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Abstract We report on the Eliashberg analysis of the

electrodynamic response of Ba(Fe1−xRhx)2As2 single

crystals across the disorder induced s± to s++ transi-

tion. We previously experimentally identified the transi-

tion by its signature in the low temperature value of the

penetration depth and observed a peculiar dependency

of the critical temperature on disorder; subsequently

we proposed new hallmarks in the quasiparticle con-

ductivity and surface impedance. Here we show that

this whole set of data can be self consistently repro-

duced within an effective two-bands Eliashberg model

with disorder treated beyond the Born approximation

and with a small set of input parameters.

Keywords First keyword · Second keyword · More

1 Introduction

The Eliashberg equations are a powerful and versatile

tool to predict and interpret experimentally measured

properties of superconductors [1]. Being a generaliza-

tion of BCS theory, they allow the analysis of materials

in which strong coupling effects are relevant, multiband

systems and disordered structures. Many physical prop-

erties can be calculated and compared to experimental
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data, giving deep insight in the physics of novel mate-

rials [2]. Such an approach was largely employed on the

multiband superconductor MgB2, where several prop-

erties such as thermal conductivity [3] and surface re-

sistance [4,5], as well as the doping dependence of Tc
[6] have been interpreted with the help of Eliashberg

models [7].

Iron based superconductors (IBSs) are the most recent

example of systems for which BCS theory fails and an

Eliashberg approach is necessary to correctly describe

their physics [8]. A word of caution should however be

used also with respect to Eliashberg approaches if the

full superconducting dome needs to be analyzed, be-

cause Eliashberg theory is expected to fail near a Lif-

shitz transition [9]. Such transitions were identified at

low electron doping [10] and heavy hole doping [11] in

IBSs systems [12]. If we focus on the optimally doped

cases, these materials are characterized by the presence

of multiple bands that contribute to superconductivity,

and electron-boson coupling is provided by antiferro-

magnetic spin fluctuations [13]. From these properties

rises an order parameter that possesses the s± symme-

try, i. e. an s-symmetric gap with a π phase shift among

different bands [14].

However, experimental proofs of a sign-changing order

parameter among different Fermi sheets are difficult to

achieve. One possibility is to study the effects of disor-

der and to observe the signatures of the transition to the

sign preserving s++ state. Efremov et al. showed that at

the transition the superfluid density, ρs, would increase,

corresponding to a dip of the low temperature value of

the London penetration depth, λL(0), as a function of

disorder [15]. We previously reported on the first ob-

servation of this feature by performing 3.5 MeV proton

irradiation on Ba(Fe1−xRhx)2As2 single crystals, mea-

suring λL(T ) with a microwave resonator (MWR) tech-
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nique and analyzing this experimental data within an

effective two-bands Eliashberg model [16]. The MWR

measurements also yields information about the elec-

trodynamic response of the sample [17]. In particular,

it was possible to obtain the quasiparticle conductiv-

ity, σn, and to identify new signatures of the transition

[18]. In this paper, we present the Eliashberg analysis

of the quasiparticle conductivity across the s± to s++

transition, showing that the whole set of experimental

data (λ(T ), Tc and σn(T ) for all levels of disorder) can

succesfully be reproduced within an effective two-bands

Eliashberg model that suitably takes into account dis-

order.

Table 1 The table summarizes the values of the parameters
used to reproduce the experimental Tc, λL(T ) and σn(T ) of
the system after each proton irradiation session, i.e. for differ-
ent disorder levels, here represented by the average dpa. Γ1 is
the normal state scattering rate that is proportional to disor-
der, σ is the generalized cross-section, η is the ratio of intra-
and inter-band scattering, λij are the components of the
electron-boson coupling-constant matrix and w1=wσ1 =wλ1 is
the weight of band 1.

dpa Γ1 σ η λ11 λ22 λ12 w1

(×10−3) (meV)

0 0 0 1 1 2.65 -0.17 0.98

1.02 0.361 0 1 1 2.65 -0.17 0.28

3.07 1.08 0.09 1 1 2.65 -0.17 0.25

4.10 1.44 0.10 1 1 2.65 -0.17 0.15

5.12 1.81 0.10 1 1.2 2.65 -0.13 0.90

5.63 1.99 0.14 1 1.2 2.65 -0.13 0.82

6.15 2.17 0.21 1 1.2 2.65 -0.13 0.78

6.63 2.35 0.28 1 1.2 2.65 -0.13 0.75

2 Experimental methods

Optimally doped single crystals of Ba(Fe1−xRhx)2As2
were characterized in the pristine state and for increas-

ing doses of 3.5 MeV proton irradiation using a mi-

crowave resonator technique that yields the London

penetration depth, quasiparticle conductivity and sur-

face impedance as a function of temperature. All the de-

tails of the experimental approach are given elsewhere

[19–21,17,1]. The analysis of the penetration depth and

superfluid fraction in these samples was reported in [16]

and allowed us to identify the s± to s++ transition.

