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Large Time Step and DC Stable TD-EFIE
Discretized with Implicit Runge-Kutta Methods

Alexandre Dély, Member, IEEE, Francesco P. Andriulli, Senior Member, IEEE, and Kristof Cools.

Abstract—The Time Domain-Electric Field Integral Equation
(TD-EFIE) and its differentiated version are widely used to
simulate the transient scattering of a time dependent electro-
magnetic field by a Perfect Electrical Conductor (PEC). The time
discretization of the TD-EFIE can be achieved by a space-time
Galerkin approach or, as it is considered in this contribution, by
a convolution quadrature using Implicit Runge-Kutta methods.
The solution is then computed using the Marching-On-in-Time
(MOT) algorithm. The differentiated TD-EFIE has two problems:
(i) the system matrix suffers from ill-conditioning when the time
step increases (low frequency breakdown) and (ii) it suffers
from the DC instability, i.e. the formulation allows for the
existence of spurious solenoidal currents that grow slowly in
the solution. In this work, we show that (i) and (ii) can be
alleviated by leveraging quasi-Helmholtz projectors to separate
the Helmholtz components of the induced current and rescale
them independently. The efficacy of the approach is demonstrated
by numerical examples including benchmarks and real life
applications.

Index Terms—Time Domain, Electric Field Integral Equation,
Implicit Runge-Kutta, Preconditioning, Low Frequency, DC in-
stability.

I. INTRODUCTION

THE Time Domain-Electric Field Integral Equation (TD-
EFIE) can be used to model the transient scattering from

a Perfect Electric Conductor (PEC) [1]. Many techniques have
been developed to improve the solution of Time Domain
Integral Equations (TDIE), not only to decrease the overall
computational complexity such as the Plane Wave Time Do-
main (PWTD) [2], [3] or the Hierarchical-FFT (HIL-FFT) [4]
algorithms, but also to improve the stability using loop-tree
decomposition [5], [6], Calderón preconditioning [7], quasi-
Helmholtz projectors [8], Combined Field Integral Equation
(CFIE) [9], [10] and to improve the accuracy using higher
order spatial basis functions [11], [12], better temporal basis
functions [13], [14], [15], and exact evaluations [16], [17].

The most common procedure to solve the TD-EFIE consists
in first discretizing in space using a space Galerkin testing
with a set of basis functions that spans the space of surface
currents, and then discretizing the system in time which
results in a fully discretized system that can be solved by
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a Marching-On-in-Time (MOT) algorithm [1] which is one of
the most used scheme although other valid approaches exist
such as, for example, marching-on-in-order strategies [18].
The TD-EFIE is often solved after a time differentiation to
get rid of the time integration present in the formulation.
Regarding the time discretization, several strategies exist. Point
testing is a very common choice [1], although the space-
time Galerkin discretization is becoming increasingly popular
[19]. Another strategy for the time discretization, however, is
based on Implicit Runge-Kutta (IRK) convolution quadrature
methods [20], [21]. Similarly to the IRK methods for solv-
ing ordinary differential equations, the IRK methods based
convolution quadrature for solving TDIE have good stability
properties. The accuracy of the solution over time depends
on the order of the Runge-Kutta method used. Discretizations
in IRK convolution quadrature methods leverage on system
matrices which can be computed from Laplace domain integral
operators and thus it is relatively easy to get an IRK-based time
domain solver from a frequency domain code. This contrasts
with the state-of-the-art for space-time Galerkin methods,
where no exponentially converging quadrature schemes for
the computation of the interaction integrals are known. The
differentiated TD-EFIE [22] as well as the TD-CFIE [23]
have been successfully solved using this IRK methods based
convolution quadrature.

Its advantages notwithstanding, the differentiated TD-EFIE
still suffers from two serious problems: (i) the large time
step breakdown (time domain low frequency (LF) breakdown),
which causes the condition number of the system to grow
quadratically with the time step [7], and (ii) the presence of
DC instabilities, which corresponds to the existence of static
or linear in time solenoidal currents in the solution of the
equation [24]. These currents grow slowly yet exponentially,
which results in a completely wrong solution.

This paper addresses the solution of both (i) and (ii). In [8],
the LF breakdown and DC instability are solved for the space-
time Galerkin discretization by leveraging quasi-Helmholtz
projectors. These projectors enable the decomposition of the
current in its Helmholtz components, which then can be dif-
ferentiated or integrated as appropriate. This procedure leads
to a discretization that does not suffer from the LF breakdown
and DC instability. It remains effective in the case of multiply
connected geometries without needing an expensive detection
of global loops. It is not trivial to see that these projectors
can also apply to the IRK convolution quadrature methods,
where frequency domain kernels are evaluated in matrix valued
complex frequencies. In this paper the regularization of the
IRK convolution quadrature discretization of the TD-EFIE is
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investigated. It is shown how quasi-Helmholtz projectors can
be used to arrive at a regularized scheme free from both (i) and
(ii). Numerical results demonstrate the efficacy of the proposed
approach. Very preliminary results from this work have been
presented in the conference contribution [25].

