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PARALLEL MESHING, DISCRETIZATION, AND COMPUTATION
OF FLOW IN MASSIVE DISCRETE FRACTURE NETWORKS\ast 

S. BERRONE\dagger , S. SCIAL\`O\dagger , AND F. VICINI\dagger 

Abstract. In the present work a message passing interface (MPI) parallel implementation of
an optimization-based approach for the simulation of underground flows in large discrete fracture
networks is proposed. The software is capable of parallel execution of meshing, discretization, res-
olution, and postprocessing of the solution. We describe how optimal scalability performances are
achieved combining high efficiency in computations with an optimized use of MPI communication
protocols. Also, a novel graph-topology for communications, called the multi-Master approach, is
tested, allowing for high scalability performances on massive fracture networks. Strong scalability
and weak scalability simulations on random networks counting order of 105 fractures are reported.

Key words. parallel scalability, MPI, discrete fracture networks, single-phase flows, PDE con-
strained optimization

AMS subject classifications. 65N30, 65N15, 65N50, 65J15, 68U20, 68W10, 68W40, 86-08
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1. Introduction. It is well known that underground flow simulations are partic-
ularly demanding from a computational point of view, mainly as a consequence of the
size and geometrical complexity of computational domains of interest for practical
applications. Moreover, due to the lack of direct measurements of subsoil charac-
teristics, input data for simulations are typically given as probability distributions,
thus demanding a large number of costly computations to derive reliable statistics on
quantities of interest [17, 20, 24, 7].

The subsoil can be regarded as a porous material crossed by a network of in-
tersecting fractures. Among the different models to describe the subsoil (see, e.g.,
[40]), discrete fracture network (DFN) models only represent underground fractures,
neglecting the contribution of the surrounding rock matrix, such that flow can only
occur through fractures and fracture intersections. Different from homogenization
techniques, DFN models explicitly represent the fractures and are thus capable of re-
producing the topology of the fracture network and preferential pathways for the
flow, thus being particularly suitable for the simulation of dispersion phenomena
[37, 32, 41, 10]. Fractures in a DFN are modeled as intersecting planar polygons
forming an extremely challenging computational domain, usually characterized by
an intricate system of intersections. Further, DFNs present geometrical features at
different scales, such as, e.g., small fractures intersecting with large faults, fractures
intersecting with narrow angles, and coexistence of very small and very large fracture
intersections. This geometrical complexity and multiscale nature pose severe con-
straints on the meshing strategies. Standard discretization techniques, based on the
finite element method (FEM), require a mesh conforming to the intersections between
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fractures in order to correctly enforce matching conditions at the interfaces. Meshes
conforming to all the geometrical features in a DFN cannot be generated for networks
of practical interest, or would introduce such a large number of elements as to make
the resolution of the corresponding discrete problem unaffordable. Further, a single
simulation for a given geometry is not sufficient for applications, as is the case for
time dependent simulations or for uncertainty quantification purposes.

In addition to recent works proposing advanced tools to produce conforming
meshes for discrete fracture networks, [31, 41, 26], a large number of different ap-
proaches has been presented, aimed at relaxing the geometrical constraints on the
mesh and thus overcoming the complexity of DFN simulations. We will define as
partially conforming those DFN meshes in which fracture intersections do not cross
mesh elements, as in a conforming mesh, but there is no matching at the intersections
among element vertices of the mesh of different fractures (see [9, Figures 1 and 2]); and
as nonconforming those meshes in which elements are free to arbitrarily cross fracture
intersections (see [9, Figures 3 and 17]). In [29] a survey on several unconventional nu-
merical schemes for stationary DFN flow simulations is presented. In [21, 42] the DFN
flow problem is dimensionally reduced to a monodimensional problem, whereas in [44]
mixed finite elements are used on meshes partially conforming at fracture intersec-
tions, and mortaring is used to enforce the required matching conditions. Polygonal
methods have also been suggested as a way to easily generate conforming or par-
tially conforming meshes: in [2, 3, 28, 27] the virtual element method (VEM) is used
for fracture networks and in [4] for fracture/matrix coupling, whereas [1] proposes
the use of mimetic finite differences and [18] proposes hybrid high order methods for
fracture/matrix flow coupling. To completely overcome mesh related complexities in
DFN simulations, some authors suggest the use of nonconforming meshes. In this
context, the use of the extended finite element method (XFEM) has been proposed
by many authors (see [25]) to allow for irregular solutions within mesh elements, along
with other techniques based on, e.g., the cutFEM [16] or Lagrange multipliers [35]
to enforce conditions at the interfaces for fracture/matrix coupling. In embedded
discrete fracture matrix (EDFM) models [36, 38], only the fractures exceeding a cer-
tain threshold size are explicitly represented, the others being homogenized, and the
fractures and the porous matrix are represented on different computational meshes,
adding suitable fracture/matrix connections for the coupling. Different approaches
aimed at reducing cost and complexity of DFN simulations are based on a graph
representation of the network of fractures, as proposed by [46, 33], also using graph
theory tools [30] or machine learning [51] to estimate the flow.

