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Pancreatic adenocarcinoma has the worst outcome among all cancer types, with

a 5-year survival rate as low as 10%. The lethal nature of this cancer is a result

of its silent onset, resistance to therapies, and rapid spreading. As a result, most

patients remain asymptomatic and present at diagnosis with an already infiltrating

and incurable disease. The tumor microenvironment, composed of a dense stroma

and of disorganized blood vessels, coupled with the dysfunctional signal pathways

in tumor cells, creates a set of physical and biological barriers that make this tumor

extremely hard-to-treat with traditional chemotherapy. Nanomedicine has great potential

in pancreatic adenocarcinoma, because of the ability of nano-formulated drugs to

overcome biological barriers and to enhance drug accumulation at the target site.

Moreover, monitoring of disease progression can be achieved by combining drug delivery

with imaging probes, resulting in early detection of metastatic patterns. This review

describes the latest development of theranostic formulations designed to concomitantly

treat and image pancreatic cancer, with a specific focus on their interaction with physical

and biological barriers.

Keywords: nanomedicine, pancreatic cancer, nanoparticle, theranostics, biological barriers

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in Europe
and in the US (Siegel et al., 2018). The 1-year overall survival is limited to a discouraging 29%,
while the overall survival at 5-year post-diagnosis is <10% (Siegel et al., 2018). The major problem
is that most patients remain asymptomatic until late in their course and present at diagnosis with
an already infiltrating and incurable disease (Smith et al., 2015). For the small percent of patients
(19%) who present at diagnosis with local, partly resectable disease the 5-year survival reaches 27%,
a prognosis that still remains dismal (Garrido-Laguna and Hidalgo, 2015).

PDAC evolves from early precursor lesions, including pancreatic intraepithelial neoplasia
(PanIN), intraductal papillary mucinous neoplasms (IPMN) and mucinous cystic neoplasia
(MCN), a highly invasive neosplasms characterized by an ovarian-type stroma and a mucin-
producing epithelium (Hruban et al., 2007; Distler et al., 2014; Pusateri and Krishna, 2018).
While PanIN often occurs as a progressive multifocal disease with hardly detectable small lesions
(Bardeesy and DePinho, 2002; Makohon-Moore and Iacobuzio-Donahue, 2016), IPMNs mostly
localize in the main pancreatic duct and in its related branches (Torisu et al., 2019).
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Several signaling pathways, such as RAS, PI3K, and Hedgehog
(Hh) are known to play a role in supporting tumorigenesis
and progression (Morris et al., 2010; Cowan and Maitra,
2014). In spite of the extensive research that led to significant
improvement in the understanding of the evolution of this
disease, little advancement has been made toward more efficient
therapeutic and early detection options for PDAC (Matsubayashi
et al., 2019). The lack of indicative clinical signs and of
disease-specific biomarkers, makes early detection extremely
difficult (Adiseshaiah et al., 2016). In addition, pharmacological
treatments remain largely ineffective, due to the difficulty in
penetrating the tumor microenvironment (Conroy et al., 2011;
Zhao et al., 2018). PDAC is characterized by a dense, desmoplastic
stroma consisting of different cellular and acellular components
(e.g., collagen and fibrin), which impedes efficient drug delivery,
generates solid stress and increases interstitial fluid pressure
(IFP), resulting in blood vessels collapse and in the generation
of a hypoxic tumor microenvironment (Rucki, 2014; Xie and Xie,
2015; Dougan, 2017).

Nanomedicine formulations, e.g., formulation of drugs into
nano-size delivery vehicles, such as liposomes and polymer
nanoparticles (NPs), represent a valuable option in PDAC
treatment by virtue of their ability to overcome biological
barriers, protect their payload from degradation, and to achieve
targeted delivery (El-Zahaby et al., 2019). Depending on their
size, shape and surface charge, NPs have been shown to passively
accumulate into tumors through the enhanced permeability and
retention (EPR) effect (Maeda, 2001) and to actively interact
with cancer cells after surface-modification with specific ligands
(Yu et al., 2009), thereby enhancing selectivity and reducing
undesired side effects of chemotherapy.