This paper is organized as follows: in Section II, the back-
ground and notations for the classical TD-EFIE discretized
with IRK methods are introduced. In Section III, the large
time step breakdown and the DC instability are analyzed. In
Section IV, we introduce the new regularized formulation.
Implementation details and the computational cost of the
scheme are discussed in section V. In Section VI, numerical
results are presented to illustrate the efficacy and the efficiency
of the novel approach.

II. BACKGROUND AND NOTATIONS

A. Time domain EFIE

We consider a PEC object with a boundary Γ in a medium
whose permittivity is ε0, permeability is µ0 and characteristic
impedance is η0 = (µ0/ε0)1/2. This object is excited by an
incident wave whose electric field einc induces an electric
current density j on the surface Γ. The current density j
satisfies the TD-EFIE

− η0Tj(r, t) = n̂r × einc(r, t) , (1)

with the time domain EFIE operator T defined as

Tj(r, t) = − 1

c0

∂

∂t
T sj(r, t) + c0

∫ t

−∞
T hj(r, t′)dt′ , (2a)

T sj(r, t) = n̂r ×
∫

Γ

j(r′, t− |r−r
′|

c0
)

4π|r − r′| dS′ , (2b)

T hj(r, t) = n̂r ×∇
∫

Γ

∇′ · j(r′, t− |r−r
′|

c0
)

4π|r − r′| dS′ , (2c)

where n̂r is the normal to Γ at r and c0 = (µ0ε0)−1/2 is
the speed of light in the medium. The following differentiated
TD-EFIE is also often used to avoid the time integration

η0

(
1

c0

∂2

∂t2
T sj(r, t)− c0T hj(r, t)

)
= n̂r ×

∂

∂t
einc(r, t) .

(3)
To enforce the uniqueness of the solution, the fields are
assumed to vanish in the neighbourhood of Γ when t < 0.

B. Laplace domain EFIE

The TD-EFIE is transformed to Laplace domain as

− η0Ť ǰ(r, s) = n̂r × ěinc(r, s) , (4)

with the Laplace domain EFIE operator Ť defined as

Ť ǰ(r, s) = − s

c0
Ť sǰ(r, s) +

c0
s
Ť hǰ(r, s) , (5a)

Ť sǰ(r, s) = n̂r ×
∫

Γ

e−
s
c0
|r−r′|

4π|r − r′| ǰ(r′, s)dS′ , (5b)

Ť hǰ(r, s) = n̂r ×∇
∫

Γ

e−
s
c0
|r−r′|

4π|r − r′|∇
′ · ǰ(r′, s)dS′ . (5c)

C. Spacial discretization

The boundary Γ is approximated by a triangular mesh with
Ns edges, Nv vertices, and Nf faces. Let (fm)Ns

m=1 be the
set of Ns Rao-Wilton-Glisson (RWG) basis functions [26]
built on the mesh. The expressions for the standard Helmholtz
subspace bases are simpler when the RWGs are normalized
such that

∫
em

fm · m̂dl = 1, where em is the edge shared by
the two triangles in the support of fm and m̂ is the normal
to em, tangent to Γ [8].

The RWG basis functions are used to approximate the
surface electric current density

ǰ(r, s) ≈
Ns∑
n=1

[j(s)]nfn(r) , (6)

where j(s) is an array that contains the coefficients of the
RWG expansion.

The two sides of the Laplace domain EFIE (4) are tested
with rotated RWG basis functions (n̂r × fm)Ns

m=1, which
results in the linear system

Z(s)j(s) = e(s) , (7)

with

[Z(s)]mn = −η0

∫
Γ

n̂r × fm(r) · Ť fn(r, s)dS , (8)

[e(s)]m =

∫
Γ

fm(r) · ěinc(r, s)dS . (9)

The computation of these matrix elements is standard (see e.g.
[27], [28]).

D. Temporal discretization

The system (7) in the Laplace domain has to be transformed
into a discrete time domain system. To do this, the system
is first discretized and then transformed to time domain.
More precisely, the discretization corresponds to converting
(7) from the Laplace domain to the Z-domain i.e. the discrete
counterpart of the Laplace domain. The IRK methods are
used to express the Laplace variable s as a function of
the Z-domain variable z. Then, the system is transformed
to time domain using the inverse Z transform. A rigorous
justification of the Runge-Kutta convolution quadrature can be
found in [20], [21]. In particular the conditions under which
the method results in a stable solution are accurately defined
in the references. In short, Runge-Kutta methods based on a
correspondence z(s) that maps the left half-plane inside the
unit circle will give rise to a marching-on-in-time scheme that
is stable in principle. In the presence of quadrature error and/or
finite machine precision this property might be violated. The
design of a solution method robust under these suboptimal
conditions is exactly the subject of this paper.

