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Opinion Dynamics on Correlated Subjects
in Social Networks

Alessandro Nordio, Member, IEEE, Alberto Tarable, Member, IEEE, Carla Fabiana
Chiasserini, Fellow, IEEE, Emilio Leonardi, Senior Member, IEEE

Abstract—Understanding the evolution of collective beliefs is of critical importance to get insights on the political trends as well as on
social tastes and opinions. In particular, it is pivotal to develop analytical models that can predict the beliefs dynamics and capture the
interdependence of opinions on different subjects. In this paper we tackle this issue also accounting for the individual endogenous
process of opinion evolution, as well as repulsive interactions between individuals’ opinions that may arise in the presence of an
adversarial attitude of the individuals. Using a mean field approach, we characterize the time evolution of opinions of a large population
of individuals through a multidimensional Fokker-Planck equation, and we identify the conditions under which stability holds. Finally, we
derive the steady-state opinion distribution as a function of the individuals’ personality and of the existing social interactions. Our
numerical results show interesting dynamics in the collective beliefs of different social communities, and they highlight the effect of
correlated subjects as well as of individuals with an adversarial attitude.

Index Terms—Social networks, belief dynamics, opinion dynamics, mean-field approach, Fokker-Planck equation, stability.

F

1 INTRODUCTION

An increasing deal of attention has recently been devoted to the
understanding and the analysis of collective social belief dynamics
over social networks [1], [2], [3], [4]. This interest has been
stimulated by the growing awareness of the fundamental role that
social networks and media may play in the formation and diffusion
of opinions/beliefs. For example, it is widely recognized that
social media have played a pivotal role in several recent political
events, such as the “Arabian Spring” or the last US presidential
campaign. Moreover, the availability of a large amount of social
data generated by users has attracted the interest of companies and
government agencies, which envision opportunities for exploiting
such data to get important real-time insights on evolution of trends,
tastes, and opinions in the society.

Several experimental approaches, based on sentiment analysis
[5], have been proposed for a timely analysis of social dynamics.
Furthermore, several analytic frameworks have been developed
with the goal of understanding and predicting dominant belief
dynamics. These models aim at providing important insights on
the dynamics of social interactions, as well as possible explanatory
mechanisms for the emergence of strong collective opinions.
Additionally, they have also been used to devise possible efficient
strategies to influence social beliefs.

The existing models can be coarsely partitioned into two
classes:

• Discrete models, in which a discrete variable is associated
to every individual corresponding to a node on a graph, and
represents the current belief/position of each individual,
e.g., favorable, contrary, neutral, with respect to the con-
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sidered subject. This body of work also includes studies
such as [6], [7] where the naming game is used to model
phenomena such as opinion dynamics in a population
of agents. The social interactions are represented by the
graph edges and the state of a node changes for effect
of the interactions with its neighbors, i.e., the state of a
node is a deterministic/stochastic function of the states
of its neighboring nodes. Several different mechanisms,
such as the Voter Model [8], Bootstrap-percolation [9],
and Linear Threshold Models [10], have been proposed.
The dynamics of the process terminates when the system
reaches a globally consistent configuration.

• Continuous models, in which the opinion of individuals on
a particular subject is described by means of a continuous
variable, whose value is adapted as a result of social
interactions with individuals having different opinions
[11], [12], [13], [14], [15], [16], [17], [18]. Also in this
case, social interactions between individuals are typically
modeled by using (static or dynamic) graphs, which reflect
the structure of the society and describe how individuals
interact.

All of the above pieces of work have considered that the
beliefs of an individual depend on her social interaction and
vary for effect of pairwise “attractive” forces. In particular, a
sub-class of continuous models that have attained considerable
popularity, considers the so-called bounded confidence, according
to which interactions between individuals are effective only if
their beliefs are sufficiently close to each other [13], [14], [15],
[16], [17], [19], [20], [21], [22]. Furthermore, all previous models
represent the evolution of the individuals’ opinions about a specific
subject, neglecting how beliefs on different, yet correlated, topics
may vary over time. This is essentially equivalent to assume the
evolution of opinions on different subjects to be independent.
Unfortunately, things are much more involved, and opinions on
correlated topics exhibit complex inter-dependencies. Consider
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for example the following situation: A group of people discuss
about two correlated subjects, e.g., fish (in general) and salmon (in
particular) as a part of diet. A person disliking fish also dislikes
salmon. If the influence process changes the individual’s attitude
toward fish, say promoting fish as a healthy part of a diet, then
such a person may change her food preferences in favor of salmon
as well.

So far, only few pieces of work [23], [24], [25], [26], [27] have
tackled the dynamics of opinions on multiple, correlated subjects.
In most of such pieces of work, opinions are represented as vector-
valued variables, evolving over a multidimensional space in which
every axis represents a different subject. In particular, in [23], [24],
[25] the evolution of opinions on different axes exhibit a weak
dependency, i.e., two users interact only if their Euclidean distance
between opinions does not exceed a prefixed threshold. The pieces
of work in [26], [27], instead, propose a linear multidimensional
model that explicitly accounts for the interdependence of opinions
on various topics, and they provide conditions for both stability
and convergence [27].

Our contribution and methodology. In this paper, we move a
step forward with respect to the existing work. First, we generalize
the model in [26], [27], introducing a noise component, which
represents the individual endogenous process of opinion/belief
evolution. Second, we enhance the model by accounting for
possible repulsive interactions due to adversion between individ-
uals. Using such a model and adopting a mean field approach
holding for large population of users, we characterize the evolution
of opinions on correlated subjects through a multidimensional
Fokker-Planck equation. We derive ergodicity conditions (i.e.,
conditions for the existence of a unique stationary solution), and,
under mild assumptions, we obtain a closed-form expression for
the stationary distribution of individuals’ opinions. We remark that
the stability analysis in the presence of an adversarial individuals’
attitude is much less obvious than in the traditional models (such
as [18]) where only attractive forces were considered. Finally, we
provide novel, efficient numerical techniques to analyze both the
steady state and the transient solution of the Fokker-Planck (FP)
equation, and show interesting effects of opinions dynamics and
correlated topics in some relevant scenarios.

1.1 Paper organization
The paper is organized as follows. In Sect. 2 we introduce the
model and we derive the Fokker-Planck equation based on mean-
field approach. In Sect. 3 we develop a methodology for the
solution of the FP equation. In Sect. 4 we analyse the stability of
the system depending on the different parameters. Sect. 5 presents
an analysis of the steady-state regime. in Sect. 6 we summarize
the mathematical tools we have used in the paper. Numerical
results are reported in Sect 7. Finally we draw some conclusions
in Sect. 8.

1.2 Notation
Boldface uppercase and lowercase letters denote matrices ad
column vectors, respectively. In is the identity matrix of size n
and the transpose of the generic matrix A is denoted by AT. The
notation A = {a(i, j)} is sometimes used to define a matrix
A whose (i, j)-th element is ai,j . Similarly, a = cat {a(i)}
indicates that the column vector a is obtained by concatenating the
column vectors ai. The Laplace transform of the function f(x) is
denoted by f̂(s). Finally, the symbol ⊗ denotes the Kronecker
product.

2 SYSTEM MODEL

Consider a set of agents U , with cardinality U , with agent i ex-
hibiting personality Pi ∈ P . The agent’s personality accounts for
her interests and habits, e.g., the social networks to which she has
subscribed or the forums in which she participates. We consider
that agents have opinions onN different topics and that an opinion
formed on one subject is influenced by the opinions on some
of the other subjects, i.e., topics are interdependent [27], [28],
[29]. We define C as the coupling matrix, with cmn expressing
the entanglement of subject m on subject n. The opinions that
agent i ∈ U has on the different subjects is represented by a
vector of size N , denoted by xi(t) ∈ XN , which evolves over
continuous time, t ∈ R+. We define the prejudice vector u(Pi) as
the a-priori N -dimensional belief that agent i has on the different
subjects; also the prejudice depends on the agent’s personality. We
represent through a graph the existence and the intensity of social
relationships between users, which depend on the personality of
the agents and on the similarity between the agents’ beliefs. The
actual influence that agents exert on each other then depends on
their opportunity to interact, as well as on their sensitivity to
others’ beliefs.

As a result, the evolution of agent i’s belief over time can be
represented as:

xi(t+ dt) = xi(t) + Cdx,i(t) (1)

where xi(t) denotes the belief of agent i on the N topics at the
current time instant, dx,i(t) accounts for the variation of agent i
opinions in the time interval [t, t + dt], and C accounts for the
influence of the opinion on one topic on the opinions on other
topics. The quantity dx,i(t) is given by

dx,i =
1−α(Pi)

U − 1

∑
j∈U
j 6=i

ζ (Pi,Pj) [xj(t)−xi(t)] dt︸ ︷︷ ︸
(a)

+α(Pi) [u(Pi)−xi(t)] dt︸ ︷︷ ︸
(b)

+σ dwi(t)︸ ︷︷ ︸
(c)

. (2)

The meaning of the terms on the right hand side of the above
expression is as follows.