Although the EPR effect is not relevant in PDAC due to
blood vessel collapse and to the presence of a dense desmoplastic
stroma (Tanaka and Kano, 2018), several nanomedicine-based
strategies have been designed and tested for the treatment
of this disease (Adiseshaiah et al., 2016; Meng and Nel,
2018). For instance, conjugation of Gemcitabine (GEM) to
the natural lipid squalene (SQ-GEM) to form self-assembled
nanoparticles of 130 nm in size has been shown to enhance the
stability of GEM and to reduce its de-activation by cytidine
deaminase (Couvreur et al., 2008). SQ-GEM significantly reduced
metastatic colonization and enhanced survival of mice bearing
orthotopic Panc1 pancreatic tumors, compared to equivalent
doses of free GEM (Réjiba et al., 2011). Another example is
the liposomal formulation of Irinotecan (MM-398), which in
combination with 5-fluoruracin and leucovorin (5-FU/LV) is
currently recommended as second line therapy after failure of
GEM treatment (Ko et al., 2013; Wang-Gillam et al., 2019; Woo
et al., 2019).

In spite of these promising results, cell intrinsic (e.g., drug
resistance) and cell extrinsic (e.g., tumor microenvironment)
barriers should be overcome to facilitate drug accumulation in
pancreatic tumors, coupled with better diagnostic and imaging
modalities (Yang et al., 2012; Meng and Nel, 2018). A new
class of theranostic nanomedicines that combines imaging
and therapeutic options in a single platform may address
this need.

Herein, we discuss the recent advancement in the design of
nanosystems to improve imaging and treatment of PDAC.

PHYSICAL AND BIOLOGICAL BARRIERS
IN PDAC

PDAC is characterized by a thick desmoplastic stroma, composed
of several cell types (including endothelial and immune cells),
embedded in a dense matrix composed of fibrin, collagen,
hyaluronan, and fibronectin (Cowan and Maitra, 2014; Rucki,
2014). Neoplastic cells account for <20% of the tumor mass,
while the stromal volume covers up to 70% of the total tumor
volume (Yang et al., 2012).

During PDAC progression, secretion of pro-inflammatory
cytokines by tumor cells stimulates extracellular matrix (ECM)
deposition by fibroblasts and stellate stromal cells (Hwang et al.,
2008; von Ahrens et al., 2017). The continuous generation of
a dense stroma generates solid stress which, together with the
collapse of the lymphatic drainage in the center of the tumor,
contributes to the increased intratumoral IFP and the consequent
vessel compression, reduced perfusion, and generation of a
hypoxic environment (Adiseshaiah et al., 2016; Meng and Nel,
2018). As a result, approximately 80% of blood vessels in PDAC
are non-functional, poorly fenestrated, and surrounded by a
thick layer of pericytes, that impede efficient accumulation of
nanomedicines into the tumor. Moreover, pancreatic stellate cells
secrete cytokines and growth factors that generate an immune-
suppressive microenvironment (Thind et al., 2017). This feature
of stellate cells is further amplified during tumor progression,
because cancer cells induce their differentiation in two subtypes
of cancer-associated fibroblasts, respectively showing a pro-
inflammatory or a pro-fibrogenic phenotype (Öhlund et al.,
2017). This concept has been further reinforced by single cell
transcriptome analysis (Ligorio et al., 2018) performed on human
PDAC underscoring a wider fibroblast heterogeneity, which
locally influences the proliferative and metastatic potential of
cancer cells.

MODULATION OF PDAC
MICROENVIRONMENT WITH
NANOMEDICINE

As summarized in Table 1, several strategies have been
implemented to design nanomedicines that can negotiate
with the microenvironmental barriers in PDAC through
alleviation of the stroma burden (Thompson et al., 2010;
Provenzano et al., 2012; Bhaw-Luximon and Jhurry, 2015),
normalization of tumor blood vessels, or by eliciting
nanoparticle-mediated immunogenic cell death (Zhao et al.,
2016), as thoroughly discussed by Adiseshaiah et al. (2016) and
by Meng and Nel (2018).

Stroma depletion through delivery of pegylated hyaluronidase
(PEGPH2O) was shown to enhance accumulation of high
molecular weight tracers into pancreatic tumors (Jacobetz
et al., 2013). Tested in combination with Abraxane and
GEM in clinical trials with patients whose tumors had high
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TABLE 1 | Nanomedicines for imaging and/or treatment of PDAC.

