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Flexural band gaps and response 
attenuation of periodic piping 
systems enhanced with localized 
and distributed resonators
Mohd Iqbal1,2, Mahesh Murugan Jaya3, Oreste Salvatore Bursi2, Anil Kumar1* & 
Rosario Ceravolo3

Novel metamaterial concepts can be used to economically reduce flexural vibrations in coupled pipe-
rack systems. Here, we model pipe on flexible supports as periodic systems and formulate dispersion 
relations using Floquet-Bloch theory which is verified by a finite element model. Owing to the flexibility 
of the coupled system, a narrow pass band is created in low frequency regime, in contrast to the case 
of pipe without any rack. Two types of vibration reduction mechanisms are investigated for pipe with 
different supports, i.e. simple and elastic support. In order to tune the band gap behaviour, lateral 
localized resonators are attached at the centre of each unit cell; conversely, the lateral distributed 
resonators are realized with a secondary pipe existing in the system. The results reveal that both Bragg 
and resonance type band gaps coexist in piping systems due to the presence of spatial periodicity and 
local resonance. Although, the response attenuation of a coupled pipe-rack system with distributed 
resonators is found to be little lower than the case with the localized one, the relatively low stiffness and 
damping values lead to cheaper solutions. Therefore, the proposed concept of distributed resonators 
represents a promising application in piping, power and process industries.

Pipes conveying fluid supported in equally spaced racks are very common in liquefied natural gas (LNG) plants, 
thermal power plants, petroleum industries, chemical plants and in many other engineering applications. LNG 
plant consists of many units such as gas receiving terminals, pipelines, storage tanks, etc. Long pipelines in such 
plants are used to carry refrigerated liquefied gas to storage tanks and shipping terminals. Excessive vibrations of 
pipelines due to ambient load, flow pulsation, valve or support excitation can result in fatigue damage, loosening 
of connections, etc., which may lead to fire, explosion, safety and environmental issues. It is thus essential to pro-
tect them from large vibration amplitude. To crystallize the idea, an LNG plant containing a coupled pipe-rack 
system connected to a tank1 is shown in Fig. 1a. Such a system usually contains pipes of different dimensions 
supported on a finite periodic rack as highlighted in Fig. 1b.

Periodic structures have been used as a common tool for mitigation of acoustic and elastic waves over the past 
decades2–5. Periodicity in a structure may be in one, two or in all the three dimensions6. Such systems exhibit 
unique frequency band gap characteristics3, which can be generated either due to the Bragg scattering6,7 or by 
local resonances8. As a result, they allow only waves of a certain frequencies to pass through, which are repre-
sented as pass or propagation bands. The remaining frequencies get attenuated, thereby forming stop or 
non-propagation bands. If the spatial periodicity of a structure is comparable to the wavelength λ, then Bragg 
band gaps are induced in the structure and appear around the frequencies governed by the Bragg condition 

= = …λ( )l n n, where 1, 2, 3,
2

 and l is length of the unit cell. Studies were previously conducted on band gaps 
in finite9, semi-infinite5,10 and infinite3,4,11 periodic structures caused by Bragg scattering. Moreover, analytical, 
numerical and experimental investigations on Bragg band gaps in periodic structures have been carried out by 
several researchers12–16.
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In recent studies, metamaterial beams, shafts and rods endowed with periodic resonators have been inves-
tigated. In order to filter undesired longitudinal17, flexural18–26 or torsional27,28 waves, a periodic structure can 
be equipped with resonator units that entail new band gaps different from those produced by Bragg scattering7. 
The introduction of damping devices in such resonator units contributes to energy dissipation, thereby reducing 
vibration amplitude29. In order to achieve an efficient energy dissipation, the lateral localized resonators (LLRs) 
or tuned mass dampers (TMDs) have to be optimally designed30,31. This is achieved by adjusting their frequency 
and damping ratios so as to minimize some significant response quantity of the main system, e.g. displacement. 
In the context of vibration mitigation in pipes, tuned mass dampers with different energy dissipation mechanisms 
such as material damping in the damper element of TMD32,33, fluid damping in TMD mass34 or impact of TMD 
mass with a dissipative surface35 were developed. All adopted damper technologies require the use of an external 
mass, indeed, which needs to be connected to a pipe using a spring-damper system. Clearly, this solution results 
to be less practical.