The present work focuses on a novel approach for flow computations in large
DFNs, first proposed in [11] and based on numerical optimization. The method allows
the use of nonconforming meshes, and the coupling conditions at fracture intersections
are enforced through the minimization of a properly designed cost functional. The
functional expresses the error in the fulfillment of the interface conditions, and the
solution is obtained as the minimum of this functional constrained by the equations
describing the flow on each fracture [12, 14]. One of the key aspects of the method
resides in the fact that the minimization process requires iteratively solving local and
almost independent linear systems, each defined on a fracture of the network, and
these fracture-local problems only need to share information at the interfaces. This
allows a natural parallel implementation with a high scalability potential.

A parallel implementation of this optimization-based method is reported in [15].
The algorithm is based on the message passing interface (MPI) protocol for the com-
munications among parallel processes and uses a Master -Slave topology to handle
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communications. According to this, the computing processes (Slaves) cannot directly
share the required data, as all communications flow through the Master process. The
mentioned reference shows how this topology can reduce the number of communica-
tions in large networks. The efficiency of the parallel algorithm is tested on networks
with a number of fractures of the order of 103, envisaging the use of an improved com-
munication topology to handle larger networks. For this approach a posteriori error
estimates have been derived in [5] and applied for adaptive mesh refinement to large
scale DFNs in [6]. Another parallel code for flow simulations in DFNs is proposed in
[39], based on mixed-hybrid finite elements on conforming meshes. Due to the use of
conforming meshes, [39] mainly focuses on the parallel mesh generation and assembly
of the discrete matrices, thus differing from both the approach in [15] and the one
described here.

The present work proposes a new implementation of the optimization-based ap-
proach for flow simulations in large DFNs. In this code, the meshing of the domain,
the assembly and the resolution of the discrete problem, and other preresolution and
postresolution tasks are implemented allowing for parallel computing on distributed
memory architectures using MPI, taking full advantage of the peculiarities of the op-
timization approach. An effective organization of linear algebra operations and the
use of functions for MPI communications capable of reducing the overhead related to
communications at each iteration of the resolution process yield optimal scalability
performances to the proposed code. Further a multi-Master topology is implemented
with a hierarchy of Master processes in order to remove possible bottlenecks caused
by the overloading of a single process handling the communication phases of a large
number of parallel computing processes. This extends optimal scalability properties to
a large range of numbers of parallel processes, thus allowing the effective and efficient
solution of problems on extremely large networks using a strong parallel approach.
Numerical examples on networks counting order of 105 fractures and using up to 128
parallel processes are used to document the performance of the code.

The structure of the manuscript is as follows: Section 2 describes the optimization-
based approach at the basis of the proposed algorithm, which is presented in detail in
section 3. Parallel performances of the code are shown in section 4, and finally some
conclusions are reported in section 5.

2. Optimization formulation. Let us briefly recall the optimization-based for-
mulation of the DFN problem; full details can be found in [14] and references therein.
Let \Omega denote a fracture network, \Omega :=

\bigcup 
i=1,...,I Fi, with each of the Fi's represent-

ing a planar polygon in the three-dimensional space, resembling one of the fractures
in the network. Fractures are surrounded by an impervious matrix, such that flow
only occurs in the fractures and through fracture intersections. Fracture intersec-
tions, also called traces, are denoted by Sm, m = 1, . . . ,M , and we assume that
each trace is given by the intersection of exactly two fractures, i.e., Sm = \=Fi \cap \=Fj .
There is a map between each trace index and the couple of fracture indexes, denoted
by IS : [1, . . . ,M ] \mapsto \rightarrow [1, . . . , I]2 and defined by IS(m) = (i, j) with i < j such that
\=Fi\cap \=Fj = Sm. We also define IS(m) := i and IS(m) := j. Let us further indicate by \scrS 
the set of all the traces in the network and by \scrS i the set of traces on Fi. The boundary
\partial \Omega of \Omega is split into a Dirichlet part \Gamma D \not = \emptyset and a Neumann part \Gamma N = \partial \Omega \setminus \Gamma D.
Functions bD and bN prescribe Dirichlet and Neumann boundary conditions on \Gamma D