• The first term (a) represents the interaction of agent i with
all other agents in U . In particular,

– α(Pi) ∈ (0, 1] indicates how insensitive i is to
other agents’ beliefs, which, as also discussed in
[30], plays an important role in opinion dynamics.
This parameter will also be referred to as the
agent’s level of stubbornness. When α(Pi) → 1,
the agent becomes completely insensitive to others’
beliefs (stubborn). Instead, as α(Pi) decreases, the
agent is more inclined to accept others’ beliefs
and is less conditioned by her own prejudice.
For brevity, in the following we denote ᾱ(Pi) =
1− α(Pi);

– ζ(Pi, Pj) represents the presence and the strength
of interactions between agents i and j (hereinafter
also referred to as mutual influence). It is a function
of both agents’ personality and defines the structure
of the social graph [30]. Note that the interactions
between agents do not depend on the proximity
of their opinions, i.e., they are independent of
xj(t)−xi(t). Also, whenever ζ(Pi, Pj) = 0, the
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two agents do not influence each other, i.e., they
never interact. Finally, it is fair to assume that
each element of ζ(Pi, Pj) is upper bounded by a
constant and is continuous with respect to its first
and second arguments.

• The second term (b) represents the tendency of an agent
to retain her prejudice.

• The third term (c) accounts for the endogenous process
of the belief evolution within each agent. Such process is
modeled as an i.i.d. standard Brownian motion with zero
drift and scale parameter σ2 [4].

We remark that xi(t+ dt), i.e., the belief of agent i at time t+ dt,
depends on her personality Pi and the current agent’s belief. In
other words, the temporal evolution of agents’ beliefs {xi(t), i ∈
U} is Markovian over YU , where Y = P × XN is an (N + 1)-
dimensional continuous space. Furthermore, in the following we
assume that α(Pi), ζ(Pi, Pj), and each element of u(Pi) are
continuous with respect to their arguments. For ease of notation,
we denote Z(P1, P2) = ζ(Pi, Pj)C; thus, by replacing (2) in (1),
the latter can be rewritten as

xi(t+ dt) = xi(t)+
1−α(Pi)

U − 1

∑
j∈U/{i}

Z (Pi,Pj) [xj(t)−xi(t)] dt

+α(Pi)C [u(Pi)−xi(t)] dt+ σC dwi(t) . (3)

2.1 From the discrete to the continuous model

We now extend the above model to the continuous case by using
the mean-field theory. We leverage on the procedure presented
in [18] and apply it to the multi-subject scenario. More in detail,
we define the empirical probability measure, ρ(U)( dp, dx, t) over
Y at time t, as:

ρ(U)( dp, dx, t) =
1

U

∑
i∈U

δ(Pi,xi(t))( dp, dx) . (4)

In the above expression, δ(Pi,xi(t))( dp, dx) is the Dirac measure
centered at (Pi,xi(t)), i.e., δ(Pi,xi(t))( dp, dx) represents the
mass probability associated with opinion xi(t) of agent i, which
has personality Pi. Note that in (4) agents are seen as particles
in the continuous space Y , moving along the opinion axis x. As
shown in [18], by applying the mean-field theory [31], [32], as
U → ∞, ρ(U)( dp, dx, t) converges in law to the asymptotic
distribution ρ(p,x, t), provided that ρ(U)( dp, dx, 0) converges
in law to ρ(p,x, 0). Moreover, ρ(p,x, t) can be obtained from
the following non-linear Fokker-Planck (FP) equation [31], [32]:

∂

∂t
ρ(p,x, t) =−

N∑
n=1

∂

∂xn
[µn(p,x, t)ρ(p,x, t)]

+
1

2

N∑
m,n=1

Dmn
∂2

∂xm∂xn
ρ(p,x, t) (5)

where Dmn is the (m,n)-th entry of the diffusion tensor
D = σ2CCT, and µn(p,x, t) is defined as the component of
the instantaneous speed along axis xn of a generic agent whose
personality and opinion at time t are equal to p and x. The

instantaneous speed is given by:

µ(p,x, t) = ᾱ(p)

∫
y∈XN

∫
P

Z(p, q)(y − x)ρ(q,y, t) dNy dq

+ α(p)C[u(p)− x]

= ᾱ(p) [γ(p, t)− Γ(p)x] + α(p)C[u(p)− x]

= −Ξ(p)x + φ(p, t) (6)

where we defined

Γ(p),
∫∫

y,q
Z(p, q)ρ(q,y, t) dNy dq

(a)
=

∫
q
Z(p, q)ρ0(q) dq, (7)

where in (a) we wrote ρ(q,y, t) = ρ(y, t|q)ρt(q) and exploited
the fact that by definition

∫
y ρ(y, t|q) dNy = 1. Since the

distribution of the agents’ personality at time t, ρt(q), does not
depend on t, we have: ρt(q) = ρ0(q). Furthermore,

γ(p, t) ,
∫∫

y,q
Z(p, q)yρ(q,y, t) dNy dq, (8)

Ξ(p) , ᾱ(p)Γ(p) + α(p)C, (9)

φ(p, t) , ᾱ(p)γ(p, t) + α(p)Cu(p) (10)

and we considered a zero-drift Brownian motion process w(t).
In the following, we analyze the system dynamics by solving the
above FP equation for ρ(p,x, t) so as to obtain the distribution of
agents over Y .

3 SOLUTION OF THE FOKKER-PLANCK (FP)
EQUATION

In this section, we solve the N -dimensional FP equation, which
describes an N -dimensional Ornstein-Uhlenbeck (OU) [33] ran-
dom process. Considering a general initial density ρ(p,x, 0) =
ρ0(x|p)ρ0(p), we obtain the solution of the FP equation ρ(p,x, t)
as shown in Appendix A in the Supplemental Material:

ρ(p,x, t)=ρ0(p)

∫
y
G (x,m(p,y,t),Σ(p,t)) ρ0(y|p) dNy (11)

where G (x,m(p,y, t),Σ(p, t)) is the pdf of the Gaussian multi-
variate distribution with covariance

Σ(p, t) ,
∫ t

0
e−Ξ(p)τDe−Ξ(p)Tτ dτ (12)

and mean

m(p,y, t) , e−Ξ(p)t

[
y +

∫ t

0
eΞ(p)τφ(p, τ) dτ

]
(a)
= e−Ξ(p)ty + α(p)Ξ−1(p)

(
IN−e−Ξ(p)t

)
Cu(p)

+ᾱ(p)

∫ t

0
e−Ξ(p)(t−τ)γ(p, τ) dτ (13)

where in (a) we used the definition of φ(p, τ) provided in (10).
However, notice that m(p,y, t) in (13) is a function of γ(p, t),
which in turn is a function of ρ(p,x, t) (see (8)). As such, we have
to impose a self-consistency condition; precisely, replacing (11)
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in (8), we obtain

γ(p, t) =

∫
y

∫
q
Z(p, q)yρ(q,y, t) dNy dq

=

∫
y

∫
q
Z(p, q)yρ0(q)

∫
z
G (y,m(q, z, t),Σ(q, t))

·ρ0(z|q) dNz dNy dq

=

∫
q
Z(p, q)ρ0(q)

∫
z
m(q, z, t)ρ0(z|q) dNz dq

=γ0(p, t) + γ1(p, t) +

∫
q
Z(p, q)ρ0(q)ᾱ(q)

·
∫ t

0
e−Ξ(q)(t−τ)γ(q, τ) dτ dq (14)

where we used (13) and defined for brevity:

γ0(p, t) ,
∫
q
Z(p, q)ρ0(q)e−Ξ(q)t

∫
y

yρ0(y|q) dNy dq (15)

γ1(p, t) ,
∫
q
Z(p, q)ρ0(q)α(q)Ξ−1(q)

·
(
IN−e−Ξ(q)t

)
Cu(q) dq (16)

Interestingly, (14) is a linear Volterra equation of the second kind
[34]. We can take over time the Laplace transform of (14) and get

γ̂(p, s) = γ̂0(p, s) + γ̂1(p, s)

+

∫
q
Z(p, q)ρ0(q)ᾱ(q)X−1(s, q)γ̂(q, s) dq

(17)

where X(s, q) = sIN + Ξ(q)

γ̂0(p, s) =

∫
q
Z(p, q)ρ0(q)X−1(s, q)

∫
y

yρ0(y|q) dNy dq (18)

γ̂1(p, s) =

∫
q
Z(p, q)ρ0(q)α(q)s−1X−1(s, q)Cu(q) dq (19)

Eq. (17) is a non-homogeneous integral equation, whose solu-
tion is unique if and only if the associated homogeneous equation
has no nonzero solutions. If the solution is unique, then it gives
the solution of the FP through (11).