Therapeutic strategy Nanocarrier Encapsulated

agents

Achieved results

Stromal depletion via hyaluronan

accumulation

Pegylated

hyaluronidase

Abraxane + GEM 45% Response rate

11.5 months median overall survival (Jacobetz et al., 2013)

Stromal depletion via hedgehog

inhibition

Polymer NPs Paclitaxel +

cyclopamine

63% higher inhibition of tumor growth (Hingorani et al., 2018)

Stromal homeostasis via PSC

reprogramming

Pegylated gold NPs Retinoic acid +

HSP47-

siRNA+GEM

Suppressive effect in sub-cutaneous and orthotopic tumor

model (Catenacci et al., 2015)

Reduction of hypoxic

microenvironment

Polymer NPs HIF1α-siRNA +

GEM

Significant reduction of tumor size and metastasis prevention

(Jaster et al., 2003)

Sensitization to radiotherapy via ROS Cerium Oxide NPs Cerium oxide Significant reduction in tumor weight and volume (Zhao et al.,

2015)

Targeted pH-driven gene silencing Polymer NPs GEM + GDC 0449 Selective internalization and enhanced intratumor

accumulation (Vassie et al., 2017)

Temperature-triggered drug release Hybrid NPs GEM 4.4-fold decreased tumor weight and reduction of tumor size

(Zeiderman et al., 2016)

Targeted intracellular hyperthermia Gold NPs Cetuximab or

PAM4

Significant reduction of tumor size after 6 weeks of combined

therapy (Ray et al., 2019)

Targeted chemotherapy + MRI Iron oxide NPs Doxorubicin/iron

oxide NPs

66.6% Inhibition of tumor growth (Mattheolabakis et al., 2015)

Targeted Enzyme Responsive Drug

Release + MRI

Iron oxide NPs GEM/iron oxide

NPs

Improved intracellular release and tumor growth inhibition up

to 50% (Tummers et al., 2018)

Magnetic hyperthermia +

chemotherapy + MRI

Polymer NPs GEM/fluorescent

iron oxide NPs

Significant tumor regression and MRI contrast enhancement

(Hoogstins et al., 2018)

Image-guided targeted photothermal

therapy

Carbon nanotubes Cyanine 7 Dynamic disease monitoring and improved median survival

time (Rosenberger et al., 2015)

Targeted intra-operative fluorescent

imaging

Polymer NPs Indocyanine green Early detection of primary tumor and splenic metastases

(Handgraaf et al., 2014)

Targeted multi-modal Imaging Polymer NPs Iron oxide NPs +

FITC

Selective tumor accumulation and active disease monitoring

(Vahrmeijer et al., 2013)

hyaluronan content, an objective response rate of 45 vs.
31% and a median overall survival of 11.5 vs. 8.5 months
was achieved in comparison with Abraxane/GEM therapy
(Hingorani et al., 2018). Inhibition of signal pathways involved
in stroma deposition, such as Hh, was implemented to facilitate
accumulation of NPs to PDAC tumor models. Zhang et al.
(2016) showed that oral administration of cyclopamine, a Hh
inhibitor, reduced fibronectin content and enhanced tumor
vascularization, resulting in a significantly higher accumulation
of NPs in subcutaneous Capan-2 xenografts. Using paclitaxel
(PTX)-loaded NPs combined with cyclopamine, they achieved a
63% increased inhibition of tumor growth (Zhang et al., 2016).
In spite of these results, the Hh inhibitor Vismodegib combined
with GEM failed to produce significant clinical benefit to patients
withmetastatic PDAC. No significant improvement in the overall
survival or in the disease free progression was observed in
comparison to standard treatment with GEM alone (Catenacci
et al., 2015).

In addition to these discouraging results, other reports have
shown that stroma depletion may facilitate cell proliferation and
worsen the metastatic spreading, thus reducing the potential
applicability of these therapies in PDAC treatment (Kiesslich
et al., 2012; Özdemir et al., 2014; Adiseshaiah et al., 2016).