In a typical pipe-rack system, it is common to have pipes of different dimensions. It may thus be possible to 
conceive a pipe of smaller cross section, see P1,α in Fig. 1b, as a lateral distributed resonator (LDR) system. The 
dynamic characteristics of P1,α and its effects on a coupled pipe-rack system are different from those of LLRs and 
are the topics explored in the paper further in conjunction with the periodicity effects.

Along these lines, the propagation of flexural waves is studied in a pipe-rack system similar to the case study 
shown in Fig. 1. Two models are considered in this regard: (i) a pipe without rack, i.e. a pipe on simple supports 
-Type #1-; and (ii) a pipe with a rack, i.e. a pipe on elastic supports -Type #2-. Type #2 support approximates a 
realistic scenario while Type #1 represents an extreme case. As a result, flexural wave propagation in an undamped 
long elastic pipe P on Type #1 and Type #2 supports is examined, both analytically and numerically. Thus, in order 
to determine analytical dispersion relations, the Floquet-Bloch theory of periodic systems is employed.

Nonetheless, it is not straightforward to derive similar dispersion relations when material damping in a pipe P 
is taken into account or when either a LLR or a LDR (P1,α) is attached to P. Hence, a finite element (FE) model is 
set for these studies, the accuracy of which is verified by comparing an undamped finite element model of P with 
analytical results. Optimal stiffness and damping values are then designed for the case when P is connected to a 
LLR and to LDR or P1,α. Moreover, the effect of damping in resonators on band gap characteristics is investigated 
by means of the transfer function of P provided by the FE model of the coupled system. Finally, the vibration 
attenuation of P by means of LLRs is compared with the case when LDRs with the same mass ratio α, i.e. P1,α is 
used. Though the performance of a coupled pipe-rack system with LDRs is less efficient than the case with LLRs, 
relevant low stiffness and damping values lead to cost-saving solutions.

Results
Wave propagation in an undamped pipe.  The dispersion relation for an undamped pipe P of unit cell 
length l, cross sectional area A, moment of inertia I, density ρ and Young’s modulus E with Type #2 support con-
dition shown in Fig. 2a is derived based on the Floquet-Bloch theorem36,37. The analytical expression of dispersion 
relation between the circular frequency ω and the propagation constant μ (i.e., ikl) is given by

ψ μ χ μ η+ + =cosh cosh 0 (1)2

where

ψ Ω Ω Ω Ω= − − −l l l l[{cosh( ) cos( )}] {sinh ( ) sin ( )}]2 2 2

Figure 1.  Layout of a typical LNG plant. (a) A pipe-rack connected to tanks. (b) Schematic of a typical periodic 
rack containing pipes of different dimensions, where P and αP1,  denote main and secondary pipes, respectively.
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See the section ‘Methods’ for detailed derivation. The analytical dispersion relation given in Eq. (1) is obtained 
by solving Eq. (19).

The behaviour of the pipe-rack coupled system can be characterised by these dispersion relations. Equation 
(1) is quadratic in coshμ and thus yields two pairs of distinct roots of μ; ±μ1 and ±μ2 for each frequency ω. 
Positive and negative signs of μ describe the same characteristics of wave motion travelling in opposite directions. 
Generally, μ is complex and can be written as

μ δ γ= + i (2)

where, the real part 𝛿 describes rate of attenuation of amplitude and imaginary part γ imparts information about 
the phase difference of travelling wave between two adjacent unit cells. If the Bloch wave number of a freely prop-
agating non-decaying wave (δ = 0) is k, then