Using convolution quadrature for the computation of re-
tarded potentials is advantageous because it starts directly from
Laplace domain kernels. This means that often highly singular
time domain kernels can be avoided. Moreover, large parts
of well-established and well-tested frequency domain codes
can be reused, including bespoke routines for the integration
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of spatially singular integrals. The use of Runge-Kutta con-
volution quadrature in particular has a number of additional
advantages. (i) Good stability properties are inherited from the
Runge-Kutta methods for solving ordinary differential equa-
tions. (ii) The accuracy of the solution over time can be simply
improved by increasing the order of the Runge-Kutta method.
Note that in the context of ordinary differential equations,
Runge-Kutta methods can be used with an adaptive step size
[29]. This does not generalize to TDIEs since using adaptive
steps would break time translation symmetry, and the scheme
would not result in a discrete convolutional equation, but a
more general system, whose solution requires a much higher
computational effort. It is also worth mentioning that some
Runge-Kutta schemes can be derived from (discontinuous)
Galerkin methods [30].

In the Runge-Kutta method, the time dependent solution
y of the ordinary differential equation dy(t)

dt = F (t, y) is
computed consecutively at ti = t0 + i∆t. The initial condition
is known: y0 = y(t0). The value of the unknown at the next
step is computed by adding to the current value a weighted
sum of p interpolants [Fi]k of the slope:

yi+1 = yi + ∆t

p∑
k=1

bk[Fi]k , (10)

where [Fi]k are approximations of intermediate times deter-
mined by a fraction of the time step ci, evaluated by

[Fi]k = F

(
ti + ck∆t, yi + ∆t

p∑
l=1

Akl[Fi]l

)
. (11)

The method is explicit if each [Fi]k depends only on previous
[Fi]l i.e. only if Akl = 0 for all l ≥ k. Otherwise the method
is implicit. In this work only the Implicit Runge-Kutta (IRK)
methods are applicable. This means in particular that the well-
known Runge-Kutta 4 method is not admissible.

A Runge-Kutta method with p stages is completely specified
by A ∈ Rp×p, b ∈ Rp and c ∈ Rp concisely summarized in
its so-called Butcher tableau [29]

c A

bT
. (12)

There exist many classes of Runge-Kutta methods but not
all of them are suitable for the discretization of a temporal
convolution in the context of time domain integral equations.
The matrix A must be invertible and must verify bTA−1

1 = 1.
Lobatto IIIC and Radau IIA fulfill these requirements [21],
[20].

The equation after Laplace transform corresponding to the
time domain differential equation dy(t)

dt = f(t) is sy̌(s) =
f̌(s). Upon discretization, it is transformed to a corresponding
s(z)y(s(z)) = f(s(z)). Applying the implicit Runge-Kutta
method formally amounts to expressing the Laplace variable
s as a matrix valued approximation in terms of z [23]

s(z) =
1

∆t

(
A +

1bT

z − 1

)−1

, (13)

where 1 is a vector of size p that contains only ones. Applying
this same substitution in the Laplace domain integral equation
yields

Z̃(z)̃j(z) = ẽ(z) . (14)

where Z̃(z) = Z(s(z)). The evaluation of the EFIE BEM
matrix elements for a matrix valued s instead of a scalar s
can be done by computing the eigenvalue decomposition of
s(z). In particular, the matrix s is diagonalized in the form
s = MDM−1 where D is a diagonal matrix that contains
the p eigenvalues of s, and M is the matrix that contains
the corresponding p eigenvectors in each column. The matrix
valued element is then computed by evaluating the BEM
matrix element for each scalar eigenvalue of the diagonal and
multiplying back M and M−1 on the left and right. Additional
details on this procedure can be found in [23]. We introduce
the notations s̃ = I ⊗ s, M̃ = I ⊗ M, D̃ = I ⊗ D and
M̃−1 = I⊗ (M−1) where I is the Ns×Ns identity matrix and
⊗ is the Kronecker product. From these definitions it follows
that s̃ = M̃D̃M̃−1.

The multiplication of the scalar s times a matrix or times
a vector can be thought as the multiplication of the diagonal
matrix sI times the matrix or the vector. The matrix sI has s
on each diagonal element so, by replacing s with s, the matrix
sI becomes the matrix with s on the diagonal, i.e. it becomes
s̃. Explicitly,

Z̃(z) = Z(s(z)) = M̃(z)Z(D(z))M̃−1(z) , (15)

with

[Z(D(z))]p(m−1)+k,p(n−1)+k = [Z(Dkk(z))]mn , (16)

where Dkk is the k-th element on the diagonal D. Thus the
matrix valued Z(D) can be computed from the scalar valued
matrices Z(Dkk).

Given the Z-transform X(z) of a temporal sequence
(xn)Nt

n=0 (X and x can be scalars, vectors or matrices), and a
counter clockwise contour C around the origin in the region of
convergence of X(z), xn can be computed using the inverse
Z-transform

xn = Z−1(X(z))n =
1

2iπ

∮
C

X(z)zn−1dz . (17)

When C is chosen to be a circle of radius ρ (ρ 6= 1), the
integral can be approximated using the trapezoidal rule on a
Q subintervals partition of [−π, π]

xn =
ρn

2π

∫ π

−π
X(ρeiθ)eiθndθ (18a)

≈ ρn

Q

Q−1∑
q=0

X(ρe2iπ qQ )e2iπ qQn . (18b)

Performing the inverse Z-transform of the product (14)
results in the convolution

i∑
j=0

Zj ji−j = ei for each i ∈ [0, Nt] , (19)

where

j(r, (i+ ck − 1)∆t) ≈
Ns∑
m=1

[ji]p(m−1)+kfm(r) , (20a)
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[ei]p(m−1)+k =

∫
Γ

fm(r) ·einc(r, (i+ ck− 1)∆t)dS , (20b)

Zj = Z−1(Z(s(z)))j . (20c)

The coefficients ck (1 ≤ k ≤ p) are given by the Butcher
tableau (12) and correspond to the fraction of the time step
where the p stages occur.