Remark: By restricting the definition of γ(p, t) over
an arbitrary compact domain P × [0, T ], (14) can be
rewritten in an operational form as (I − A)[γ(p, t)] =
γ0(p, t) + γ1(p, t) where the operator A[γ(p, t)] =∫
q Z(p, q)ρ0(q)ᾱ(q)

∫ t
0 e−Ξ(q)(t−τ)γ(q, τ) dτ dq. Note that, as

an immediate consequence of the structure of Volterra equations
over compact domains, we have ‖An‖ < 1 for sufficiently
large n [35, cap. 2. pp. 50–51]. Thus, (I − A)[·] is invertible
(i.e., the solution is unique) and an expression for γ(p, t) can
be obtained as γ(p, t) = (I − A)−1[(γ0(p, t) + γ1(p, t))] =∑
nAn[(γ0(p, t) + γ1(p, t))].

Provided that the integral equation (17) admits a unique
solution, in general it is still rather challenging to explicitly find
it. In the following, we will particularize our analysis to two cases
in which it is possible to find an explicit analytical expression for
such as solution.

3.1 The case of ζ(p, q) in product form

We recall that Z(p, q) = ζ(p, q)C. If ζ(p, q) = ζ1(p)ζ2(q), then
from (8) we have

γ(p, t) = ζ1(p)

∫
y

∫
q
ζ2(q)Cyρ(q,y, t) dNy dq .

= ζ1(p)b(t) (20)

Taking the Laplace transform of (20), we obtain γ̂(p, s) =
ζ1(p)b̂(s). Using the latter expression in (17) and recalling (18)
and (19), we get

γ̂(p, s) = γ̂0(p, s) + γ̂1(p, s)

+ζ1(p)

∫
q
ζ2(q)Cρ0(q)ᾱ(q)X−1(s, q)γ̂(q, s) dq

= ζ1(p)
(
b̂0(s) + b̂1(s)

)
+ζ1(p)

∫
q
ρ0(q)ᾱ(q)ζ2(q)CX−1(s, q)ζ1(q) dqb̂(s)

(21)

under the assumption that X(s, q) = sIN + Ξ(q) is invertible1.
In (21)

b̂0(s) =

∫
q
ζ2(q)Cρ0(q)X−1(s, q)

∫
y

yρ0(y|q) dNy dq (22)

b̂1(s) =

∫
q
ζ2(q)Cρ0(q)α(q)s−1X−1(s, q)Cu(q) dq . (23)

Note that we can also write

b̂(s) =

(∫
q
ρ0(q)ᾱ(q)ζ2(q)CX−1(s, q)ζ1(q) dq

)
b̂(s)

+ b̂0(s) + b̂1(s) (24)

from which, under the assumption that matrix

T(s) = IN −
∫
q
ρ0(q)ᾱ(q)ζ2(q)CX−1(s, q)ζ1(q) dq

is non singular, we obtain:

b̂(s) = T(s)−1
(
b̂0(s) + b̂1(s)

)
.

We now have an explicit solution (in the transformed domain)
for b(t). Indeed, for Re(s) sufficiently large, matrix T(s) is
non singular. Once b(t) is obtained, we can compute γ(p, t)
through (20), then m(p,y, t) in (13), and, finally, our opinion
density ρ(p,x, t) through (11).

3.2 Discrete personality distribution

Suppose that the personality distribution is discrete with M
probability masses; then we write the opinion distribution at t = 0
as

ρ0(p) =
M∑
i=1

riδ(p− pi). (25)

Consequently, the fixed-point equation (17) becomes

γ̂(pi, s) =
M∑
k=1

Z(pi, pk)rkᾱ(pk)X−1(s, pk)γ̂(pk, s)

+γ̂0(pi, s) + γ̂1(pi, s) . (26)

1. Note that invertibility is granted for Re(s) > supq ‖Ξ(q)‖
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In (26), we defined

γ̂0(pi, s) =
M∑
k=1

Z(pi, pk)rkX
−1(s, pk)x0(pk) (27)

where x0,k is the average opinion at time t = 0 corresponding to
personality pk and has been obtained by observing that the term
ρ0(q)

∫
y yρ0(y|q) dNy in (18) is equal to m(q,x, 0) = x0(q).

Also, we defined:

γ̂1(pi, s) =
M∑
k=1

Z(pi, pk)rkα(pk)

s
X−1(s, pk)Cu(pk) . (28)

Next, recalling the notation defined in Section 1.2 we define
γ̂(s) = cat{γ̂(pi, s)}, γ̂

0
(s) = cat{γ̂0(pi, s)}, γ̂

1
(s) =

cat{γ̂1(pi, s)}, x0 = cat{x0(qi)}, u = cat{u(qi)},
Ξ = diag (Ξ(p1), . . . ,Ξ(pM )), P0 = diag (r1, . . . , rM ) ⊗
IN , P1 = diag (r1α(p1), . . . , rMα(pM )) ⊗ IN , P2 =
diag (r1ᾱ(p1), . . . , rM ᾱ(pM ))⊗ IN , and

Z = {Z(pi, pj)} = {ζ(pi, pj)} ⊗C . (29)

Then, we can write (26) as

γ̂(s) = γ̂
0
(s) + γ̂

1
(s) + Z (sIMN + Ξ)

−1
P2γ̂(s) (30)

while (27) and (28) become

γ̂
0
(s) = Z (sIMN + Ξ)

−1
P0x0 (31)

and

γ̂
1
(s) = Z (sIMN + Ξ)

−1
s−1P1 (IM ⊗C) u. (32)

Let X(s) = sIMN + Ξ. Then we can solve explicitly the fixed-
point equation of (30) (in the transform domain) as

γ̂(s) =
(
IMN−ZX(s)−1P2

)−1
(
γ̂

0
(s)+γ̂

1
(s)
)

=
(
IMN−ZX(s)−1P2

)−1
ZX(s)−1

·
(
P0x0+s−1P1 (IM ⊗C) u

)
=

(
X(s)Z−1−P2

)−1 (
P0x0+s−1P1 (IM ⊗C) u

)
= Z (X(s)−P2Z)

−1 (
P0x0+s−1P1 (IM ⊗C) u

)
.

(33)

Now, let
Ψ = Ξ−P2Z . (34)

Provided that Ψ is invertible, the above solution can be inverse-
transformed to get the solution in the time domain as

γ(t) = Z
(

e−ΨtP0x0+Ψ−1
(
IMN−e−Ψt

)
P1 (IM ⊗C) u

)
.

(35)
Then ρ(p,x, t) can be obtained as described in the previous
section.

Finally, the following theorem complements the above result:

Theorem 1. i) For any finite t the Volterra equation (14) admits a
unique solution which is Lipschitz-continuous. ii) The solution
γ(p, t) of the Volterra equation (14) , under any distribution
ρ0(p), which is continuous at every point in p, is the uniform
limit of solutions γn(p, t), obtained by replacing distribution
ρ0(p) with its discrete approximation ρn(p) whose mesh-size
is 1
n .

The proof of this theorem is given following exactly the same lines

of Appendix B (which proves a similar statement under steady
state conditions).

4 STABILITY ANALYSIS

Let us define the system as stable if, for every initial condition,
the opinion distribution converges to the stationary solution for
t → ∞. In this section, we first focus on the case where the
personality distribution is discrete, then we generalize the result to
the the case of continuous personality distributions.

4.1 Discrete personality distribution

Let us state the stability conditions as follows:

• Ξ is Hurwitz-stable (i.e., all the eigenvalues of Ξ have
positive real part).

• Ψ is Hurwitz-stable.

Indeed, recalling the expression of the covariance in (12), its value
remains limited if the first condition is met, while, looking at (13)
and (35), the mean of the distribution remains limited if both
the above conditions are satisfied. In particular, when the first
condition is not met, there are some personalities for which the
opinion distribution scatters about along some directions. We call
this phenomenon type-I instability. Instead, if the first condition
is met and the second one is not, for all personalities the opinion
covariance remains limited but there are some personalities for
which the mean opinion value drifts to infinity. We will refer to
this case as type-II instability.

Below we elaborate on the conditions that are needed to ensure
the system stability.

4.1.1 Condition to avoid Type-I instability

Let λk(A) = λRk (A) + jλIk(A) be the k-th eigenvalue of matrix
A. Recall that Ξ(pi) = ᾱ(pi)Γ(pi)+α(pi)C, thus the necessary
and sufficient condition to avoid type-I instability is given by

min
k
λRk (Ξ(pi)) > 0, ∀i .

Since Γ(pi) = C
∑
h ζ(pi, ph)ρ0(ph), we can write

Ξ(pi) =

[
ᾱ(pi)

∑
h

ζ(pi, ph)ρ0(ph) + α(pi)

]
C .

It follows that the stability condition becomes[
ᾱ(pi)

∑
h

ζ(pi, ph)ρ0(ph) + α(pi)

]
min
k
λRk (C) > 0 .

Assuming that ᾱ(pi)
∑
h ζ(pi, ph)ρ0(ph) + α(pi) > 0 for every

i, then stability is ensured when

min
k
λRk (C) > 0

The above expression highlights that if the opinion dynamics along
every topic are stable, introducing a Hurwitz stable matrix C
preserves stability.