γ
=k

l (3)

Figure 2.  Models for a pipe P of Fig. 1b on a periodic rack, i.e. a pipe on elastic supports- Type #2-. (a) 
Uncontrolled pipe P. (b) Pipe P with lateral localized resonator (LLR) at the centre of each unit cell. (c) Pipe P 
connected to lateral distributed resonator (LDR), i.e. pipe αP1, .
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and is related to the corresponding wavelength λ as

λ π π
γ

= =
k

l2 2
(4)

Based on the nature of μ, there are three types of wave. For δ > 0, there will be a decay in the amplitude and 
hence no energy flows in the direction of wave propagation, and are defined as attenuating/evanescent waves. In 
this case, the adjacent unit cells vibrate either in phase or out of phase. On the other hand, if μ is purely imaginary, 
energy flows in the direction of propagation and the waves pass without any attenuation thereby exhibiting only 
pass band in the dispersion curves. For a complex μ, a part of the energy propagates while the remaining gets 
attenuated, which results in the occurrence of both pass and stop bands in the dispersion curves.

When → ∞Kv  and =m 0, the analytical expression of dispersion relation given in Eq. (1) leads to the case of 
P on Type #1 support. The resulting expression of dispersion relation is given by,

μ Ω Ω Ω Ω
Ω Ω

= =
−

−
kl l l l l

l l
cos( ) cosh( ) cosh( )sin( ) cos( )sinh( )

sin( ) sinh( ) (5)

which is similar to those found in literature3.
For the analytical flexural wave propagation study, a pipe P with =l m6 , outer diameter of . mm406 40  and 

thickness . mm7 92  is used. Young’s modulus and density are assumed to be 200 GPa and 7800 kg/m3, 
respectively.

Equation (5) is used to obtain the variation of k and μ with frequency of the wave f = 2π/ω, and is shown in 
Fig. 3a,b, respectively. Frequency ranges of first two stop bands are − . Hz[0 31 36]  and . − . Hz[69 63 131 2]  and 
are represented by yellow shaded region in Fig. 3a. The pass bands, between these frequencies, are represented by 
grey shaded region in Fig. 3b,c.

Now, wave propagation characteristics in pipe P with Type #2 support as shown in Fig. 2a is examined. For this 
case, a typical concrete rack structure of C50/40 class is considered. Each frame of the rack is 6.5 m wide and 7.3 m 
tall with 6 m spacing between adjacent frames along the length of P. Each frame consists of two storeys, placed at a 
level of 7.3 m and 5.3 m from the ground. Each column of the rack is of 600 mm2. The pipe-rack structure consists 
of 40 frames of which the first 10 are shown in Fig. 1b. A simplified numerical model using spring Kv and lumped 
mass m, as shown in Fig. 2a, is made such that its first mode matches with the first lateral mode of the pipe-rack 
structure obtained using a complete FE model. It is observed that the first mode occurs at 4.45 Hz and based on 
the corresponding mass participation, m and Kv are calculated to be 22.88 T and 17.9 MN/m, respectively.

Based on the dispersion relation from Eq. (1), the variation of k and μ with frequency of the wave f is obtained 
and is shown in Fig. 4a,b, respectively. In contrast to Type #1 support, a narrow pass band is generated near 
4.45 Hz, which is the first predominant natural frequency of the rack structure. In the frequency range from 0 to 

Figure 3.  Dispersion curves and frequency response for Type #1 support: (a) as a function of the Bloch wave 
number k; (b) as a function of the real part of μ; (c) as a function of ϕT dB( ).

Figure 4.  Dispersion curves and frequency response for Type #2 support: (a) as a function of Bloch wave 
number k; (b) as a function of the real part of μ; (c) as a function of ϕT dB( ).
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60 Hz, there are two stop bands with the range [0−4.38] Hz and [5.34−31.5] Hz, represented by yellow shaded 
region in Fig. 4a. Similarly, the pass bands are represented by grey shaded region in Fig. 4b,c.