The time discretized system (19) can be rewritten to be
solved in ji for each i ∈ [0, Nt], which corresponds to the
MOT algorithm

Z0ji = ei −
i∑

j=1

Zj ji−j . (21)

Note that classically, the differentiated TD-EFIE is actually
solved which means that the system in the Laplace domain
(7) is multiplied on both sides by s. Introducing an extra
differentiation enables getting rid of the time integration of
the divergence of the currents in the TD-EFIE or, differently
said, it cancels the 1/s factor that appears in the EFIE
operator (5a). This is done to limit the number of terms in
the convolution (21) to a certain constant Nconv in the order of
D/(c0∆t) where D is the diameter of the scatterer. Indeed, it
is possible to truncate the convolution after a certain number
of terms as the norm of the impedance matrices Zj decreases
exponentially [23]. The downside of this time differentiation is
that, in addition to the constant solenoidal currents responsible
of the DC instability, also linear in time solenoidal currents
end up in the kernel.

In this paper, we use the quasi-Helmholtz projectors (re-
viewed in the next section) to address these issues indepen-
dently by (i) differentiating only the capacitive part of the
operator that contains the integration of the divergence of the
current to have a fixed number of terms in the convolution,
and (ii) integrating only the inductive part that contains the
derivative of the current responsible of the DC instability.
Overall these two changes balance the TD-EFIE so that the
condition number remains stable at low frequency.

E. Quasi-Helmholtz projectors

In this subsection the quasi-Helmholtz projectors [31] are
briefly reviewed. These projectors can be built from Σ ∈
RNs×Nf , the edge-face connectivity matrix of the mesh that
discretizes Γ. The same matrix is also the transformation basis
from the basis of stars [32] to the RWG basis. It is defined by

Σef =

 ±1 if edge e is on the boundary of
face f clockwise/counterclockwise

0 otherwise
. (22)

The quasi-Helmholtz projectors PΣ and PΛH ∈ RNs×Ns are
then constructed using the basic properties of the projectors

PΣ = Σ
(

ΣTΣ
)+

ΣT , (23a)

PΛH = I− PΣ . (23b)

where the + denotes the Moore-Penrose pseudo inverse and I
is the identity matrix.

The projector PΣ projects on the space of non-solenoidal
functions or stars, and the complementing projector PΛH

projects on the space of solenoidal local and global loops.
Characterizing the loop space as the range of the complement-
ing projector renders the expensive construction of a basis for
the global loop space unnecessary [31].

III. CONDITIONING AND DC STABILITY ANALYSIS

Both the standard and time differentiated TD-EFIEs are
plagued by ill-conditioning and DC instability issues. In this
section, the manifestation of these issues for the IRK convo-
lution quadrature discretization of the TD-EFIE is discussed.
The scaling of the condition number in terms of the time step
is derived and the regime solutions of the homogenous TD-
EFIE are characterized.

A. Large time step ill-conditioning (low-frequency breakdown)

As the large time step breakdown is a problem related to
the time discretization, the starting point of the analysis is
the space discretized system in (7) which is continuous in the
Laplace domain. The matrix Z(s) in (8) is rewritten to make
explicit the contribution of the two parts of the EFIE operator
in (5a)

Z(s) = η0

(
s

c0
Ts(s) +

c0
s

Th(s)

)
, (24)

where

[Ts(s)]mn =

∫
Γ

n̂r × fm(r) · Ť sfn(r, s)dS , (25a)

[Th(s)]mn = −
∫

Γ

n̂r × fm(r) · Ť hfn(r, s)dS . (25b)

The quasi-Helmholtz projectors can be used to make explicit
the behavior of the impedance matrix Z(s) in a Helmholtz
decomposed basis. By inserting the identity I = PΛH + PΣ

on the left and the right of Z(s), Z(s) can be rewritten in a
block matrix form that makes clear the different scalings

Z = η0

(
PΛH PΣ

)( s
c0

Ts
s
c0

Ts
s
c0

Ts
s
c0

Ts + c0
s Th

)(
PΛH

PΣ

)
, (26)

where we have used the property PΛHTh(s) = Th(s)PΛH =
0 [31]. It is clear from (26) that the matrix is ill-conditioned
at low frequency i.e. when s→ 0 since the bottom right block
(non-solenoidal testings and sources) scales as 1/s while the
others (solenoidal testings and/or sources) scale as s.

Eventually, the system in Laplace domain is transformed
into the discrete time domain where the scalings by s become
scalings by ∆t−1, and similarly 1/s scales proportionally to
∆t (13). This results in a condition number growth for Z0 in
(21) proportional to ∆t2.