4.1.2 Condition to avoid Type-II instability

The necessary and sufficient condition to avoid type-II instability
is given by

min
k
λRk (Ψ(pi)) > 0, ∀i .
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Let us focus on the case where α(p) ≡ α. By recalling (34), we
write

Ψ = Ξ−P2Z

= ᾱΓ + αIM ⊗C− ᾱP0Z

= αIM ⊗C + ᾱ (Γ−P0Z) (36)

where Γ = diag (Γ(p1), . . . ,Γ(pM )), with Γ(pi) obtained by
discretizing (7). Then we define Γ−P0Z , Θ⊗C, where Θ is
the M ×M matrix whose (i, j)-th entry is given by

θij =

{ ∑
k 6=i ζ(pi, pk)rk, i = j
−ζ(pi, pj)ri, i 6= j .

As a consequence, considering that λ(j−1)N+i(Θ ⊗ C) =
λi(Θ)λj(C) and using (36), the condition for stability reads as
follows:

<{λi(Θ)λj(C)} > − α

1− α
<{λj(C)} ∀i, j .

Remark. In the scalar case (N = 1), the following proposi-
tions hold.

Proposition 1. If ζ(pi, pj) ≥ 0 for all i, j, Ψ is Hurwitz-stable.

Proof: If ζ(pi, pj) ≥ 0 for all i, j, Ψ is a matrix whose off-
diagonal elements are nonpositive and we can apply Theorem 1
of [36]. Precisely the Hurwitz stability of Ψ (condition J29 in
Theorem 1 of [36]) is implied by the fact that the row sums of Ψ
are all positive (condition K35 applied with diagonal matrix D =
I). Since the row sums of Ψ are all equal to α, the proposition
follows.

Proposition 2. Ψ is Hurwitz-stable if mini,j ζ(pi, pj) < 0 and,
for every i∑

i 6=j
(ζ(pi, pj)rj − |ζ(pi, pj)|ri) > −

α

1− α
. (37)

Proof: If mini,j ζ(pi, pj) < 0, the Hurwitz stability of Ψ
(condition J29 in Theorem 1 of [36]) is implied by condition N39
applied with diagonal matrix D = I, which is expressed in (37).

Note that the above propositions still hold in the case of
continuous personalities. We now present an example on the
stability conditions for a simple case as described below.

Example 1: Consider N = 1 and that there are M
personalities pi = (2i−1)

M − 1, i = 1, . . . ,M (M even),
with ri = 1

M and

ζ(pi, pj) =

{
ζ1, pipj > 0
−ζ2, pipj < 0

with ζ1, ζ2 being arbitrary positive values. Thus, Ξi is a
scalar equal to α+ ᾱ ζ1−ζ22 for all i. Moreover,

Z =

[
ζ1 −ζ2
−ζ2 ζ1

]
⊗ 1M/2

where 1n is a size-n square matrix with all entries equal to
1. Thus,

λi(Z) =


0, 1 ≤ i ≤M − 2

M ζ1−ζ2
2 , i = M − 1

M ζ1+ζ2
2 , i = M .

Since Ψ =
(
α+ ᾱ ζ1−ζ22

)
IM − ᾱ

MZ, it follows that

λi(Ψ) =

 α+ ᾱ ζ1−ζ22 , 1 ≤ i ≤M − 2
α, i = M − 1

α− ᾱζ2, i = M .

We then have type-I instability if ζ2 ≥ ζ1+2 α
1−α and type-

II instability if α
1−α ≤ ζ2 < ζ1 + 2 α

1−α . Conversely, the
system is stable iff ζ2 < α

1−α . It is easy to see that this is
equivalent to condition (37), which in this case is necessary
and sufficient.

4.2 Continuous personality distribution
We consider the case of a continuous personality distribution as
the limit case of a family of discrete distributions with increasingly
small discretization steps, ∆p. Then similarly to what done in the
previous section, we assume that the following inequality holds:

lim
∆p→0

∑
j 6=i

ζ(pi, pj)ρ0(pj)∆p−
∑
j 6=i
|ζ(pi, pj)|ρ0(pi)∆p


=

∫
ζ(p, q)ρ0(q) dq −

∫
|ζ(p, q)|dqρ0(p)

> − α(p)

1− α(p)
. (38)

We now prove that the above is the stability condition for the
continuous case, provided that some technical conditions, speci-
fied below, are met. Suppose that (38) is true for our continuous-
personality system. Then, for ∆p sufficiently small, (37) is also
satisfied for the discretized system, so that the corresponding
Ψ(∆p) is Hurwitz-stable. main-field

Next we assume that for ∆p sufficiently small:

• Ψ(∆p) is uniformly Hurwitz-stable, i.e., the minimum
real part of its eigenvalues is bounded away from zero by
an amount ε and

• Ψ−1(∆p) has a uniformly bounded norm, i.e.,
‖Ψ−1(∆p)‖ < K, ∀∆p sufficiently small andK <∞ 2.

It follows that, for ∆p sufficiently small, the fixed-point solution
in (35) is uniformly bounded from above. As ∆p→ 0, the fixed-
point solution for the continuous-personality system is uniformly

2. This last condition is implied by the previous one when Ψ(∆p) is
diagonalizable.
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bounded from above (by Theorem 1 and norm continuity) for
every finite t. Hence, the system is stable.

5 STEADY-STATE ANALYSIS

Under previous stability/ergodicity conditions, it is interesting to
analyse the limiting solution for t → ∞, which can be obtained
as solution of the associated steady state FP equation. In the most
general case, we can rewrite (5) disregarding the dependence on t,
as the following multi-dimensional FP equation:

N∑
n=1

∂

∂xn
(µn(p,x)ρ(p,x)) =

N∑
m,n=1

Dmn

2

∂2ρ(p,x)

∂xm∂xn
(39)

where ρ(p,x) = limt→∞ ρ(p,x, t) and, according to the second
line in (6), µ is given by

µ(p,x) = ᾱ(p) [γ(p)− Γ(p)x] + α(p)C[u(p)− x]

= ᾱ(p)C(β(p)− η(p)x) + α(p)C[u(p)− x]

= −w(p)C(x− f(p)) . (40)

In the above equation, we used the expressions of γ(p) and
Γ(p) in (8) and (7), respectively, and defined γ(p) = Cβ(p)
and Γ = η(p)C where η(p) =

∫
q ζ(p, q)ρ0(q) dq and

β(p) =
∫
y

∫
q ζ(p, q)yρ(q,y) dNy dq. Moreover, we defined

w(p) = ᾱ(p)η(p) + α(p) and f(p) = ᾱ(p)β(p)+α(p)u(p)
w(p) .

Interestingly, if vector β(p) is given, then µ(p,x) does not
depend on ρ(p,x) any longer, rather it depends only on the
personality p, the opinion vector x, and the initial distribution
ρ0(p). Furthermore, observe that φ(p) = β(p)

η(p) can be expressed
as the fixed point of the multidimensional Fredholm equation:

φ(p) =

∫
q

ζ(p, q)α(q)u(q)ρ0(q)

η(p)w(q)
dq︸ ︷︷ ︸

h(q)

+

∫
q

ζ(p, q)ᾱ(q)η(q)

η(p)w(q)︸ ︷︷ ︸
Φ(p,q)

φ(q)ρ0(q) dq

= h(p) +

∫
q

Φ(p, q)φ(q)ρ0(q) dq (41)

(See Appendix B in the Supplemental Material for details.)
From (40), we observe that if −w(p)C is stable for every

p, the stationary solution of the FP equation under steady-state
conditions is given by [33]:

ρ(p,x) =
ρ0(p)√

2π|W(p)|
e−1/2(x−f(p))TW(p)−1(x−f(p)) (42)

where W(p) is the unique solution of the Lyapunov equation
A(p)W(p) + W(p)A(p)T = −D and can be expressed as:

W(p) = −
∫ ∞

0
eA(p)τDeA(p)Tτ dτ .

A more explicit expression of ρ(p,x) can be obtained when C is
symmetric. Let us write µ(p,x) as

µ(p,x) = −∇x

w(p)

2
(x− f(p))TC(x− f(p))︸ ︷︷ ︸

V (p,x)

 (43)

where V (p,x) is a potential. If D is symmetric, it can be written
as D = QΣQT where Q is an orthogonal matrix and Σ
is diagonal. The multi-dimensional FP equation in (39) can be
rewritten as

−∇T
x [∇xV (p,x)ρ(p,x)] =

1

2
Tr {DHx(ρ(p,x))} (44)

where Hx(ρ(p,x)) is the Hessian matrix of ρ(p,x) with respect
to the variable x. By defining L = QΣ−1/2, we then have
LTDL = I. Now consider a new system of coordinates, y,
such that x = Ly. Then, for any twice differentiable function
f(x), we have ∇xf(x) = L∇yf(Ly) = L∇yf1(y) and
Hx(f(x)) = LHy(f(Ly))LT = LHy(f1(y))LT. By replac-
ing these expressions in (44), we obtain

−∇T
yLT [L∇yV1(p,y)ρ1(p,y)] =

Tr
{
DLHy(ρ1(p,y))LT

}
2

which, after some algebra, reduces to

−∇T
y

[
Σ−1∇yV1(p,y)ρ1(p,y)

]
=

1

2
Tr {Hy(ρ1(p,y))}

=
1

2
∇2

yρ1(p,y) . (45)

In the above equation, V1(p,y) has the same structure as
V (p,x) in (43) and, thus, (45) is a FP equation in standard form
whose solution is given by the following distribution:

ρ1(p,y) =
e−2V1(p,y)∫ ∫
e−2V1(q,z)dqdz

. (46)

Therefore the steady state solution of the FP equation can be
expressed as a Gibbs distribution (46) associated with a potential
V1(p,y).