To verify the analytical results, FE modelling of P on Type #1 and Type #2 supports consisting of 40 unit cells is 
used. A harmonic excitation in the form of rotation of unit amplitude is applied at the left end of P and the steady 
state frequency response is extracted at the right end. Tφ is calculated from Eq. (20), which is plotted in Figs. 3c 
and 4c for Type #1 and Type #2 supports respectively, showing excellent agreement with the analytical results. The 
real part of μ (Figs. 3b and 4b) and Tφ (Figs. 3c and 4c) reports about the attenuation behaviour, while the Bloch 
wave number (Figs. 3a and 4a) refers to the propagation behaviour.

Vibration in a controlled periodic pipe.  An identical single mass LLR of mass αmt , , stiffness αkt ,  and 
damping coefficient αct ,  is attached as a substructure at midpoint (l/2) of each unit cell of P for both Type #1 and 
Type #2 supports. Similarly, αP1,  of mass ratio α which is present in the rack is attached to P using spring-damper 
system with stiffness 

α
kP1,

 and damping coefficient 
α

cP1,
 at the centre of each unit cell. Figure 2b shows the config-

uration of P with LLRs for Type #2 support while Fig. 2c shows the case when αP1,  is attached as LDR. Material 
damping ratio ξ for both the pipes P and αP1,  is assumed to be 0.02. In order to assess the performance, three mass 
ratios of 0.05, 0.16 and 0.25 are chosen and the corresponding dimensions of αP1,  are detailed in Table 1.

Optimization is performed to reduce the vibration response till Hz60  using Eq. (21), based on which the 
optimal αkt ,  and αct ,  for Type #1 and Type #2 supports are calculated. Equation (22) is used to calculate the corre-
sponding performance index Z for all the cases, a smaller value of which denotes better performance in terms of 
vibration reduction. Similarly, the optimal 

α
kP1,

 and 
α

cP1,
 are evaluated for the case when αP1,  is connected to P. 

Table 2 contains the optimal values for both scenarios. The equivalent frequency 
αft ,  of the LLR and the corre-

sponding damping ratio ξ αt ,  are provided in Table 3. Since αP1,  is a continuous system with multiple modes, its 
frequency and damping ratios are not reported.

The frequency response of only the case with α = .0 16 is reported here as others show similar behaviour. In 
order to understand the effect of damping on band gaps when a LLR is used, three cases are considered for both 
types of supports; (i) material damping in P ξ =( 0) and the damping coefficient of LLR αct ,  are neglected 
( = .αk E2 87 6t , , =αc 0t ,  for Type #1 and = .αk E3 05 6t , , =αc 0t ,  for Type #2), (ii) material damping in P 
ξ = .( 0 02) is considered while the damping coefficient of LLR αct ,  is neglected ( = .αk E2 87 6t , , =αc 0t ,  for Type 

#1 and = .αk E3 05 6t , , =αc 0t ,  for Type #2) and (iii) both material damping in P ξ = .( 0 02) and the damping 
coefficient of LLR αct ,  are considered ( = .αk E2 87 6t , , = .αc E1 19 4t ,  for Type #1 and = .αk E3 05 6t , , = .αc E1 09 4t ,  
for Type #2). Figure 5a shows the response for above three cases with Type #1 support while Fig. 5b shows the 
same for Type #2 support.

Pipe Outer diameter (mm) Thickness (mm) Mass per unit length (kg/m)

α= .P1, 0 05 60.33 2.77 3.93

α= .P1, 0 16 152.40 3.40 12.44

α= .P1, 0 25 219.80 21.56 79.94

Table 1.  Dimensions of P1,α.