Moreover, the measured quasiparticle conductivity and

surface impedance were discussed in [18] resulting in
the identification of two additional signatures of the

transition.

3 Eliashberg model

For the purpose of reproducing the experimentally ob-

served features of the London penetration depth and

superfluid density and validating the observation of the

s± to s++ transition, we recently used an effective two-

bands Eliashberg model in which disorder was taken

into account beyond the Born approximation [16]. The

choice of considering two bands instead of a more re-

alistic three- or four- bands model was imposed by the

necessity of treating disorder within the T -matrix ap-

proach while keeping the number of free parameters

reasonable. In order to calculate λ(T ) and the critical

temperature of the system for all levels of disorder, it

was sufficient to solve the imaginary-axis version of the

Eliashberg equations. By contrast, in the present anal-

ysis of the quasiparticle conductivity it is necessary to

solve also the equivalent, but numerically more chal-

lenging, real-axis Eliashberg equations. The input pa-

rameters needed (coupling constants, spectral function,

density of states and scattering potential) and the ap-

proximations employed are the same as those used in

[16] and are summarized in Table 1.

3.1 Real axis equations

In order to calculate the quasiparticle conductivity, one

needs the complex frequency dependent gaps ∆i(ω) and

renormalization functions Zi(ω) on each band i and at

all temperatures in the desired range. These can be cal-

culated by solving self-consistently four coupled non-

linear integral equations for these quantities. The real-

axis formulation of the Eliashberg equations [22] reads:
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∆i(ω, T )Zi(ω, T ) =

∫ ωC

0

dω′<

(
∆i(ω

′, T )√
ω′2 −∆2

i (ω
′, T )

)∑
j

{∫ ∞
0

dΩλijα
2F (Ω)

×
[
(n(Ω) + f(−ω′))

(
1

ω + ω′ +Ω + iδ+
− 1

ω − ω′ −Ω + iδ+

)
− (n(Ω) + f(ω′))

(
1

ω − ω′ +Ω + iδ+
− 1

ω + ω′ −Ω + iδ+

)]}

+
∑
j

ΓNij

 ∆j(ω, T )√
ω2 −∆2

j (ω, T )

 , (1)

[1− Zi(ω, T )]ω =

∫ ∞
0

dω′<

(
ω′√

ω′2 −∆2
i (ω
′, T )

)∑
j

{∫ ∞
0

dΩλijα
2F (Ω)

×
[
(n(Ω) + f(−ω′))

(
1

ω + ω′ +Ω + iδ+
− 1

ω − ω′ −Ω + iδ+

)
− (n(Ω) + f(ω′))

(
1

ω − ω′ +Ω + iδ+
− 1

ω + ω′ −Ω + iδ+

)]}

+
∑
j

ΓNij

 ω√
ω2 −∆2

j (ω, T )

 . (2)

Here, ωC is the boson energy cut-off introduced into the

Coulomb repulsion term in order to assure the conver-

gence in (1), f(ω) = 1/(eβω + 1) is the Fermi function

and n(ω) = 1/(eβω − 1) is the Bose function. The real

part of the product ∆(ω, T )Z(ω, T ) and of Z(ω, T ) is

determined by the principal-value integrals in (1) and

(2), while the imaginary part comes from the delta-

function parts.

The denominators can vanish for particular energies,

then the integrals in (1) and (2) must be done carefully

when a numerical approach is used.

3.2 Disorder

It is worth underlining that to treat disorder effects

as precisely as possible, we implemented a T−matrix

approach (within an effective two-bands model) that

allows us to range from the Born approximation to the

unitary limit. Accordingly, we consider both inter-band

and intra-band scattering, but it is intended that intra-

band terms represent a combination of inter-band terms

of a more realistic model that involves all the existing

bands.

ΓNij in eq.(1) and (2) are the scattering rates from non-

magnetic impurities that, in the T−matrix model can

be written as:

ΓN12(21) =

=
Γ1(2)(1− σ)

σ(1− σ)η[N1(0) +N2(0)]2/[N1(0)N2(0)] + (ση − 1)2
,

where σ = π2N1(0)N2(0)u2/(1 + π2N1(0)N2(0)u2),

Γ1(2) = nimpπN2(1)(0)u2(1 − σ) are the generalized

cross-section and normal state scattering rate param-

eters, respectively, and nimp is the impurity concentra-

tion. The parameter η controls the ratio of intra-band

and inter-band scattering as v2 = u2η, where v and u

are the intraband and interband parts of the impurity

potential, respectively [23,24]. When σ → 0, disorder is

treated within the Born limit (weak scattering), while

for σ → 1 the unitary limit is achieved (strong scatter-

ing). Thus, disorder is controlled by three parameters,

namely σ, η and Γ1, since Γ2 = Γ1
N1(0)
N2(0)

.