and \Gamma N , respectively. The boundary of each fracture \partial Fi can be consequently split
into a Dirichlet part \Gamma iD := \partial Fi \cap \Gamma D and a Neumann part \Gamma iN := \partial Fi \cap \Gamma N with
boundary conditions given by functions bDi := bD | \Gamma iD

and bNi := bN | \Gamma iN
, respectively.
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C320 S. BERRONE, S. SCIAL\`O, AND F. VICINI

2.1. The continuous problem. The distribution of the hydraulic head H in
a DFN is governed by Darcy's law, which can be stated in weak form as follows: for
i = 1, . . . , I, given the functional spaces

Vi = H1
0(Fi) =

\bigl\{ 
v \in H1(Fi) : v| \Gamma iD

= 0
\bigr\} 

and

V D
i = H1

D(Fi) =
\bigl\{ 
v \in H1(Fi) : v| \Gamma iD

= bDi
\bigr\} 
,

find Hi := H| Fi
\in V D

i such that, \forall v \in Vi,

(2.1)

\int 
Fi

Ki\nabla Hi\nabla vd\Omega =

\int 
Fi

qivd\Omega +

\int 
\Gamma iN

bNi v| \Gamma iN
d\gamma +

\sum 
Sm\in \scrS i

\int 
Sm

\Biggl[ \Biggl[ 
\partial Hi

\partial \^\nu iSm

\Biggr] \Biggr] 
Sm

v| Sm
d\gamma 

and, \forall m = 1, . . . ,M , with (i, j) = IS(m),

Hi| Sm
 - Hj | Sm

= 0,(2.2) \Biggl[ \Biggl[ 
\partial Hi

\partial \^\nu iSm

\Biggr] \Biggr] 
Sm

+

\Biggl[ \Biggl[ 
\partial Hj

\partial \^\nu jSm

\Biggr] \Biggr] 
Sm

= 0,(2.3)

where Ki is a uniformly positive definite tensor representing the fracture hydraulic

conductivity, qi is a source term, and
\Bigl[ \Bigl[ 

\partial Hi

\partial \^\nu i
Sm

\Bigr] \Bigr] 
Sm

is the jump of the conormal derivative

along the unit vector normal to Sm with a fixed direction on Fi. Equations (2.2)--(2.3)
represent the matching conditions at fracture intersections, imposing the continuity
of the solution and the balance of fluxes, respectively.

Let us introduce the quantity

Um
i :=

\Biggl[ \Biggl[ 
\partial Hi

\partial \^\nu iSm

\Biggr] \Biggr] 
Sm

+ \alpha Hi| Sm
, Um

i \in H - 1
2 (Sm),

for \alpha > 0, and the quadratic functional J defined as
(2.4)

J(H,U) =

M\sum 
m=1

\bigm\| \bigm\| Hi| Sm
 - Hj| Sm

\bigm\| \bigm\| 2
H

1
2 (Sm)

+
\bigm\| \bigm\| \bigm\| USm

i +USm
j  - \alpha 

\bigl( 
Hi| Sm

+Hj| Sm

\bigr) \bigm\| \bigm\| \bigm\| 2
H - 1

2 (Sm)
,

U being the function given by the cartesian product of functions Um
i for i = 1, . . . , I

and Sm \in \scrS i, U \in [H - 1
2 (\scrS )]2. Then problem (2.1)--(2.3) is equivalent to the following

PDE-constrained optimization problem [12]:

min
U\in [H - 1

2 (\scrS )]2
J(H,U)(2.5)

such that, \forall i = 1, . . . , I, \forall v \in Vi,\int 
Fi

Ki\nabla Hi\nabla v d\Omega + \alpha 
\sum 

Sm\in \scrS i

\int 
Sm

Hi| Sm
v| Sm

d\gamma 

=

\int 
Fi

qiv d\Omega +

\int 
\Gamma iN

bNi v| \Gamma iN
d\gamma +

\sum 
Sm\in \scrS i

\int 
Sm

Um
i v| Sm

d\gamma .(2.6)
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2.2. The discrete problem. Let us now introduce on each fracture Fi of the
DFN \Omega a triangulation \scrT i and also, on each trace of each fracture Fi, a discretization
\scrT m
i . We remark that each of these meshes can be defined independently of all the