Support condition Type #1 Type #2

α 0.05 0.16 0.25 0.05 0.16 0.25

P with 
LLR

αk N m( / )t, 1.30E6 2.87E6 3.05E6 1.37E6 3.05E6 3.99E6

αc Ns m( / )t, 3.59E3 1.19E4 2.44E4 3.16E3 1.09E4 1.80E4

Z 2.08E-3 8.03E-7 6.77E-8 2.83E-3 1.10E-6 4.94E-9

P with αP1,

αk N m( / )P1,
1.05E1 2.46E6 1.47E6 1.53E1 2.49E6 1.72E6

αc Ns m( / )P1,
1.51E3 6.38E3 8.17E3 9.51E2 6.74E3 7.07E3

Z 8.93E-1 7.61E-3 2.55E-4 8.97E-1 8.93E-3 2.55E-4

Table 2.  Optimal stiffness and damping values.

Support 
condition

Type 
#1 Type #2

α .0 05 .0 16 .0 25 .0 05 .0 16 .0 25

αf Hz( )t,
37.73 31.32 25.58 38.68 32.25 29.27

ξt,α 0.33 0.41 0.64 0.28 0.36 0.41

Table 3.  Optimal frequency and damping ratio for LLR.
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When both P and LLR are undamped, a new band gap at the natural frequency of LLR is created and thus two 
types of band gap coexist. In case of Type #1 support, − . Hz[0 23 64]  and . − . Hz[29 82 41 64]  represents the 
Bragg and resonance stop band, respectively. For Type #2 support, − . Hz[0 4 38]  and . − . Hz[5 34 23 88]  are the 
Bragg stop bands while . − . Hz[30 72 42 42] is the resonance stop band.

The reduction in amplitude of vibration of P is compared when α= .P1, 0 16  is used as LDRs instead of the LLR of 
α = .0 16. For this, the corresponding frequency response plots are shown in Fig. 6a,b, for Type #1 and Type #2 

supports, respectively. As expected, significant reduction in vibration is achieved for the case of LLR, while αP1,  is 
found to be less efficient for the same mass ratio. More precisely, with LLRs/LDRs attached to the pipe P, the total 
mass of the system is increased and natural frequencies of the system are decreased. As a consequence, the width 
of a stop band is reduced and this reduction is higher in case of LLRs as compared to the LDRs. In fact, in the case 
of LLRs the mass is concentrated in the middle of each pipe span and the relevant participating mass is higher 
than the case with a distributed mass. Furthermore, both LLRs and LDRs are introduced to reduce the vibration 
amplitude of propagation waves in the first pass band for Type #1 support and in the second pass band for Type 
#2 support, respectively. This is achieved by means of the optimal stiffness and damping values reported in Table 2 
for α = .0 16. Owing to dynamic effects of LLRs and LDRs, one can note the shrinking of stop bands and reduc-
tion of amplitudes in pass bands in Fig. 6.

Discussion
In order to reduce flexural vibrations in coupled pipe-rack systems of LNG plants, novel and economic ways 
based on metamaterial concepts are proposed. As a result, flexural wave propagation in periodic piping system is 
analysed by solving relevant fourth-order equation of motion. Subsequently, the Floquet-Bloch theorem is applied 
to obtain the analytical dispersion relation, which was used to validate the results provided by a numerical model. 
The propagation characteristics of pipe P for both types of support conditions, simply supported – Type #1- and 
with elastic supports –Type #2- are identical except that in case of Type #2 supports, where a new narrow pass 

Figure 5.  ϕT  of P controlled with LLRs for various damping values: (a) Type #1 support; (b) Type #2 support.

Figure 6.  Comparison between ϕT  of P when coupled to LLRs and to LDRs ( αP1, ) respectively, for α = .0 16: 
(a) Type #1 support; (b) Type #2 support.

https://doi.org/10.1038/s41598-019-56724-0
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band occurs near the first natural frequency of the rack. The lower and upper bounding frequencies of pass bands 
coincide with the natural frequencies of the coupled system.