The disorder terms in the Eliashberg equations (last

line of both eq. (1) and (2)) are obtained for η = 1

from the more general equations 42 and 43 in [23].

The difference lies in the fact that we assume that the

ΓNij and N∆
j (iωn) terms can be factorized. This is the

same as to say that there is no frequency dependence

of the disorder induced scattering. The two expressions

are exactly equivalent when NZ
1 N

Z
2 + N∆

1 N
∆
2 ' 1, as

it is verified in all our cases [25].
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Fig. 1 Comparison between the experimental (left column, symbols) and calculated (right column, solid lines) data of the
superfluid fraction (top row) and normalized quasiparticle conductivity (bottom row) for all irradiation doses. Green arrows
indicate the changes across the transition.

3.3 Quasiparticle conductivity

The solutions of the Eliashberg equations were then

used to determine the microwave conductivity [26]:

σn(ω → 0) =
∑
i

wσi σn,i =

=
∑
i

wσi Ai

∫ +∞

0

dω

(
−∂f(ω)

dω

)
×

×
[
(Re gZi (ω))2 + (Re g∆i (ω))2

]
(3)

where i is the band index, wσi is the weight of the i-th

band (with the constraint that wσ1 + wσ2 = 1 ), and

gZi (ω) = Zi(ω)ω/
√

[Zi(ω)ω]2 − [∆2
i (ω)Z2

i (ω)]

g∆i (ω) = ∆i(ω)Zi(ω)/
√

[Zi(ω)ω]2 − [∆2
i (ω)Z2

i (ω)]

The coefficients Ai depend on the density of states,

Ni(0), and on the temperature dependent scattering

time, τi(T ) of each band. Since these quantities are un-

known for these compounds some approximations are

necessary: first of all we assume that τi has the same

temperature dependence for all the bands and there-

fore we use the effective scattering time obtained from

the quantities measured with the MWR technique by

means of the phenomenological two-fluid model dis-
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cussed in [17].

τ−1TF =
1

µ0λ2L(0)σn
− ω(X2

s −R2
s)

2XsRs
. (4)

Furthermore, also assuming that the scale factors Ai
on different bands are equal (Ai = A) and by fitting

the conductivities curves normalized to the value at

Tc (σn(T )/σn(Tc)), the weight wσ1 is left as the only

free parameter that can be tuned to reproduce the

experimental data. In our case, we use the same weights

as those used for the analysis of the penetration depth

in [16] (in principle both weights depend on the Fermi

velocities on each band), and therefore we have no

additional free parameters.

3.4 Results

Figure 1 shows the comparison between the experimen-

tal (left column) and calculated (right column) data

of the superfluid fraction (top row) and normalized

quasiparticle conductivity (bottom row) for all irradia-

tion doses. Despite the approximations employed in the

model (the most important of which is the use of a two-

band model), the comparison is very satisfactory: all

the features are qualitatively and semi-quantitatively

reproduced for the whole data set. In particular, it

was possible to obtain both monotonous and peaked

σn(T ) curves, as the one we observe for different lev-

els of disorder. The combination of experimental and

theoretical data (specifically the gap values given in

Ref. [16]) allows us to discuss some details about what

happens near the disorder driven transition. The ob-

served effects should be interpreted in light of the phys-

ical mechanism driving the transition: disorder causes

interband scattering that effectively increases mixing

between different bands, driving the order parameter

values to converge and forcing the smaller one to pass

through zero changing its sign [23]. However, it is still

unclear whether the transition from s± to s++ is a

smooth crossover or a discontinuous jump [24,27,28].

The gap values obtained with our model (and consid-

ering that no experimental data in the range between

dpa = 4.10×10−3 and 5.12×10−3 is available) indicate

a quite steep transition, but no distinction is possible

between a smooth and a discontinuous transition.

4 Conclusions

In summary, we showed that an effective two-bands

Eliashberg model with disorder treated beyond the

Born approximation is capable of explaining all the ex-

perimentally observed features of the disorder-induced

s± to s++ transition in a self consistent way, with only a

few free parameters. In particular, it was possible to re-

produce the experimental normalized quasiparticle con-

ductivity as a function of temperature for all levels of

disorder across the transition with no additional free

parameter with respect to those optimized for the su-

perfluid density.
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