Remark 1: Note that the same expression can be obtained
from the transient solution for t → ∞ under certain conditions.
Specifically, consider (14)-(16) and their Laplace transforms (17)-
(19); using the final-value theorem, we get

lim
t→∞

γ(p, t) = lim
s→0

sγ̂(p, s) . (47)

Assuming that both Ψ and Ξ(p) are Hurwitz-stable for all p, then
limt→∞ γ0(p, t) = lims→0 sγ̂0(p, s) = 0 and

lim
t→∞

γ1(p, t) = lim
s→0

sγ̂1(p, s)

=

∫
q
Z(p, q)ρ0(q)α(q)Ξ−1(q)Cu(q) dq . (48)

So doing, the stationary solution satisfies the integral equation

lim
t→∞

γ(p, t) = lim
t→∞

γ1(p, t)

+

∫
q
Z(p, q)ρ0(q)ᾱ(q)Ξ−1(q) lim

t→∞
γ(p, t) dq .(49)

Note that the same observations made for (17) hold also for the
stationary solution (49).

Remark 2: When t → ∞, the expression of the average in
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(13) becomes:

m(p, ·,∞)

= lim
t→∞

e−Ξ(p)ty + α(p)Ξ−1(p)
(
IN−e−Ξ(p)t

)
Cu(p)

+ᾱ(p)

∫ t

0
e−Ξ(p)(t−τ)γ(p, τ) dτ

= α(p)Ξ−1(p)Cu(p)

+ lim
t→∞

ᾱ(p)

∫ ∞
0

u(t− τ)e−Ξ(p)(t−τ)γ(p, τ) dτ

(a)
= α(p)Ξ−1(p)Cu(p)

+ᾱ(p) lim
s→0

sL
{
u(t)e−Ξ(p)t

}
L{γ(p, t)}

= α(p)Ξ−1(p)Cu(p) + ᾱ(p)Ξ−1(p) lim
s→0

sγ̂(p, s)

= Ξ−1(p) [α(p)Cu(p) + ᾱ(p)γ(p,∞)] (50)

where in (a) we applied the final value theorem and we noted that
the integral can be written as the convolution of two functions,
thus its Laplace transform is the product of the transforms of the
aforementioned functions.

Remark 3: When ρ0(p) is discrete, letting t→∞ in (35), we
obtain an expression of the steady state distribution as: γ(∞) =
ZΨ−1P1Cu.

At last, observe that the following result holds:
Theorem 2. i) The Fredholm equation defining φ(p) (given

explicitly in (41)) admits a unique solution which is Lipschitz-
continuous. ii) The solution φ(p) of the Fredholm equation
(41), under any distribution ρ0(p), which is continuous at
every point in p, is the uniform limit of solutions φn(p),
obtained by replacing distribution ρ0(p) with its discrete
approximation ρn(p) whose mesh-size is 1

n .

The proof is provided in Appendix B in the Supplemental Mate-
rial.

6 SUMMARY

For the sake of clarity, here we summarize the main steps and
analytical tools that we used in our derivations.

• We first adopted the mean-field approach to model the
opinion dynamic evolution through a continuous distribu-
tion function whose expression can be obtained by solving
a FP equation;

• Then, by taking the Fourier transform of the FP equation
and using the method of characteristics, we rewrote it as a
system of first-order partial-differential equations;

• Such a system was solved and the final solution was
obtained by the Fourier inverse transform;

• The conditions ensuring the system stability were derived
for the matrices characterizing the system, by exploiting
the definition of Hurwitz stability;

• Finally, we carried out the steady state analysis starting
from the FP equation and letting t → ∞. We obtained
an expression for µ(p,x) which is a function of quanti-
ties that can be computed by solving a multidimensional
Fredholm equation.

7 NUMERICAL RESULTS

In this section, we show some numerical examples, which shed
light on the impact of the model parameters on the stationary state

of opinions as well as on their dynamics. In the following, we will
always consider a uniform distribution of personalities in the range
[−1, 1] and a two-dimensional opinion space, i.e., x = [x1, x2]

T

.

7.1 Sensitivity of the stationary distribution on the
model parameters

In this first subsection, we evaluate the impact of the noise vari-
ance, the prejudice, and the coupling matrix C, on the stationary
distribution.

We first show the effect of noise variance σ2
n and the prejudice

u. To this purpose, we consider an asymmetric coupling matrix

C =

[
1 ρ
ε 1

]
(51)

where ρ = 0.3 and ε is a very small positive number (namely,
10−10 while obtaining the results)3. Such model is well suited
for a case where the reciprocal influence of the opinions on two
subjects is unidirectional (e.g., from subject 2 to subject 1): a
possible example could be the appreciation of the government
action (subject 1), and the opinion on the right level of taxation
(subject 2), where subject 2 is more likely to affect subject 1 than
vice versa. We assume a constant level of stubbornness α(p) =
0.01, while the strength of opinion interaction is given by

ζ(p, q) =
1

1 + |p− q|2
(52)

i.e., interactions are stronger between agents with similar person-
alities, a model which we will refer to as proximity model. Fig. 1
shows the contour lines of the stationary opinion distribution for
different values of σ2

n, for two different prejudice scenarios. In the
top row, the prejudice is given by

u(p) =

{
[−1, 0]T, p < 0
[1, 0]T, p ≥ 0

(53)

while in the bottom it satisfies

u(p) =

{
[0,−1]T, p < 0
[0, 1]T, p ≥ 0 .

(54)

In both rows, we set σ2
n = 10−3 for the left plot, σ2

n = 5× 10−3

for the center plot, and σ2
n = 10−2 for the right plot. Observe

that the stationary distribution features two peaks, corresponding
to the two different prejudice points, with the same height and
width. The width increases with increasing noise variance, for the
highest noise variance, the peaks start to merge.

Next, in Fig. 2 we investigate the effect of topic correlation, as
expressed by the coupling matrix C. We use the same interaction
strength as per (52), and the prejudice given in (54). Also, as
before, α(p) = 0.01 and σ2

n = 10−3. Finally, we consider the
coupling matrix as in (51), with ρ ∈ {−10,−5, 0, 5, 10}. For
ρ = 0 there is no interaction between the two opinion components;
changing ρ does not have any effect on the mean of the stationary
distribution for each personality ((13)), leading to peaks whose
locations are essentially invariant with respect to ρ. Notice that
the distribution of x2 is independent of ρ. Moreover, due to the
symmetric scenario, in all cases the stationary distribution shows a
reflectional symmetry around the origin. Finally, changing ρ into
−ρ has, in the considered scenario, the effect of reflecting the
stationary distribution around the x2-axis, or, in other words, of

3. We have used ε as an approximation to 0, since setting ε = 0 would yield
a non-diagonalizable matrix C.
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Fig. 1. Contour lines of stationary opinion distribution for α = 0.01 and
ζ(p, q) as in (52). Plots (a), (b), (c): prejudice as in (53). Plots (d), (e),
(f): prejudice as in (54). Plots (a), (d): σ2

n = 10−3. Plots (b), (e): σ2
n =

5× 10−3; plots (c), (f): σ2
n = 10−2.
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Fig. 2. Contour lines of stationary opinion distribution for α = 0.01, σ2
n =

10−3, and ζ(p, q) as in (52). Coupling matrix given by (51). From left to
right: ρ = −10,−5, 0, 5, 10.

changing x1 into −x1. From the system point of view, the effect
of different correlation values implies a larger share of agents that
have strong positive opinions on both subjects (positive correlation
value) or one strong positive and one strong negative opinion
(negative correlation value). Going back to the previous practical
example, agents which are in favor of a low level of taxation will
judge more positively or more negatively the government action,
depending on the correlation coefficient sign.