Pipes without lateral localized resonators (LLRs) at the centre of each unit cell exhibit only Bragg band gaps. 
Conversely, the adoption of LLRs without damping entails a new band gap located near the natural frequency of 
LLRs which can be observed in both Fig. 5a,b for Type #1 and Type #2 support, respectively. The results reveal 
that both Bragg and resonance type band gaps coexist in piping systems due to the presence of spatial periodicity 
and local resonance. In addition, the introduction of LLRs increases the whole mass of the system, which results 
in decreasing the main natural frequencies of the coupled pipe-rack system. More precisely, in the case of Type #2 
supports the first Bragg stop band remains the same, while the second stop band shifts to the low frequency range 
as depicted in Fig. 5b. The presence of damping in LLRs smoothens and lowers the transmission ϕT  of P and wid-
ens the band gap. High damping in LLRs causes the band gap to vanish21,22, but can significantly reduce vibration 
amplitude.

Further, a new way of vibration suppression was investigated by the attachment of a smaller cross section pipe, 
the so called lateral distributed resonators (LDRs), in parallel to the main pipe P. It was observed that, with an 
increase of the mass ratio α between resonators and pipe, both LLRs and LDRs ( αP1, ) performed better. This is 
evident from Table 2, which shows a decrease of the performance index Z, defined in Eq. (22), with an increase of 
α. Also, the optimal values of αkt ,  and αct ,  for LLRs increase with an increase of α. For the same α, it was found that 
Z corresponding to the case LDRs was greater than that of the case with LLRs; this can be inferred from both 
Table 2 and Fig. 6. In fact, for any value of α, the optimal 

α
kP1,

 and 
α

cP1,
 for αP1,  is less than that for the LLRs case. 

This is because αP1,  is a continuous system and, therefore, the whole mass cannot be mobilized for any frequency: 
this leads to a lower effective mass ratio. Conversely, for the corresponding LLRs case, the complete mass contrib-
utes to the frequency for which it is designed38. Clearly, the trend of ϕT  shown in Fig. 6 for α= .P1, 0 16  cannot be 
utilized for other pipes endowed with α = .0 16. This is because the dynamic characteristics of α= .P1, 0 16  depends 
on radius/thickness ratio. Thus, to determine optimal parameters for other pipes, a rigorous optimization has to 
be performed again.

In sum, even though the performance of a coupled pipe-rack system with LDRs is less efficient than the case 
with LLRs, the relevant low stiffness and damping values lead to cheaper solutions. As a result, the adoption of 
pipes αP1,  represents a promising application. Eventually, the enhancement of these results by means of nonlinear 
devices/mechanisms deserves further studies.

Methods
Derivation of dispersion relations.  The system shown in Fig. 7a is considered for flexural wave analysis 
which consists of two unit cells each of length l. The undamped pipe P is assumed to be an Euler- Bernoulli beam, 
the equation of which is given as,

ρ∂
∂







∂
∂





 +

∂
∂

=
x

EI w x t
x

A w x t
t

( , ) ( , ) 0
(6)

2

2

2

2

2

2

Figure 7.  Modelling of pipe for dispersion analysis. (a) Pipe on Type #2 support (b) Floquet-Bloch theorem of 
periodic structure applied at the nodes for transverse and angular displacements. (c) Illustration of sign 
conventions for shear forces and bending moments. (d) Representation of a single span pipe as a simple beam 
clamped at one end and displacement w0 and rotation ϕ0 at free end (e) Bending moments and forces balance at 
the generic node .i
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where ρ and E are the density and modulus of elasticity of the material, respectively. A is area of cross-section and 
I is the second moment of inertia of the beam. w x t( , ) is the transverse displacement, and x represents the spatial 
coordinate along the length of beam. The substitution of steady state solution = ωw x t w x e( , ) ( ) i t in Eq. (6) leads to,

ρ ω− =EIw x A w x( ) ( ) 0 (7)IV 2

where ω is the circular frequency. The solution of Eq. (7) can be written as,

Ω Ω Ω Ω= + + +w x A x A x A x A x( ) cos( ) sin( ) cosh( ) sinh( ) (8)1 2 3 4

with Ω = ρ ω( )A
EI

1
42
.