B. DC instability

It can be easily checked that the solution of the TD-
EFIE j(r, t) in (1) is determined up to a constant solenoidal
current jcs(r) i.e. if ∂

∂tj
cs(r) = 0 and ∇ · jcs(r) = 0

then j(r, t) + jcs(r) is also solution of the EFIE in (1).
This problem is also present in the differentiated TD-EFIE
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in (3) for which the solution is determined up to a linear in
time solenoidal current j ls(r, t) that verifies ∂2

∂t2 j
ls(r, t) = 0

and ∇ · j ls(r, t) = 0. This non-uniqueness is problematic.
In fact, because of numerical approximations and floating
point truncation errors in the discretized equation, the solution
current will show a non-physical constant offset which may
even grow exponentially for late time steps [24].

Further characterization of these spurious currents can be
done. For the (non-differentiated) TD-EFIE, the equation
∂
∂tj

cs(r, t) = 0 is transformed in the Laplace domain (with
the initial condition jcs(r, t = 0) = 0) as

sǰ
cs

(r, s) = 0 . (27)

After the discretization and after performing the inverse Z-
transform, the spurious current jcs

i verifies the following recur-
rence relation for all i ∈ [1, Nt]

i∑
j=0

Z−1(̃s)ij
cs
i−j = 0 . (28)

While initializing the sequence with jcs
0 = 0 should result in

jcs
i = 0 for all i, this is not the case in practice. Indeed, the

solution current will eventually contain a non zero constant
solenoidal part because of numerical errors.

A simplification of (28) can be obtained using the property
bTA−1

1 = 1. This property enables rewriting s(z) in (13) as
a finite number of powers of z using the Sherman-Morrison
formula

s(z) =
1

∆t

(
A−1 − A−1

1bTA−1z−1
)
. (29)

In this case, a multiplication by z−1 corresponds to the
previous element of the sequence in time domain. So the
inverse Z-transform of (29) is

Z−1(s)i =
1

∆t

(
A−1δi,0 − A−1

1bTA−1δi−1,0

)
. (30)

where δ is the Kronecker delta. Inserting (30) in (28) results
in the following recurrence relation for the spurious current of
the (non-differentiated) TD-EFIE

jcs
i = 1̃b̃TÃ−1jcs

i−1 , (31)

where Ã = I⊗ A and 1̃b̃T = I⊗ 1bT.
A similar characterization can be done for the differen-

tiated TD-EFIE that is more commonly used. In this case,
∂2

∂t2 j
ls(r, t) = 0 is transformed in the Laplace domain (with

the initial conditions j ls(r, t = 0) = 0 and ∂
∂tj

ls(r, t = 0) =
0) as

s2ǰ
ls
(r, s) = 0 . (32)

Again, after the discretization and after performing the inverse
Z-transform, the spurious current jlsi verifies the following
recurrence relation for all i ∈ [2, Nt]

i∑
j=0

Z−1(̃s2
)j j

ls
i−j = 0 . (33)

As before, using (29), the recurrence equation (33) on the
spurious current of the differentiated TD-EFIE jlsi can be
written as

jlsi = Ã
(

Ã−1
1̃b̃T + 1̃b̃TÃ−1

)
Ã−1jlsi−1

− Ã2
(

Ã−1
1̃b̃TÃ−1

)2

jlsi−2 . (34)

Note that both (31) and (34) are independent of the time step
∆t.

IV. THE REGULARIZED TD-EFIE

In this section, the semi-discrete TD-EFIE (discrete in
space, continuous in time) is regularized by a judicious
splitting, scaling, and recombination procedure. The resulting
semi-discrete equation is then discretized in time by applica-
tion of the IRK convolution quadrature method. It is argued
that the resulting scheme does not suffer from either large time
step breakdown or DC instabilities.

A. Regularization in the Laplace domain

To regularize the TD-EFIE, the solenoidal part (ΛH) must
be multiplied by c0/s on the left which corresponds to an
integration in time domain, and the non-solenoidal part (Σ)
must be multiplied by s/c0 on the right which corresponds to
a derivative. We also introduce a length a to keep a consistent
dimensionality. The specific choice of a does not affect the
asymptotic behaviour of the preconditioning; it can be safely
chosen to be the diameter of the scatterer. The regularized
system is thus

Zreg =
( c0
sa

PΛH + PΣ
)

Z

(
PΛH +

sa

c0
PΣ

)
(35)

= η0

(
PΛH PΣ

)( 1
aTs

s
c0

Ts
s
c0

Ts a s
2

c20
Ts + aTh

)(
PΛH

PΣ

)
(36)

= η0

(
1

a
PΛHTsP

ΛH + aPΣThPΣ + a
s2

c20
PΣTsP

Σ

+
s

c0

(
PΣTsP

ΛH + PΛHTsP
Σ
))

. (37)

As the off-diagonal blocks will vanish when s → 0, the reg-
ularized matrix Zreg(s) tends to a constant at low frequency.
In particular, its condition number will remain stable (it
actually tends to the condition number of 1

aPΛHTs(0)PΛH +

aPΣTh(0)PΣ). In the Laplace domain, the preconditioned
system now reads

Zreg(s)y(s) = v(s) . (38)