7.2 Community-based scenario, the influence of Z and
the insurgence of instability
We now assess the impact of the interaction strength matrix Z
on the stability of opinions. We consider a different scenario,
in which there are M personalities (M even), all with the same
stubbornness level α = 0.01, organized in two communities and
with an interaction similar to that considered in Example 1, but
with N = 2, i.e.,

Z =

([
ζ1 −ζ2
−ζ2 ζ1

]
⊗ 1M/2

)
⊗C (55)
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Fig. 3. Stationary opinion distribution for α = 0.01, σ2
n = 10−3,

Z as in (55) (ζ1 = 1), for several values of ζ2 in the stability re-
gion. Coupling matrix given by (51) with ρ = 1. From left to right:
ζ2 = −0.3,−0.2,−0.1, 0, 0.004.

with ζ1 = 1 and ζ2 used as a parameter. We consider C as given
by (51) with ρ = 1, the prejudice as given in (54), and σ2

n =
10−3. Also, ρ0(p) is given by (25) with ri = 1/M for all i. As a
possible practical example of such a scenario, we can think of two
religious sects, say Bogumils and Cathars, which have generally
different views on two topics, represented by the two opinions x1

and x2.
It is not difficult to show that the stability region boundaries

are the same as for Example 1, since C is Hurwitz-stable.
Furthermore, we can derive the asymptotic expression of the mean
in (50) by exploiting Remark 3 in Section 5 and writing from (7)
and (9) Ξ = βIM⊗C, where β = ᾱ 1−ζ2

2 +α. If β > 0, through
some algebra and by applying the properties of the Kronecker
product, we obtain

m(p, ·,∞) =
α

α− αζ2
u(p). (56)

Thus, if ζ2 < α/α ' 0.0101, the system is stable.
Fig. 3 shows the stationary distribution for increasing value of

ζ2. As it can be seen, Bogumils and Cathars merge because of
the attractive forces for ζ2 = −0.2 or lower, while, for −0.1 <
ζ2 < 0, notwithstanding their reciprocal attraction, they remain
separated because of the effect of the prejudice. For 0 < ζ2 <
α/α, the two communities repel each other, but this repulsion is
not strong enough to win the effect of prejudice, so stability is
preserved while the means grow larger and larger for ζ2 ↑ α/α.

For ζ2 > α/α, the system is not stable anymore, and (56)
does not hold. In particular, when ζ2 < ζ1 + 2α/α = 1.0202,
the intra-community attraction and the inter-community repulsion
have such a relative strength that the system experiences type-
II instability: the communities are preserved but their respective
means tend to diverge. In our example, the two religious sects
are so enemy of each other, to radicalize their views while retain-
ing a strong identity within themselves, giving rise to religious
fanaticism. We now look at the time evolution of opinions in
the case where, for all personalities, opinions start deterministi-
cally from the origin. Fig. 4 shows the opinions at time instants
t = 5, 10, 15, 20, for ζ2 = 0.1. Notice that, because of the
correlation, the two communities diverge along the bisector of
the I-III quadrants.
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Fig. 4. Contour lines of opinion distribution for α = 0.01, σ2
n = 10−3, Z

as in (55) (ζ1 = 1, ζ2 = 0.1). Coupling matrix given by (51) with ρ = 1.
From left to right: t = 5, 10, 15, 20.
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Fig. 5. Contour lines of opinion distribution for α = 0.01, σ2
n = 10−3, Z

as in (55) (ζ1 = 1, ζ2 = 10). Coupling matrix given by (51) with ρ = 1.
From left to right: t = 0.15, 0.3, 0.45, 0.5.

Finally, for ζ2 > ζ1 + 2α/α, the inter-community repulsion
prevails on intra-community attraction, the system experiences
type-I instability, and the variance within the two communities
also grows to infinity. In other words, Bogumils and Cathars
dissolve themselves into heterogeneous crowds not having definite
views on the two topics of interest. Fig. 4 shows the opinions at
time instants t = 0.15, 0.3, 0.45, 0.5 for ζ2 = 10, again when the
opinions all start deterministically from the origin. The dynamic is
similar, but faster than in the previous case, and the communities
expand, so that, for t sufficiently large, their boundaries disappear.

7.2.1 Finite-network behavior
In order to assess the validity of the mean-field approach, in Fig. 6
we show the opinion distribution behavior for a finite set of U =
500 agents, by solving numerically (3). In particular, we consider
the same model as in Figs. 3-4 for ζ2 ∈ {−0.1, 0, 0.004, 0.1}.
The first half of the agents are Bogumils, while the others are
Cathars. For the first three values of ζ2, which correspond to a
stable system, we show the stationary opinion distribution. For
ζ2 = 0.1, we show the distribution at time t = 20. As it can be
seen, the results in Figs. 3-4 match those in Fig. 6, indicating that

2
 = 0

-0.1 0 0.1

x
1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

2
 = 0.004

-0.1 0 0.1

x
1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

2
 = -0.1

-0.1 0 0.1

x
1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

2
 = 0.1

-1 0 1

x
1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x
2

Fig. 6. Contour lines of simulated opinion distribution for U = 500,
α = 0.01, σ2

n = 10−3, Z as in (55) (ζ1 = 1), where the first half
of users belong to community 1, while the second half to commu-
nity 2. Coupling matrix given by (51) with ρ = 1. From left to right:
ζ2 = −0.1, 0, 0.004, 0.1. For the rightmost graph, t = 20.

the asymptotic analysis well represents the opinion dynamics of
relatively small populations.

7.3 Rotational effects
We now consider the case in which the dynamics is stable in both
dimensions, but the effect of the coupling matrix yields instability
(of Type I). Consider again the two-community scenario given by
(55), but with ζ1 = 1 and ζ2 = −0.1. Note that, in the scalar case,
this would be a stable scenario. However, let us now consider a
coupling matrix given by

C =

[
0 1
−1 0

]
(57)

which is easily seen to have eigenvalues equal to ±j. This is
quite an artificial scenario, since this coupling matrix has rather
an ad-hoc shape, to which it is difficult to associate any real-world
situation. All the other parameters are the same as in the previous
example, except for the prejudice, which is given by

u(p) =

{
[0,−10], p < 0
[0, 10], p ≥ 0 .

(58)

It is easy to see that, for the i-th discrete personality, the covariance
matrix in (12) is given by:

Σ (pi, t) = σ2
ntI2 (59)

independently from i. Note that such covariance matrix does not
reach any finite limit for t → ∞, hence the system is unstable.
Fig. 7 shows the temporal evolution of the opinion distribution, for
t = 1, 10, 20, 30, 40, 50, 60, 70, 80. The peaks corresponding to
the two communities widen along time, as expected, while their
means undergo a rotation around the origin, at some instants (such
as at t = 60) making the peaks temporarily merge.

8 CONCLUSIONS

Several analytical models representing the dynamics of social
opinions have been proposed in the literature. By drawing on
this body of work, we developed a model that accounts for the
individual endogenous process of opinion evolution as well as
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Fig. 7. Contour lines of opinion distribution for α = 0.01, σ2
n = 10−3, Z as in (55) (ζ1 = 1, ζ2 = −0.1). Coupling matrix given by (57). From left to

right: t = 1, 10, 20, 30, 40, 50, 60, 70, 80.

for the possible adversarial behavior of individuals. Importantly,
our model also represents the interdependence between opinions
on different, yet correlated, subjects. Under asymptotic condi-
tions on the size of the individuals’ population, we obtained
the time evolution of the opinions distribution as the solution of
a multidimensional Fokker-Planck equation. We then discussed
the stability conditions and derived the steady-state solution. Our
numerical results match the stability conditions we obtained and
show interesting phenomena in collective belief dynamics.
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APPENDIX A
DERIVATION OF (11)
By using (6) and by neglecting dependencies on the system variables unless strictly necessary, we can rewrite the FP equation in (5) as:

∂

∂t
ρ(x) =

N∑
n=1

∂

∂xn

[
(eT
nΞx− φnρ(x)

]
+

1

2

N∑
m,n=1

Dmn
∂2

∂xm∂xn
ρ(x) (60)

where en is the vector with all zero components but the n-th one equal to 1. Then, by taking the Fourier transform of (60) with respect
to x, we obtain

∂

∂t
ρ̂(ν) + νTΞ∇ν ρ̂(ν) = −

[
j2πνTφ + 2π2νTDν

]
ρ̂(ν) (61)

where ν is the variable in the transformed domain, while f̂(ν) is the Fourier transform of the generic function f(x). The operator
∇ν is the gradient with respect to the vector ν. Next we transform the above first-order partial-derivative equation into a system of
first-order ordinary differential equations by using the method of characteristics [37]. To this end we introduce an auxiliary parameter
u and consider t = t(u), ν = ν(u) and ρ̂(p,ν(u), t(u)) = ρ̂(u), with initial conditions t(0) = 0, ν(0) = ν0 and ρ̂(p,ν(0), t(0)) =
ρ̂0(p,ν0) = ρ̂(0). According to the rule of total derivative, dρ̂

du can be written as

dρ̂

du
=
∂ρ̂

∂t

dt

du
+

dνT

du
∇ν ρ̂ .

If we set dt
du = 1 and dν

du = ΞTν, the above total derivative corresponds to the left hand side of (61). With such setting we can
reduce (61) to the following system of differential equations:

dt
du = 1
dν
du = ΞTν
dρ̂
du = −

[
j2πνTφ + 2π2νTDν

]
ρ̂ .