others. Then, on the elements of \scrT i we define a finite element space of local piecewise
basis functions, such that the discrete version of Hi on Fi can be defined as hi :=\sum Ni

k=1 hi,k\varphi i,k, i = 1, . . . , I, with Ni being the number of degrees of freedom (DOFs)
of hi. Similarly, on the mesh \scrT m

i of each trace Sm \in \scrS i we introduce a set of basis

functions, such that the discrete version of function Um
i is set as umi :=

\sum Nm
i

k=1 u
m
i,k\psi 

m
i,k,

now with Nm
i denoting the number of DOFs of umi . In the following will use the same

symbol hi (or u
m
i ) to denote both the discrete function and the vector of its DOFs.

We then define vector h \in \BbbR NF , NF =
\sum I

i=1Ni as h := (h1; . . . ;hI), ui \in \BbbR NS
i ,

NS
i =

\sum 
S\in \scrS i

Nm
i , ui := (um1

i ; . . . ;u
m\#\scrS i
i ), and u \in \BbbR NS

, NS =
\sum I

i=1N
S
i , u :=

(u1IS(m);u
1
IS(m)

; . . . ;uMIS(m);u
M
IS(m)

). All vectors are column vectors, and, here and in

the following, syntax (v;w) denotes vertical concatenation of v and w.
The Darcy equation (2.6) can be discretized in a classical way by the finite element

method on each fracture as

(2.7) Aihi = qi + \scrB i ui, i = 1, . . . , I,

where Ai \in \BbbR Ni\times Ni is defined by

(Ai)k\ell =

\int 
Fi

Ki\nabla \varphi i,k\nabla \varphi i,\ell d\Omega + \alpha 

Mi\sum 
m=1

\int 
Sm

\varphi i,k| Sm
\varphi i,\ell | Sm

d\gamma ,

matrix \scrB i \in \BbbR Ni\times N\scrS i collects the integrals of the product of basis functions \{ \varphi i,k| Sm
\} ,

k = 1, . . . , Ni, with \{ \psi m
i,k\} , k = 1, . . . , Nm

i , and qi \in \BbbR Ni is the vector derived from the
discretization of forcing terms and boundary conditions. The block-diagonal matrix

\BbbA = diag(Ai)i=1,...,I \in \BbbR NF\times NF

is then formed from matrices Ai, whereas matrix \scrB \in 
\BbbR NF\times NS

is defined as \scrB := (\scrB 1R1; . . . ;\scrB I RI), i.e., is obtained collecting columnwise
matrices \scrB iRi \forall i = 1, . . . , I, where matrix Ri extracts from u the DOFs corresponding
to ui; now (2.7) can be compactly rewritten as

(2.8) \BbbA h = q + \scrB u,

where q is obtained by grouping vectors qi columnwise.
The discrete functional is obtained by replacing, in (2.4), functions H and U with

their discrete versions and using L2(Sm) norms in place of the H
1
2 (Sm) and H - 1

2 (Sm)
norms:

J(h, u) =
1

2

I\sum 
i=1

\sum 
Sm\in \scrS i

\left(  \int 
Sm

\biggl( Ni\sum 
k=1

hi,k\varphi i,k| Sm
 - 

Nj\sum 
k=1

hj,k\varphi j,k| Sm

\biggr) 2

d\gamma (2.9)

+

\int 
Sm

\biggl( Nm
i\sum 

k=1

umi,k\psi 
m
i,k+

Nm
j\sum 

k=1

umj,k\psi 
m
j,k - \alpha 

Ni\sum 
k=1

hi,k\varphi i,k| Sm
 - \alpha 

Nj\sum 
k=1

hj,k\varphi j,k| Sm

\biggr) 2

d\gamma 

\right)  .

The functional (2.9) is rewritten in compact algebraic form as follows:

(2.10) J(h, u) :=
1

2

\bigl( 
hTGhh - \alpha hTBhu - \alpha uTBuh+ uTGuu

\bigr) 
,
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where matrix Gh \in \BbbR NF\times NF

collects integrals on the traces of the product between

functions \{ \varphi i,k| Sm
\} , k = 1, . . . , Ni, i = 1, . . . , I, matrix Gu \in \BbbR NS\times NS

collects inte-

grals of the product between functions \{ \psi m
i,k\} , k = 1, . . . , Nm

i , and matrices Bh and

Bu, Bh = (Bu)T \in \BbbR NF\times NS

collect integrals of the product between basis functions
of h and of u.