The original current j(s) can be retrieved accordingly from the
auxiliary current y(s)

j(s) =

(
PΛH +

sa

c0
PΣ

)
y(s) . (39)

The new right hand side v(s) can also be expressed as a
function of the original RHS e(s)

v(s) =
( c0
sa

PΛH + PΣ
)
e(s) . (40)
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B. Time Discretization

We follow the same procedure for the time discretization
using IRK methods as described in section II-D. So we first
substitute s by s(z) in Zreg(s) using (13) and then we perform
an inverse Z-transform (17). It can be summarized with the
following formula

Z
reg
i = Z−1

(
Zreg (s (z))

)
i
. (41)

To be compatible with the p stages of the Runge-Kutta
methods, the projectors PΛH and PΣ ∈ RNs×Ns need to be
transformed into P̃ΛH = PΛH ⊗ Ip and P̃Σ = PΣ ⊗ Ip ∈
RpNs×pNs where ⊗ denotes the Kronecker product and Ip is
the p × p identity matrix. An intuitive explanation of this
transformation is that the projectors are independent of the
Laplace variable s, so each coefficient in the projectors can
be thought as being multiplied by s0. So after the substitution
of s by the matrix valued s, each coefficient is multiplied by
s0 i.e. the p× p identity matrix Ip. Using the above notations
and definitions, and substituting s by s in (37), Zreg (s) can
be written as

Zreg (s) = η0

(
1

a
P̃ΛHM̃Ts(D)M̃−1P̃ΛH (42a)

+aP̃ΣM̃Th(D)M̃−1P̃Σ (42b)

+
a

c20
P̃ΣM̃D̃2Ts(D)M̃−1P̃Σ (42c)

+
1

c0
P̃ΣM̃D̃Ts(D)M̃−1P̃ΛH (42d)

+
1

c0
P̃ΛHM̃D̃Ts(D)M̃−1P̃Σ

)
. (42e)

Z
reg
i in (41) is computed by inserting the above expression

for Zreg (s) in the formula for the inverse Z-transform (18b).
Regarding the time discretization corresponding to the ex-

citation vector, as the inverse of s in Laplace domain corre-
sponds to a time integration in time domain, a primitive Einc

of the excitation einc needs to be computed (∂Einc/∂t = einc).
This can be done analytically or numerically by applying an
integrator based on the same IRK scheme as used elsewhere.
The time discretization of the excitation vector (40) for the
preconditioned TD-EFIE becomes

vi =
c0
a

P̃ΛHEi + P̃Σei , (43)

where ei was defined in (20b) and Ei is defined similarly
replacing einc by one of its primitives Einc

[Ei]p(m−1)+k =

∫
Γ

fm(r) ·Einc(r, (i+ ck− 1)∆t)dS . (44)

The choice of the primitive’s constant for Einc does not change
the result of vi as it is cancelled by the multiplication with
P̃ΛH . However in practice to avoid numerical cancellations,
the primitive constant should be chosen to have Einc(t) = 0
when einc(t) vanishes for t→ ±∞.

Transforming the stable system in the Laplace domain (38)
to the discrete time domain results in the following convolution

i∑
j=0

Z
reg
j yi−j = vi . (45)

This equation is rewritten to make the MOT scheme evident.
In addition, as explained at the end of the section II-D, the
number of terms in the convolution can be truncated to Nconv
terms

Z
reg
0 yi = vi −

Nconv∑
j=1

Z
reg
j yi−j . (46)

C. Computation of the Electric Current

After completion of the MOT procedure (46), we need
to reconstruct (ji)

Nt
i=0 from the auxiliary (yi)

Nt
i=0 using their

corresponding relation in the Laplace domain (39). Performing
an inverse Z-transform on the discrete counterpart of (39)
results in

ji = P̃ΛHyi +
a

c0
P̃Σ

i∑
j=0

Z−1(̃s)jyi−j , (47)

where s̃(z) = I⊗s(z). A simplification of (47) can be obtained
using (29) and reads

ji = P̃ΛHyi +
a

c0∆t
P̃Σ
(

Ã−1yi − Ã−1
1̃b̃TÃ

−1
yi−1

)
. (48)

V. IMPLEMENTATION DETAILS

In this section, we describe how the solution of the stable
system (46) can be implemented in practice: we explain why
the use of the quasi-Helmholtz projectors in the precondition-
ing is compatible with existing fast solvers. Computational
complexity and memory usage are discussed.

A. Quasi-Helmholtz projectors

Although they exhibit a pseudo inverse in their definitions,
the projectors PΣ and PΛH can be multiplied by a vector
in linear complexity O(Ns) by leveraging algebraic multigrid
techniques [33], [31]. These schemes can be applied also in
the case of multiscale scatterers.

Consider the multiplication of P̃Σ = PΣ ⊗ Ip by some
vector x whose elements are given by [x]p(m−1)+k = [xk]m
where the xk are subvectors of x elements of the stage k
(1 ≤ m ≤ Ns, 1 ≤ k ≤ p). Then the elements of the
product are [P̃Σx]p(m−1)+k = [PΣxk]m. Otherwise said, the
multiplication of P̃Σ can be computed with p multiplications
of PΣ that are linear in complexity. As a consequence, P̃ΛH

and P̃Σ can also multiply a vector in O(Ns) operations. The
required storage is O(Ns) for the sparse matrix Σ.