(62)

The first two equations are easily solved as t(u) = u, and ν(u) = eΞTuν0. By substituting these solutions in the third equation, the
latter can be rearranged as

dρ̂(u)

ρ̂(u)
= −

[
j2πνT

0 eΞuφ + 2π2νT
0 eΞuDeΞTuν0

]
du (63)

We now recall that φ = φ(t) is a function of t. Since t = u, by integrating with respect to u the above equation, we get

log
ρ̂(u)

ρ̂(0)
= −j2πνT

0

∫ u

0
eΞwφ(w) dw − 2π2νT

0

(∫ u

0
eΞwDeΞTw dw

)
ν0 (64)

The solution for ρ̂(u) is given by

ρ̂(u) = ρ̂(0) exp

{
−j2πνT

0

∫ u

0
eΞwφ(w) dw − 2π2νT

0

(∫ u

0
eΞwDeΞTw dw

)
ν0

}
(65)

By substituting u = t and ν0 = e−ΞTtν(t) into (65), and after reintroducing all dependencies we finally obtain

ρ̂(p,ν, t) = ρ̂0(p,ν0) exp

−j2πν
T e−Ξ(p)t

[∫ t

0
eΞ(p)τφ(p, τ) dτ

]
︸ ︷︷ ︸

m̃(p,t)

−2π2νT

(∫ t

0
e−Ξ(p)τDe−Ξ(p)Tτ dτ

)
︸ ︷︷ ︸

Σ(p,t)

ν


= ρ̂0

(
p,νe−Ξ(p)t

)
exp

{
−j2πνTm̃(p, t)− 2π2νTΣ(p, t)ν

}
(66)

where we used the fact that

νT
0

(∫ t

0
eΞwDeΞTw dw

)
ν0 = νT

(∫ t

0
e−Ξ(p)teΞwDeΞTwe−Ξ(p)t dw

)
ν

= νT

(∫ t

0
eΞ(w−t)DeΞT(w−t) dw

)
ν

(a)
= νT

(∫ t

0
e−ΞτDe−ΞTτ dτ

)
ν (67)

and in (a) we defined τ = t− w. Now, by taking the inverse Fourier transform w.r.t. ν of (66), we get

ρ(p,x, t) = eΞ(p)tρ0

(
p,xeΞ(p)t

)
? G (x, m̃(p, t),Σ(p, t)) (68)

where the symbol ? represents the convolution operator and G (x, m̃(p, t),Σ(p, t)) is the pdf of the multivariate Gaussian distribution
with mean m̃(p, t) and covariance Σ(p, t). Finally, after a suitable change of variable, and by recalling that ρ0(p,y) = ρ0(y|p)ρ0(p),
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we rewrite the convolution product in (68) as

ρ(p,x, t) = ρ0(p)

∫
y
ρ0(y|p)G (x,m(p,y, t),Σ(p, t)) dNy (69)

where m(p,y, t) , e−Ξ(p)ty + m̃(p, t) = e−Ξ(p)t
[
y +

∫ t
0 eΞ(p)τφ(p, τ) dτ

]
.

APPENDIX B
PROOF OF THEOREM 2
B.1 Preliminaries
Under steady state conditions, using (42) and the definition of f(p), we can rewrite β(p) as

β(p) =

∫
q
ζ(p, q)ρ0(q)

∫
x

x√
2π|W(q)|

e−
1
2 (x−f(q))TW(q)−1(x−f(q)) dNx dq

=

∫
q
ζ(p, q)ρ0(q)f(q) dq (70)

By changing variable and considering φ(p) = β(p)
η(p) , we rewrite the above expression as

φ(p) =

∫
q

ζ(p, q)α(q)u(q)ρ0(q)

η(p)w(q)
dq︸ ︷︷ ︸

h(q)

+

∫
q

ζ(p, q)ᾱ(q)η(q)

η(p)w(q)︸ ︷︷ ︸
Φ(p,q)

φ(q)ρ0(q) dq

= h(p) +

∫
q

Φ(p, q)φ(q)ρ0(q) dq (71)

which is the Fredholm equation of the second type [38]. In the following, we will consider a per-element solution of the above equation.
In order to solve the Fredholm equation, let us denote by A[φ](p) the following operator

A[φ](p) =

∫
p

Φ(p, q)φ(q)ρ0(q) dq (72)

operating on a Banach space of Lipschits continuous functions φ(q), where φ(q) is the generic component of φ(p). We have that φ(p)
is equipped with the following norm:

‖φ(p)‖Lip = c0 sup
P
|φ(p)|+ c1 sup

p,q∈P,p6=q

|φ(p)− φ(q)|
|p− q|

= c0‖φ(p)‖∞ + c1‖φ(p)‖L (73)

with c0, c1 > 0 and c0 + c1 = 1. Then we can rewrite (71) as

φ(p) = h(p) +A[φ](p)

where h(p) is the generic component of h(p). From the above expression, we get

φ(p) = (I − A)−1[h](p)

whenever (I − A)−1[·] exists and is continuous over the aforementioned Banach space.
Now let R(p), R : P → [0, 1] be a continuous initial cumulative distribution with pdf ρ0(p), and let Rn(p) be the stepwise

approximation of R(p) with meshsize equal to 1/n. Then, using (72), we can write

An[φ] =

∫
P

Φ(p, q)φ(q) dRn(q), A[φ] =

∫
P

Φ(p, q)φ(q) dR(q),

and

hn(p) =

∫
P

ζ(p, q)α(q)u(q)

η(p)w(q)
dRn(q), h(p) =

∫
P

ζ(p, q)α(q)u(q)

η(p)w(q)
dR(q),

Given the above definitions, we introduce φn(p) as

φn(p) = (I − An)
−1

[hn](p) .

B.2 Main Theorem
We can now prove Theorem 2 whose statement is reported again below for completeness:
Theorem 3. i) The Fredholm equation (71) admits a unique solution which is Lipschitz-continuous. ii) The solution φ(p) of the

Fredholm equation (71), under any distribution ρ0(p), which is continuous at every point in p, is the uniform limit of solutions
φn(p), obtained by replacing distribution ρ0(p) with its discrete approximation ρn(p) whose mesh-size is 1

n .
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Proof: In order to prove the thesis we proceed as follows:

• i) descends from the properties of operator A[·] over the Banach space of Lipschitz-continuous functions equipped with norm
‖ · ‖Lip, which satisfies ‖A[·]‖Lip < 1, since we can derive the existence and the continuity of the operator (I −A)−1[·] with
respect to norm ‖ · ‖Lip (see Lemma 1 below).

• ii) descends from Lemma 2 which shows that operators An[·] converge to the operator A[·], and from Lemma 3 which
shows that convergence holds also for the inverse operators (I − An)−1[·]. Then, using Lemma 4, we show that φn(p) =
(I − An)−1[hn](p) converges to φ(p) = (I − A)−1[h](p).

Lemma 1. Given the operator A[·] defined above we have that ‖A[φ](p)‖Lip < 1 for opportunely chosen c0 and c1 under the
assumption that Φ(p, q) is C1(P2). Furthermore the operator (I − A)−1[·] exists continuous with respect to norm ‖ · ‖Lip.

Proof: We have that

|A[φ](p)| ≤
∫
q
|Φ(p, q)φ(q)ρ0(q) dq| ≤

∫
q
|Φ(p, q)ρ0(q)||φ(q)|dq

≤ ‖φ(p)‖∞
∫
q
|Φ(p, q)ρ0(q)|dq (74)

Therefore, by assuming that α(p) and ζ(p, p′) are regular in their argmmuments, we have

‖A[φ](p)‖∞ = sup
p
‖A[φ](p)‖

≤ ‖φ(p)‖∞ sup
p

∫
q

Φ(p, q)ρ0(q) dq

≤ ‖φ(p)‖∞
1

η(p)
sup
q

ᾱ(q)η(q)

α(q) + ᾱ(q)η(q)

∫
q
ζ(p, q)ρ0(q) dq︸ ︷︷ ︸

η(p)

= ‖φ(p)‖∞ sup
q

ᾱ(q)η(q)

α(q) + ᾱ(q)η(q)

= κ‖φ(p)‖∞ (75)

where κ < 1. Similarly, using the Lagrange theorem, we have

sup
p,q∈P,p6=q

|y(p)− y(q)|
|p− q|

= sup
p

∣∣∣∣ dy(p)

dp

∣∣∣∣
for any continuous and differentiable function y(p). Therefore,∣∣∣∣ dA[φ](p)

dp

∣∣∣∣ =

∣∣∣∣∫
q

∂Φ(p, q)

∂p
φ(q)ρ0(q) dq

∣∣∣∣ ≤
≤

∫
q

∣∣∣∣∂Φ(p, q)

∂p
φ(q)ρ0(q)

∣∣∣∣ dq

≤
∣∣∣∣∣ sup
p,q∈P

∂Φ(p, q)

∂p
ρ0(q)

∣∣∣∣∣ ‖φ(q)‖∞

= ‖Ψ(p, q)‖L‖φ(q)‖∞ (76)

Note that, to obtain the last expression, we defined ‖Ψ(p, q)‖L = supp,q∈P

∣∣∣∂Φ(p,q)
∂p ρ0(q)

∣∣∣. Now combining (75) and (76), we
have:

‖A[φ](p)‖Lip ≤ c0κ‖φ(p)‖∞ + c1‖Ψ(p, q)‖L‖φ(p)‖∞
Dividing both sides by ‖φ(p)‖Lip we get

‖A[φ](p)‖Lip

‖φ(p)‖Lip
≤ c0

κ‖φ(p)‖∞
‖φ(p)‖Lip

+ c1‖Ψ(p, q)‖L
‖φ(p)‖∞
‖φ(p)‖Lip

.