Applying Floquet-Bloch theory on each unit cell as shown in Fig. 7b, the transverse displacements of nodes 
+i 1 and −i 1 are related to those at node i as

= =+ −
−w w e w w e, (9)i i

kl
i i

kl
1

i
1

i

where, k represents one dimensional Bloch wave number, l is the distance between supports and i is −1 . The 
term ikl in Eq. (9) is called propagation constant μ. The similar relations are used for rotations.

The constants A1, A2, A3 and A4 in Eq. (8) are computed by applying boundary conditions shown in Fig. 7d, 
and are then used to determine the shear forces V  and bending moments M on either side of node i. Figure 7c 
shows the sign convections for shear forces and bending moments. The expression for dynamic compliance coef-
ficients39 at =x 0 and =x l for =w 10  and ϕ = 00  are,

Ω Ω
Ω Ω

Ω Ω Ω Ω Ω
Ω Ω

Ω Ω Ω
Ω Ω

Ω Ω Ω
Ω Ω

=
Ω +

−

=
+

−

=
−

−

=
−

′

′

′

′

V EI l l
l l

V EI l l l l
l l

M EI l l
l l

M EI l l
l l

[sin( ) sinh( )]
1 cos( )cosh( )

[cosh( ) sin( ) cos( )sinh( )]
1 cos( )cosh( )

[cos( ) cosh( )]
1 cos( )cosh( )

[sinh( )sin( )]
1 cos( )cosh( ) (10)

l

l

0

3

3

0

2

2

and for =w 00  and ϕ = 10  are given by

Ω Ω Ω
Ω Ω

Ω Ω Ω
Ω Ω

Ω Ω Ω
Ω Ω

Ω Ω Ω Ω Ω
Ω Ω

″ =
− −

−

″ =
−

−

″ =
− −

−

″ =
− −

−

V EI l l
l l

V EI l l
l l

M EI l l
l l

M EI l l l l
l l

[cosh( ) cos( )]
1 cos( )cosh( )

[sinh( )sin( )]
1 cos( )cosh( )

[sin( ) sinh( )]
1 cos( )cosh( )

[cosh( ) sin( ) cos( )sinh( )]
1 cos( )cosh( ) (11)

l

l

0

2

2

0

Corresponding to Fig. 7b, the expressions of shear forces and bending moments at node i are obtained as 
follows:

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

= − + + ″ + ″

= − + ″ + ″

= + − ″ + ″

= + + ″ − ″

− ′ − ′ + − −

+ ′ ′ − +

− ′ − ′ + − −

+ ′ ′ − +

і і

і і

і і

і і

V V w e V w V e V

V V w e V w V e V

M M w e M w M e M

M M w e M w M e M (12)

i
kl

l i i
kl

l i

i
kl

l i i
kl

l i

i
kl

l i i
kl

l i

i
kl

l i i
kl

l i

0 0

0 0

0 0

0 0

The kinematic compatibility condition for rotation is given by

ϕ ϕ=+ − (13)i i

and for equilibrium at node i (Fig. 7e), the bending moments and forces equations are given as

=+ −M M

ω= + −+ −V V K m w( ) (14)v i
2

from the above Eqs. (12), (13) and (14), the linear homogeneous equations are obtained in terms of wi and ϕ +
i  as 

follows,
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ϕ+ ″ − ″ =′ +і іM kl w M kl M[2 sinh( )] [2 cosh( ) 2 ] 0 (15)i l i0 0

ω ϕ− − + + ″ =′ ′ +і іV kl V K m w V kl[2 cosh( ) 2 ] [2 sinh( )] 0 (16)l v i i0
2

0

where, Kv and m are lateral stiffness of rack column and lumped mass of the rack, respectively. Equations (15) and 
(16) can be written as,