B. Excitation vectors

The computation of the excitation vectors Ei and ei in (43)
is linear in complexity, their multiplications by the projectors is
also linear. So the overall cost of computing the preconditioned
excitation vectors vi for each i ∈ [0, Nt] is O(NsNt) both in
time and memory.
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C. Retrieving the solution current

When yi and yi−1 are known, ji is computed using (48).
Again the multiplications by the projectors cost O(Ns). Then,
as Ã−1 and Ã−1

1̃b̃TÃ−1 are block diagonal matrices with
A−1 and A−1

1bTA−1 blocks in their diagonals, the multipli-
cations by Ã−1 and Ã−1

1̃b̃TÃ−1 are also linear in complexity
because they actually correspond to Ns multiplications by A−1

and A−1
1bTA−1. This is done for each time step, so overall

the retrieving of the original solution ji for each i ∈ [0, Nt]
costs O(NsNt) in time and memory.

D. Marching-on-in-time

Using an iterative solver to solve for yi in (46) at each time
step, we can assume that it requires a fixed number of itera-
tions Niter. There are also Nconv terms in the convolution in the
RHS. So overall, the MOT (46) requires O((Niter +Nconv)Nt)

multiplications of Z
reg
j by a vector. Note that the number

of iterations Niter is independent of the time step but it still
depends on the discretization density. The number of terms in
the convolution in the RHS Nconv is proportional to D/(c0∆t)
where D is the diameter of the scatterer. In particular, Nconv
is low for large time step, however it is unbounded for small
time steps. Fast Runge-Kutta convolution quadrature methods
for use in this regime have been described in [34].

It only remains to explain the multiplication Z
reg
j x where x

is a vector. Using the definitions of Z
reg
j (41) and the inverse

Z-transform (18b) we have

Z
reg
j x =

ρj

Q

Q−1∑
q=0

e2iπ qQ jZreg
(

s
(
ρe2iπ qQ

))
x . (49)

Zreg
n x requires Q multiplications of the form Zreg (s) x. So

overall it requires O(Q(Niter + Nconv)Nt) multiplications of
this form. Note that in our case where the temporal sequence
is real, it is possible to take advantage of the complex
conjugation to avoid half of the multiplications in the inverse
Z-transform.

E. Interaction matrix-vector product

As it can be read from (42e), Zreg (s) x involves multi-
plications of x by M̃, D̃ and M̃−1 that have a O(Ns) com-
plexity like the multiplication by Ã−1 because they are block
diagonal matrices as explain above. Also the multiplications
by the projectors are linear in complexity. It remains the
multiplications of Tx(D) by a vector (Tx is either Ts or Th).
Similarly to the multiplications with the projectors as it was
explained above, x can be subdivided into p subvectors xk

such that [x]p(m−1)+k = [xk]m. Then using (16), the elements
of the product are [Tx(D)x]p(m−1)+k = [Tx(Dkk)xk]m.
Otherwise said, the product Tx(D)x can be computed with
p multiplications of Tx(s) by a vector. These multiplications
can be done in a fast way using a Multilevel Fast Multipole
Method (MLFMM) in a O(Nslog(Ns)) complexity [35], [36].
In summary, the computational cost for the multiplications of
Z

reg
j by vectors is O(Q(Niter+Nconv)NtNslog(Ns)) operations

overall and O(QNslog(Ns)) in memory, which is the dominant
complexity of the solver.

VI. NUMERICAL RESULTS

In the following numerical results we have used a modulated
Gaussian plane wave for the excitation

einc(r, t) = p̂e−
τ2

2σ2 cos(2πf0τ)A0 , (50)

where τ(r, t) = t − k̂ · r/c0 is the delay, p̂ = x̂ is the
polarization, k̂ = −ẑ is the direction of propagation, and
A0 = 1 V/m is the peak amplitude. f0 is the central frequency
and σ is the characteristic time that essentially depends on the
frequency bandwidth of the excitation. Given the function einc

above, its time primitives Einc
− and Einc

+ that are equal to 0
when t goes respectively to −∞ and +∞, used in (44), are
equal to

Einc
− (r, t) = p̂α<(erfc(−β)) , (51)

Einc
+ (r, t) = −p̂α<(erfc(β)) , (52)

α =

√
π

2
σe−2π2f2

0σ
2

A0 , (53)

β =
τ + 2iπf0σ

2

√
2σ

, (54)

where <(erfc(·)) is the real part of the complementary error
function. In the following simulations, we used Q = 16 and
ρ = 1 + 10−4 for the inverse Z transform (18b). The IRK
method used is the 3 stages Radau IIA (fifth order) whose
Butcher tableau is

4−
√

6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−
√

6
36

16+
√

6
36

1
9

16−
√

6
36

16+
√

6
36

1
9

. (55)

Also, the length parameter a is fixed to 1m.
The first experiment demonstrates the absence of DC in-

stability in the solution. We have used a unit sphere with
Ns = 750 edges. There are Nt = 400 time steps between
t0 = −10σ and tend = 15σ (∆t = 23.9 ns, σ = 382 ns,
f0 = 1 MHz). Fig. 1 shows the norm of the current in the point
(0.45m, 0.88m, 0.06m). It can be observed that the regularized
formulation does not suffer from the DC instability as the
solution keeps vanishing where it grows exponentially for the
differentiated TD-EFIE. It has been tested numerically that
this spurious current verifies (34).