Now, since by construction ‖φ(p)‖∞
‖φ(p)‖Lip

≤ 1
c0

, we have

‖A[φ](p)‖Lip = sup
‖A[φ](p)‖Lip

‖φ(p)‖Lip
≤ κ+

c1
c0
‖Ψ(p, q)‖L

which can be made smaller than 1 by opportunely setting c0 and c1, i.e. by setting c1
c0
< 1−κ
‖Ψ(p,q)‖L .
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For a generic linear operator A[·] defined over a Banach space such that ‖A[·]‖ < 1, the associated operator (I − A)−1[·] exists
continuous and can be written as [38, Th. 8 p. 102 and Th. 1 p. 111]

(I − A)−1[·] =
∞∑
k=0

(A)k[·] . (77)

We now consider the sequence of pertubated operators An[·]. The general result below applies.
Lemma 2. Given a sequence of operators An[·] and a sequence of functions hn(p) as defined above, they converge to, respectively, the

above expressions of A[·] and h(p) in Lipschitz norm (i.e., ‖An[·]−A[·]‖Lip → 0 and ‖hn(p)− h(p)‖Lip → 0).

Proof: To simplify the notation, without loss of generality we assume P = [0, 1] (we recall that P is assumed to be compact).
Then,

An[φ(p)] =

∫
P

Φ(p, q)φ(q) dRn(q) =
n−1∑
m=0

Φ
(
p,
m

n

)
φ
(m
n

) ∫ m+1
n

m
n

dR(q)

Furthermore,

|A[φ(p)]−An[φ(p)]| =
n−1∑
m=0

∫ m+1
n

m
n

[
Φ(p, q)φ(q)− Φ

(
p,
m

n

)
φ
(m
n

)]
dR(q)

We therefore obtain:

|A[φ(p)]−An[φ(p)]| ≤
n−1∑
m=0

∫ m+1
n

m
n

|Φ(p, q)|
∣∣∣φ(q)− φ

(m
n

)∣∣∣ dR(q)

+
n−1∑
m=0

∫ m+1
n

m
n

∣∣∣Φ(p, q)− Φ
(
p,
m

n

)∣∣∣ ∣∣∣φ(m
n

)∣∣∣ dR(q)

≤ ‖Φ(p, q)‖∞
‖φ(p)‖L

n

∫ 1

0
dR(q)

+
‖Φ(p, q)‖L

n
‖φ(p)‖∞

∫ 1

0
dR(q)

=
1

n
(‖Φ(p, q)‖∞‖φ(p)‖L + ‖Φ(p, q)‖L‖φ(p)‖∞)

It follows that:
‖A[φ(p)]−An[φ(p)]‖∞ ≤

1

n
(‖Φ(p, q)‖∞‖φ(p)‖L + ‖Φ(p, q)‖L‖φ(p)‖∞)

Similarly, since Φ(p, p′) is assumed to be differentiable with continuous derivative with respect to p and q, both A[φ(p)] and
An[φ(p)] are differentiable at every point with continuous derivative and:∣∣∣∣ dA[φ(p)]

dp
− dAn[φ(p)]

dp

∣∣∣∣ =

∣∣∣∣∣
n−1∑
m=0

∫ m+1
n

m
n

[
∂Φ(p, q)

∂p
φ(q)−

∂Φ
(
p, mn

)
∂p

φ
(m
n

)]
dR(q)

∣∣∣∣∣
Proceeding as before, we get:

‖A[φ(p)]−An[φ(p)]‖L ≤ 1

n

(∥∥∥∥∂Φ(p, q)

∂p

∥∥∥∥
∞
‖φ(p)‖L +

∥∥∥∥∂Φ(p, q)

∂p

∥∥∥∥
L

‖φ(p)‖∞
)

and

‖A[φ(p)]−An[φ(p)]‖Lip ≤ c0
n

(‖Φ(p, q)‖∞‖φ(p)‖L + Φ(p, q)‖L‖φ(p)‖∞)

+
c1
n

(∥∥∥∥∂Φ(p, q)

∂p

∥∥∥∥
∞
‖φ(p)‖L +

∥∥∥∥∂Φ(p, q)

∂p

∥∥∥∥
L

‖φ(p)‖∞
)

Since in the right hand side of the above expressions none of the norms depend on n, it easy to see that ‖A[φ(p)]−An[φ(p)]‖Lip → 0
as n→∞. With similar arguments, we can prove that ‖h(p)− hn(p)‖Lip → 0 as n→∞.
Lemma 3. Given a Banach space with norm ‖ · ‖, and a sequence of linear operators An[·]→ A[·] in norm, with ‖A[·]‖ < 1, we have

that the continuous operators (I[·]−An[·])−1 → (I[·]−A[·])−1 in norm.

Proof: Given that ‖A[·]‖ < 1 by the continuity of norm ‖An[·]‖ → ‖A[·]‖ < 1, for n sufficiently large we can assume
‖An[·]‖ < 1. For any of such n, we define Bn[·] = (I[·]−An[·])−1 − (I[·]−A[·])−1. By (77), we can write

Bn[·] =
∞∑
k=0

(An[·])k −
∑
k

(A[·])k .
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Since both series on the right hand side of the above expression converge, we can write:

Bn[·] =
∞∑
k=0

(An[·])k − (A[·])k

Now, we have:

‖Bn[·]‖ =

∥∥∥∥∥
∞∑
k=0

(An[·])k − (A[·])k
∥∥∥∥∥ ≤

∞∑
k=0

‖(An[·])k − (A[·])k‖

where the last inequality follows by the sub-additivity and continuity of the norm.
Denoted with ck = ‖(An[·])k − (A[·])k‖ = ‖[(An[·] − A[·]) +A[·]]k − (A[·])k‖, and considering that the operator algebra is,

in general, non-commutative, we have:

ck =

∥∥∥∥∥∥
∑

xi∈{0,1},i=1,...,k

∏
i

(A[·])xi(An[·]−A[·])1−xi − (A[·])k
∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥
∑

xi∈{0,1},i=1,...,k
{x1,x2···xk}6={1,1,··· ,1}

∏
i

(A[·])xi(An[·]−A[·])1−xi

∥∥∥∥∥∥∥∥
≤

∑
xi∈{0,1},i=1,...,k

{x1,x2···xk}6={1,1,··· ,1}

∏
i

‖(A[·])xi‖‖(An[·]−A[·])1−xi‖

=
k∑
i=1

(
k

i

)
‖An[·]−A[·]‖i‖A[·]‖k−i

=
k∑
i=1

(
k

i

)
‖A[·]‖i‖An[·]−A[·]‖k−i

= (‖A[·]‖+ ‖An[·]−A[·]‖)k − ‖A[·]‖k .

Therefore, by monotonicity of positive series, we have:

‖Bn[·]‖ ≤
∞∑
k=0

ck ≤
∞∑
k=0

(‖A[·]‖+ ‖An[·]−A[·]‖)k − ‖A[·]‖k (78)

Since ‖An[·]−A[·]‖∞ → 0 and ‖A[·]‖∞ < 1, we can assume n sufficiently large so that ‖A[·]‖+ ‖An[·]−A[·]‖ < 1, thus:

‖Bn[·]‖ ≤
∞∑
k=0

(‖A[·]‖+ ‖An[·]−A[·]‖)k − ‖A[·]‖k

=

∣∣∣∣∣
∞∑
k=0

(‖A[·]‖+ ‖An[·]−A[·]‖)k −
∞∑
k=0

‖An[·]‖k
∣∣∣∣∣

=

∣∣∣∣ 1

1− (‖A[·]‖+ ‖An[·]−A[·]‖)
− 1

1− ‖A[·]‖

∣∣∣∣
The thesis follows immediately since ‖An[·]−A[·]‖ → 0, hence ‖Bn[·]‖ → 0.

Lemma 4. Given the Banach space Lip(P), a sequence of linear and continuous operators Cn[·]: Lip[P] → Lip[P] converging in
‖ · ‖Lip-norm to the continuous operator C, and a sequence of functions yn ∈ Lip(P) converging to y in ‖ · ‖Lip-norm, then Cn[yn]
converges in ‖ · ‖Lip-norm to C[y].

Proof:
To simplify the notation, we denote ‖ · ‖Lip simply with ‖ · ‖:

‖Cn[yn]− C[y]‖ = ‖Cn[yn]− Cn[y0] + Cn[y0]− C[y]‖
≤ ‖Cn[yn − y0]‖+ ‖Cn[y]− C[y]‖

Now, on the one hand, ‖Cn[yn− y]‖ ≤ ‖Cn[‖yn− y‖]‖ → 0 given that ‖Cn[·]‖ is bounded since it is continuous, and ‖yn− y‖ → 0.
On the other hand, ‖Cn[y]− C[y]‖ → 0 since ‖Cn[·]− C[·]‖ → 0, while y is bounded in norm. The assertion follows immediately.