=Hu 0 (17)

where, ϕ= +u w( , )i i
T and

ω
=









−

− − +









′ ′′ ′′

′ ′ ′′
H

M kl M kl M

V kl V K m V kl

2 sinh(i ) 2 cosh(i ) 2

2 cosh(i ) 2 2 sinh(i )
l

l v

0 0

0
2

0

For a non- trivial solution of u, the determinant of H must be zero i.e.,

ω

−

− − +
=

′ ′′ ′′

′ ′ ′′

M kl M kl M

V kl V K m V kl

2 sinh(i ) 2 cosh(i )) 2

2 cosh(i ) 2 2 sinh(i ))
0

(18)

l

l v

0 0

0
2

0

Solving Eq. (18), the dispersion relation for periodic piping system is obtained as,

ω− − − + − =′ ′′ ′ ′ ′′ ′′M V kl V kl V K m M kl M[2 sinh (i )] [2 cosh(i ) 2 ][ cosh(i ) ] 0 (19)l v l0 0
2

0
2

0

Numerical model.  A finite element model of the periodically supported pipe P is made using a 
two-dimensional Euler-Bernouli beam available in ANSYS APDL 19.0. To investigate the propagation of wave of 
frequency ω π=f /2  in P, a harmonic rotation ϕ πei p

ft
/

i2  is applied at left end of P and the steady state response 
ϕ f( )o p/  is measured at the right end. The vibration transmission behaviour is described by ϕT dB( ), which is defined 
as

ϕ

ϕ
=ϕT log

f
f

20
( )
( ) (20)

o p

i p
10

/

/

The mesh size of finite element model in homogeneous solids is calculated by the Courant number40. In one 
dimensional wave propagation, the velocity in the numerical model (cFEM) should be same as that in the real 
structure (c). For a numerical model with mesh size ∆x and wavelength λ, this condition is approximately satis-
fied41 ( = .c c/ 0 99FEM ) when λ ∆ =x/ 16.

ρ=c G/ , where G and ρ are modulus of rigidity and density of the material, respectively. Based on the above 
formula, for a frequency of Hz200 , mesh size is calculated to be 1 m. The transmission of vibration in P is meas-
ured here using ϕT  which depends on the number of unit cells. Since an infinite periodic structure cannot be 
considered in a numerical simulation, therefore, in order to validate the Floquet-Bloch theory presented in this 
paper, a finite pipe consisting of 40 unit cells is considered.

Vibration control in periodic pipes.  Let αmt , , αkt ,  and αct ,  corresponds to the mass, stiffness and damping 
coefficient of the LLR. The optimal value αkt ,  and αct ,  for a mass ratio α ρ= αm Al/( )t P,  can be obtained by mini-
mizing the ∞H  (peak value) of ϕ f( )o p/  of P. Closed form expressions exist for αkt ,  and αct ,  when the main struc-
ture is undamped and is a single degree of freedom system30,31. Since the structure considered here is a continuous 
system with material damping ξ, a rigorous optimization study is essential to determine the optimal parameters. 
Let 

∞HControl  and 
∞HUncontrol  refer to the peak value of ϕ f( )o p/  in the configuration with and without LLR, 

respectively. The optimal values for a particular α is obtained by performing optimization using genetic algo-
rithm42,43 as follows,

=α αk c Z{ , } arg min( )t t, ,

subjected to,

≤ ≤α αLB k c UB{ } { , } { } (21)t t, ,

where

= ∞ ∞Z H H/ (22)Control Uncontrol

LB{ } and UB{ } respectively represents the lower and upper bound for αkt ,  and αct , . The values of these bounds are 
chosen such that the optimal αkt ,  and αct ,  do not take unrealistic values and thus result in a faster optimization. A 
similar genetic algorithm-based optimization is used to determine the optimal spring-damper parameters (

α
kP1,

 
and 

α
cP1,

) when αP1,  with α ρ ρ=
α

Al Al( ) /( )P P1,
 is used instead of a LLR as shown in Fig. 2c.
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