. Local in-
band passivity violations are then defined as

∆i(ϑ̂p) = max{S(ϑ̂p)− 1, 0} (8)

Each such point ϑ̂p such that ∆i(ϑ̂p) > 0 is associated to the
Voronoi cell Ci;q to which it belongs. Finally, the passivity
violation metric for each cell Ci;q is defined as the largest
passivity violation extent among all its internal points

Λ′′′i;q = max
ϑ̂p∈Ci;q

∆i(ϑ̂p). (9)



D. Global Metric and Grid Refinement

The three above metrics are combined in a global metric

Λi;q = w′Λ′i;q + w′′Λ′′i;q + w′′′Λ′′′i;q (10)

where the weights w′, w′′, w′′′ are used to adjust the contri-
bution of the single metrics to the general criterion for point
selection. Cells Ci;q are ranked based on the value of metric
Λi;q , and a fraction β of the cells with high ranking will be
chosen to host the new points at the next iteration. In the
examples provided in this paper, β has been set equal to 1/3, in
order to provide a good trade-off between algorithm adaptivity
and number of iterations. Once a cell Ci;q has been selected,
the new point will be placed in the centroid of the largest
polyhedron obtained by joining the simulation point ϑq to all
cell vertices.

III. ENFORCING UNIFORM PASSIVITY

The iterative procedure for point selection stops when the
number of simulations is sufficient to obtain a uniformly
accurate model. There is no guarantee, however, that such
model is stable an passive. For this reason both model stability
and passivity are first checked and, if necessary, enforced.
Further details on the perturbation-based procedures used for
these operations can be found on [8], [9] and [10].

IV. EXAMPLES

A. Patch antenna

We validate the proposed method on a patch antenna, whose
representation is reported in Fig. 1. The patch has a width of 16
mm, while the height is 12.5 mm. The dielectric layer is 0.794
mm thick (ε = 2.213). The structure has been parameterized,
in particular ϑ1 corresponds to the stub length L ∈ [4 − 10]
mm, ϑ2 to the stub width W ∈ [2.5 − 4] mm and ϑ3 to
the stub position S ∈ [7 − 9] mm. The system responses are
retrieved from the EM simulator ADS-Momentum, with k̄ =
250 frequency samples for each configuration of the structure.

The algorithm starts with an initial set of q0 = 23 points, 15
of which are randomly scattered in space, while the remaining
8 are placed on the vertices of the space. The framework
requires 8 iterations of the algorithm, for a total of 220 points,
to obtain a uniformly accurate macromodel. The intermediate
results of the selection process can be seen in Fig. 2, where
the Voronoi tessellation of the parameter space is represented
at different algorithm iterations, on a color scale representing
the logarithm of the model error in each simulation point: it
can be noticed how the overall model accuracy progressively
increases, tending toward a uniform accuracy across the space.
The final model has been validated on a set of 10 model
responses (not used for model construction) swept along the
diagonal of the space. The results are reported in Fig. 3.

The final model has n̄ = 20 poles and Chebychev polyno-
mial bases of order ¯̀

1 = ¯̀
2 = ¯̀

3 = 2 for both numerator and
denominator.

Fig. 1: A top-view of the patch antenna.

Iteration 0 Iteration 2

Iteration 4 Iteration 6

Iteration 7 Iteration 8

Fig. 2: Voronoi diagram of the parameter space at different
iterations for the single patch antenna example.
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Fig. 3: Comparison between passive model and experimental
data of the single patch antenna for a selected set of responses.

V. CONCLUSIONS

We presented a fully automated adaptive algorithm for the
generation of passive tri-variate macromodels. The algorithm
starts from a small subset of simulation points in the parameter
space and, through the evaluation of three different metrics, is
able to iteratively select the best position for new points in the
parameter space. The selected simulation points are used for
the generation of a uniformly accurate tri-variate macromodel,
whose stability and passivity are checked and eventually
enforced through a perturbation process. The effectiveness of
the proposed method is illustrated on a single antenna design.
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