As an alternative to stromal depletion, Han et al. (2018)
proposed to restore the fibrotic stromal homeostasis in PDAC
by reprogramming pancreatic stellate cells (PSCs). They reported
on the design of pH-responsive pegylated gold nanoparticles co-
loaded with all-trans retinoic acid (ATRA) and heat shock protein
47(HSP47)-small interfering RNA (siRNA). ATRA is involved in
maintaining PSCs homeostasis and quiescence, while silencing
of HSP47 has the potential to reduce collagen accumulation and,
consequently, to normalize the desmoplastic stroma (Jaster et al.,
2003; Masamune and Shimosegawa, 2009). Combined with GEM
treatment, these particles showed significant tumor suppressive
effect in both, sub-cutaneous and orthotopic, PSC/PANC-1
xenografts in mice.

Knockdown of target genes involved in drug resistance, and in
tumor invasion by RNA interference, is another possible strategy
tomodulate PDACmicroenvironment (Burnett and Rossi, 2012).
NPs have demonstrated to improve the biodistribution and to
reduce clearance of siRNAs andmicro-RNAs (miRNAs) and have
been used in combination with cytotoxic drugs, such as GEM or
Doxorubicin (Zhao et al., 2015; Gibori et al., 2018; Chen et al.,
2019).

As an example, inhibition of the hypoxia inducible
transcription factor HIF1α through siRNA combined with
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GEM release was proposed by Zhao et al. (2015). The hypoxic
microenvironment in PDAC is responsible for the activation
of genes that regulate invasion, angiogenesis, resistance to
treatment and proliferation, driven mostly by the secretion of
HIFs (Feig et al., 2012). GEM-loaded, lipid-coated polymer NPs,
where siRNA was complexed to positively charged polylysine
residues on the surface of NPs, significantly delayed the growth
of subcutaneous PANC-1 tumor xenografts, demonstrating a
synergistic effect between HIF1α down-regulation and GEM.
Moreover, the combination therapy significantly reduced
tumor size in an orthotopic PDAC model, as compared to
un-encapsulated siRNA and GEM, or with particles loaded with
GEM only. In addition, no peritoneal metastases were observed
in the group treated with the combination therapy, while all
other animals had signs of liver and peritoneal secondary tumors.

Since PDAC microenvironment generates resistance to
chemo and radiotherapy (RT), Wason et al. proposed the
delivery of cerium oxide nanoparticles (CONPs) to modulate
production of reactive oxygen species (ROS) that sensitized
PDAC cells to radiotherapy (RT) (Wason et al., 2013; Vassie
et al., 2017). CONPs-based pretreatment limited tumor growth
in an orthotopic L3.6pl tumor model in athymic nude
mice, leading to a significant reduction in tumor weight
(P = 0.0112) and volume (P = 0.0006) as compared to
RT alone.

SMART NANOMEDICINES IN PDAC
TREATMENT

Smart NPs are designed respond to environmental or external
stimuli to trigger drug release after passive or active tumor
accumulation, as schematized in Figure 1 (Zeiderman et al., 2016;
Mattu et al., 2018).

Ray et al. (2019) proposed a pH-responsive platform
based on block co-polymers of PEG-b-poly (carbonate) loaded
with GEM and the Hh inhibitor GDC 0449. These NPs
respond to the low pH of the extra- (pH 6.9–6.5) and
intra-cellular compartments (pH 5.5–4.5) in PDAC, by virtue
of the presence of tertiary amine side chains that promote
disassembly of NPs under acidic conditions. To facilitate NPs
accumulation in PDAC, the surface was modified with an
iRGD peptide that selectively targets neuropilin and integrin
receptors over-expressed by tumor cells. Successful accumulation
was achieved and NPs were detected into BxPC-3 tumor
xenografts up to 6 hours post systemic administration (Ray et al.,
2019).

Temperature-triggered drug release was proposed by
Oluwasanmi et al. (2017) after passive accumulation of NPs
into PDAC xenografts, followed by external laser irradiation.
They designed thermo-responsive hybrid NPs (HNPs) and
linked GEM through a thermosensitive linker containing the
Diels–Alder adducts, that are cleaved upon heat generation,
thus triggering GEM release at the tumor site (Gregoritza
and Brandl, 2015). When administered in vivo to BxPC-3
xenografts, the formulation showed enhanced anti-cancer
activity, demonstrated by a 4.4-fold decreased tumor weight and

reduction of tumor size when compared to GEM-loaded HNPs
without laser irradiation.