The discrete optimization problem is then stated as follows:

(2.11)
min J(h, u)

s.t. \BbbA h - \scrB u = q.

Optimality conditions for this problem are given by the system of equations

\BbbA h = q + \scrB u,(2.12)

\BbbA T p = Ghh - \alpha Bhu,(2.13)

0 = \scrB T p+Guu - \alpha Buh = \nabla J(u),(2.14)

which corresponds to the following saddle point problem:

(2.15) \scrA =

\left(  Gh  - \alpha Bu \BbbA T

 - \alpha Bh Gu \scrB T

\BbbA \scrB O

\right)  ; \scrA 

\left(  h
u
 - p

\right)  =

\left(  0
0
q

\right)  .

Proposition 2.1. Matrix \scrA in equation (2.15) is nonsingular, and the unique
solution (h \star , u \star , p \star ) of (2.15) is the minimizer of (2.11).

The proof of Proposition 2.1 can be easily found as a particular case of the proof
given in [13].

It is possible to obtain an unconstrained minimization problem equivalent to
(2.11) by formally replacing h = \BbbA  - 1(\scrB u+ q) in (2.10). To this end, we set

(2.16)

\^J(u) =
1

2
uT (\scrB \BbbA  - TGh\BbbA  - 1 \scrB +Gu  - \alpha \scrB T \BbbA  - TB  - \alpha BT\BbbA  - 1 \scrB )u

+ qT\BbbA  - T (Gh\BbbA  - 1 \scrB +Gu  - \alpha B)u

=
1

2
uT \^Gu+ \^qu,

where B := Bh = (Bu)T , and \^G is symmetric positive definite; see [15] for more
details. Then, solving problem (2.11) is equivalent to solving the equation \^Gu =  - \^q,
i.e., minimizing the unconstrained functional (2.16) via, e.g., a gradient scheme. What
is of interest for the present work is that this does not require the direct computation
of matrix \^G but only involves the resolution of fracture-local problems. Indeed, the
application of a gradient scheme to solve \^Gu =  - \^q corresponds to the following
algorithm: starting from a tentative u0, solve in cascade, for n = 0, 1, . . . ,

\BbbA h = \scrB un,(2.17)

\BbbA T p = Ghh - \alpha Bhun,(2.18)

gn = \scrB T p+Guu - \alpha Buh,(2.19)

un+1 = un + \lambda ngn,(2.20)

where gn is the gradient direction \nabla \^J(un) at iteration n and \lambda n is computed through
an exact line search [15]. Given the block-diagonal structure of matrix \BbbA , problems
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(a) Master-Slave topology (b) Tree topology

Fig. 1. MPI topologies.

(2.17)--(2.18) can be solved independently on each fracture of the DFN. A conjugate
gradient scheme will actually be used to solve the optimization problem, and thus
a conjugate direction dn is introduced, computed from gn as dn =  - gn + \beta ndn - 1

for n = 1, . . . , with \beta n being a scalar quantity ensuring the conjugacy condition
(dn)T \^Gdn - 1 = 0; see Algorithm 3.1 in section 3.5 for more details.

The structure of the iterative solver and the division of this problem into sub-
problems is detailed in section 3.

3. Parallel implementation. Efficiency in memory management and in the
use of computational power is critical in DFN flow simulations for engineering appli-
cations, which typically involve large scale domains and random parameters and are
time dependent. The proposed approach is strongly parallel to achieve the desired
efficiency, allowing for high speed computations without compromising the accuracy
and reliability of the results.

This section is devoted to the detailed description of the implementation of the
parallel algorithm for flow simulations in DFNs formulated as a PDE-constrained
optimization problem. The parallel code is written in the C++ language and relies
on the MPI protocol version 3 (see, e.g., [50]) for communications on distributed
memory architectures and on the Eigen library [22] for linear algebra operations.

A key aspect of the program is the parallel environment topology. A Master-
Slave topology has been chosen in place of a Point-to-Point communication approach
as also proposed in [15]. In a Master-Slave topology (Figure 1a), one of the parallel
processes (the Master) is uniquely devoted to receiving and sending the data that
the other processes (called computing processes or Slaves) need to share. Point-
to-Point communications would require every process to directly share data with a
number of other processes, which depends on the connectivity of the network and
on its partitioning. For example, when large faults are present in a DFN, entirely
crossing the network, if Point-to-Point communications are implemented, almost all
the processes might need to share data among each other, thus yielding a growth of the
number of communications proportional to the square of the number of processes. On
the other side, with a Master-Slave topology, the number of communications always
scales like the number of processes, independently of the geometry of the network.