The formulation works perfectly in the case of multiply
connected geometries. In this second experiment, we have
done the simulation with a torus (Ns = 900 edges) those
inner radius is 0.5m and the outer radius is 1m, with the same
parameters as the previous example. Fig. 2 shows the norm of
the current in the point (0.97m, 0.14m, 0.05m). Again, we can
see that the regularized formulation provides the same correct
result as the differentiated TD-EFIE but does not suffer from
the DC instability.

Another way to observe the effect of the preconditioner on
the DC instability is to plot the polynomial eigenvalues associ-
ated to the sequence (Zj) [24]. The polynomial eigenvalues are
the eigenvalues of the companion matrix that corresponds to a
MOT in the absence of excitation. Therefore the formulation
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Fig. 2. Norm of the current density as a function of time on a torus.

is stable only if all the eigenvalues are inside the unit circle
because any current will vanish exponentially in the absence of
excitation. On the contrary, if there are eigenvalues outside of
the unit circle, the error in the solution will grow exponentially.
The figures 3 and 4 plot the polynomial eigenvalues associated
to the sequences of interaction matrices discretized with the
IRK scheme in the cases of the time differentiated TD-EFIE
(large time step and DC unstable) and the regularized TD-
EFIE (this work that is stable). A unit sphere with Ns = 270
unknowns is used to approximate the solution and the time
step is set to ∆t = 5.31 ns. Also N = 16 matrices are used
in each sequences. The regularization removes the cluster of
eigenvalues in 1 that is indeed the source of the DC instability.
A zoom on the cluster reveals that some of the eigenvalues
have an absolute value greater than 1.

The low frequency stabilization is demonstrated numerically
by computing the condition numbers of Z0 for the differ-
entiated TD-EFIE and Z

reg
0 for the stable TD-EFIE for an

increasing time step ∆t on a unit sphere (Ns = 750 as in
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1

−5 0 5

·10−7 + 1

−5

0

5

·10−7

Fig. 3. Polynomial eigenvalues of the non-regularized (differentiated) TD-
EFIE system showing a cluster at 1.
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1

Fig. 4. Polynomial eigenvalues of the regularized (preconditioned) TD-EFIE
system (there is no cluster at 1).

Fig. 1). It can be seen on Fig. 5 that there is a quadratic
growth of the condition number for the non preconditioned
TD-EFIE whereas it is tends to a constant for the regularized
formulation. Note that in the small time step limit, a growth
of the condition number can be observed. The regularization
introduced here is based on the large time step behavior of the
equation and does not optimize the conditioning for all time
steps.

VII. CONCLUSION

We have presented a regularized TD-EFIE that uses implicit
Runge-Kutta methods for its time discretization. In particular,
the new equation is stable at low frequencies and it does not
suffer from the DC instability. The quasi-Helmholtz projectors
enable the separation of the two Helmholtz components that
can be independently rescaled. On one hand, the time deriva-
tive that allows the existence of the spurious static solenoidal
current responsible of the DC instability is removed. On the
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Fig. 5. Condition number of the system as a function of the time step on a
unit sphere.

other hand, the ill-scaling of the linear system that is solved
is removed which results in a well conditioned system.
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“A higher order space-time galerkin scheme for time domain integral
equations,” IEEE Transactions on Antennas and Propagation, vol. 62,
no. 12, pp. 6183–6191, 2014.

[20] C. Lubich and A. Ostermann, “Runge-kutta methods for parabolic
equations and convolution quadrature,” Mathematics of Computation,
vol. 60, no. 201, pp. 105–131, 1993.

[21] L. Banjai, M. Messner, and M. Schanz, “Runge–kutta convolution
quadrature for the boundary element method,” Computer Methods in
Applied Mechanics and Engineering, vol. 245, pp. 90–101, 2012.

[22] Q. Chen, P. Monk, X. Wang, and D. Weile, “Analysis of convolution
quadrature applied to the time-domain electric field integral equation,”
Communications in Computational Physics, vol. 11, no. 2, pp. 383–399,
2012.

[23] X. Wang and D. S. Weile, “Implicit runge-kutta methods for the
discretization of time domain integral equations,” IEEE Transactions
on Antennas and Propagation, vol. 59, no. 12, pp. 4651–4663, 2011.

[24] F. P. Andriulli, K. Cools, F. Olyslager, and E. Michielssen, “Time domain
calderón identities and their application to the integral equation analysis
of scattering by pec objects part ii: Stability,” IEEE transactions on
antennas and propagation, vol. 57, no. 8, pp. 2365–2375, 2009.
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