Gold NPs (Au NPs) stimulated with external radio frequency
(RF) irradiation have also been proposed for the non-invasive
intracellular hyperthermia of PDAC (Glazer et al., 2010). Au
NPs conjugated with Cetuximab or PAM4, for active targeting
of epidermal growth factor receptor1 (EGFR-1) and mucine-1
(MUC-1), were intraperitoneally administered to mice bearing
PANC-1 or Capan-1 xenografts. PAM4-conjugated Au NPs
exhibited the highest tumor internalization. When combined
with RF in the first 2 weeks of treatment, these NPs produced
a significantly higher reduction of tumor size with minimal side
effects, compared to unconjugated NPs or to conjugated NPs in
absence of the external RF.

THERANOSTIC NANOPARTICLES

Theranostic NPs have the potential to localize imaging agents
together with therapies at the tumor site (Handgraaf et al.,
2014). Early detection and surgical resection have been shown to
increase the mean 5-year survival of PDAC patients up to 31.7
± 3.6 months (Cleary et al., 2004), highlighting the possibility to
exploit the tumor-accumulation ability of NPs to deliver imaging
agents for early recognition of PDAC (Vahrmeijer et al., 2013).

Qi et al. (2018) designed a near infrared fluorescent probe
by encapsulating indocyanine green (ICG) into hyaluronic
acid (HA) NPs (NanoICG). The fluorescence emission of
ICG could be detected to a depth of 8mm in tissues and
was exploited to facilitate visualization of the infiltrating
tumor tissue. The affinity of HA for the membrane receptor
CD44 over-expressed by pancreatic cancer cells was exploited
to enhance NPs accumulation into PDAC through active
recognition mechanisms (Mattheolabakis et al., 2015). High
tumor accumulation was achieved after administration to mice
bearing a syngeneic orthotopic PDAC model. The fluorescence
signal from the encapsulated ICG allowed the detection of the
primary tumor as well as the splenic metastases to a much higher
extent when compared to free ICG, confirming the targeting-
ability of HA NPs toward PDAC.

The disease accumulation properties of NPs could be
leveraged to also facilitate disease visualization during surgery
(Qi et al., 2018). Recently, high-resolution fluorescent imaging
agents coupled to antibodies have been used in small in-patients
studies, for the detection of the primary disease or the presence of
small metastatic sites during resection surgery (Hoogstins et al.,
2018; Tummers et al., 2018). This may facilitate identification of
the resection margins and quantification of the residual disease,
albeit the clinical benefit still remains to be demonstrated.

Combination of magnetic resonance imaging (MRI) with
fluorescence imaging, by co-encapsulation of superparamagnetic
iron oxide NPs (IONPs) was also proposed. For instance, IONPs
and fluorescein isothiocyanate (FITC) were co-encapsulated
into HA NPs to exploit selective recognition of HA by CD44
receptors (Luo et al., 2019), and into NPs modified with tissue
plasminogen activator-derived peptides with high affinity toward
galectin-1, overexpressed by pancreatic cancer cells (Rosenberger
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FIGURE 1 | Smart nanoparticles for PDAC theranostic: (A) Surface-functionalized nanoparticles actively recognize tumor cells, thereby enhancing selective

accumulation. (B) Once they reach the target site, release can be triggered by applying external stimuli, such as magnetic field or irradiation. (C) Selective recognition

of cancer cells can be exploited to enhance their visualization, favoring complete eradication during surgery or disease monitoring with classic diagnostic tools, such

as PET or MRI. Image created with Biorender.

et al., 2015). Accurate monitoring of tumor growth with MRI
was achieved in both cases, after active accumulation of NPs
in tumors.

MRI imaging combined with doxorubicin (Dox)
chemotherapy was proposed for PDAC theranostic (Zhou
et al., 2015). IONPs were conjugated to human insulin-like
growth factor1 (IGF1) that selectively binds to IGF1-
receptors in pancreatic cancer cells, and loaded with
Dox. IGF1-IONPs exhibited excellent tumor penetration
ability after IV administration in an orthotopic patient-
derived tumor model. Moreover, when administered
intratumorally, these particles led to a significant inhibition
of tumor growth (66.6%), compared to treatment with
free Dox, non-targeted IONP-Dox, or PBS. Enhanced
MRI contrast was obtained for the group treated
with IGF1-IONP-Dox, while no significant contrast
was observed in non-targeted IONP-Dox, suggesting
IGF1R-mediated accumulation.

Lee et al. (2013) designed urokinase plasminogen activator
(uPAR)-modified IONPs loaded with GEM via an enzyme-
cleavable tetrapeptide linker. They achieved improved
endocytosis through active recognition of uPAR receptors,
and a consequently higher intracellular release of GEM and MRI
contrast. Moreover, inhibition of tumor growth (up to 50%) was
obtained in an orthotopic pancreatic cancer model.

IONPs have the potential to generate heat after external
irradiation (Jaidev et al., 2017). Jaidev et al. (2017) developed
polymeric NPs for MRI, magnetic hyperthermia (MHT)
and chemotherapy for application in PDAC. Poly(lactide-co-
glycolide) (PLGA)-based NPs encapsulating fluorescent IONPs
and GEM were conjugated with anti-human epidermal growth
factor receptor 2 (HER-2) antibody. When administered in
subcutaneous MIAPaCa-2 tumor models in combination with
mild hyperthermia, NPs led to a significant tumor regression;
moreover, a remarkable contrast enhancement was observed in
T2-MRI images of treated mice.
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Single-walled carbon nanotubes (SWNTs) can also convert
heat after near infrared (NIR) irradiation, resulting in localized
hyperthermia that leads to tumor cells death via ROS production
(Singh and Torti, 2013). Lu et al. (2019) formulated anti-
IGF-1R antibody functionalized SWNTs for enhanced imaging-
guided cytotoxic photothermal therapy (PTT) of PDAC. SWNTs
exhibited preferential accumulation into tumors, resulting in
dynamic monitoring of the disease. Fluorescence-guided PTT
significantly improved the survival of mice bearing an orthotopic
PDAC model, compared to groups treated with PBS or only with
NIR laser.

CONCLUSIONS AND FUTURE
DIRECTIONS

PDAC remains an incurable disease. The dense stroma, the lack
of vascular access, and the heterogeneous microenvironment,
make PDAC extremely refractory to treatment penetration,
requiring the design of smart strategies to by-pass these barriers
and to maximize treatment accumulation in the tumor (Gibori
et al., 2018).

Late disease detection worsens patient outcome, making
surgical resection ineffective. The tumor-accumulation and
targeting ability of nanomedicines could be leveraged to improve
disease detection at early stage, considerably improving survival
and enhancing the extent of surgical resection (Handgraaf
et al., 2014). Early stage detection may also result in more
efficacious nanomedicine-based treatments, for instance coupled
with stroma-depleting agents which would further potentiate
disease homing.

Local delivery is an attractive, yet poorly exploited, alternative
to treat PDAC. Local administration avoids the stroma protection
and overcomes the restricted vascular access, potentially reducing
side effects, as demonstrated by the encouraging results of the
siG12D-LODER implant (Adiseshaiah et al., 2016). SiG12D-
LODER is a biodegradable implant for the local delivery of
liposomal-encapsulated anti-KRAS siRNA that is placed near the
tumor by means of standard endoscopic surgery (Golan et al.,
2015). In a small subset of PDAC patients, stabilization of tumor
growth, and partial response was achieved in combination with

chemotherapy, suggesting the potential of this smart delivery
method (Schultheis et al., 2014).

As discussed above, extensive research has shown the potential
of nanomedicine in PDAC and some formulations, such as
albumin-bound paclitaxel (Abraxane) and liposomal irinotecan
(MM-398), reached clinical approval (Kalra et al., 2014; Goldstein
et al., 2015; von Ahrens et al., 2017). It must be noted
that although MM-398 in combination with other cytotoxic
agents improved patient survival, it failed to produce similar
improvements when used as mono-therapy (Adiseshaiah et al.,
2016; Kipps et al., 2017; Wang-Gillam et al., 2019).

Additionally, the different animal models, cell source,
tumor location (e.g., heterotopic vs. orthotopic), and
nanoparticle design used in pre-clinical research may result
in difficult comparison between published research and in the
overestimation of the results (Murtaugh, 2014; Adiseshaiah et al.,
2016; Leong et al., 2019).

Efforts toward standardization of research and treatment
protocols may further improve the potential of nanomedicine in
the field.
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