TheMaster-Slave approach has the drawback of a possible overloading of theMas-
ter process when a large number of parallel processes is used, thus creating unwanted
bottlenecks. For this reason a new tree-type topology is implemented, allowing us to
handle a hierarchy of Master processes, with multiple bottom-level Master processes
up to a single top-level Master process, as sketched in Figure 1b, where one top-level
and three bottom-level Master processes are used. This configuration is called multi-
Master communication topology. Now, each bottom-level Master process manages
the communication of a fraction of the computing processes and the highest level
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C324 S. BERRONE, S. SCIAL\`O, AND F. VICINI

Master process handles the communications of the lower-lever Masters.
The whole code can be subdivided into seven different tasks, as follows: (1) DFN

geometry import; (2) main connected component computation; (3) main connected
component distribution among parallel processes; (4) mesh generation; (5) discrete
problem matrices assembly; (6) discrete problem resolution; (7) solution postprocess-
ing and export.

3.1. DFN geometry import. Typically a fracture network is described as a
set of fractures, identified by the coordinates of their vertices in the three-dimensional
space. Since geometry is provided in a single file, no parallel implementation is used
for this phase. Both textual and binary input files are supported. If a bounding box is
specified, fractures are cut accordingly, storing information on the fracture edges lying
on each face of the box. Boundary conditions and other properties of the fractures
are imported at this phase. All the data on the fractures are then communicated to
all the parallel processes.

3.2. Main connected component computation. Usually, fracture networks
are stochastically generated; thus the imported ``raw"" geometrical data might contain
fractures or networks of fractures disconnected from the main connected component.
The main connected component is defined as the largest set of connected fractures
with a nonempty portion of Dirichlet boundary. The determination of the main
connected component is performed in parallel and is based on the computation of a
local adjacency matrix.

Each fracture of the raw imported network is labeled with an integer i ranging
between one and the total number of imported fractures IT . Then, fracture indexes
are split among the n\scrP +1 parallel processes \scrP k, k = 0, . . . , n\scrP , and sets \scrI k of fracture
indexes are assigned to processes \scrP k, balancing the quantity \scrX k =

\sum 
i\in \scrI k

IT  - (i+1),

such that \scrX k \sim IT (IT+1)
2(n\scrP +1) . Each process \scrP k builds a local adjacency matrix AD

k by

checking whether each of the fractures Fi, i \in \scrI k, has intersections with fractures
Fj , j = i + 1, . . . , IT . Thus, balancing the quantity \scrX k, k = 0, . . . , n\scrP , corresponds
to balancing the number of checks that each process has to do.

The computation of the main connected component is then performed in parallel.
On each process \scrP k a local connected component is computed and stored in an array
ck \in \BbbR IT , initialized as ck(i) = i. At each position j, j = 1, . . . , IT , of ck the
fracture index \ell is stored, defined as \ell = argmini\in \scrI k

\=Fi \cap \=Fj \not = \emptyset . The array ck can
be easily built starting from the local adjacency matrix AD

k . Then, for each i \in \scrI k,
if ck(i) \not = i, we set j = ck(i) and, recursively, ck(i) = ck(j) and j = ck(i), while
ck(i) \not = ck(j). Subsequently an MPI Allreduce operation is used to compute the
array c, defined at each position i = 1, . . . , IT as c(i) = mink=0,...,n\scrP ck(i). Finally,
again, for each i \in \scrI k, if c(i) \not = i, we set j = ck(i), and, recursively, ck(i) = ck(j)
and j = ck(i), while ck(i) \not = ck(j). At the end of this operation the connected
component is given, taking the largest set of fractures \Omega \zeta , where for \zeta = 1, . . . , IT ,
\Omega \zeta = \{ Fi, i = 1, . . . , IT : c(i) = \zeta \} . The DFN \Omega is then set equal to the main
connected component identified in such a way.

3.3. DFN partitioning. Partitioning is aimed at minimizing the communica-
tions, balancing, at the same time, the computational load assigned to each computing
process, and is performed using the METIS library [34]. In a multi-Master topology,
the tree of the processes is first built (see Figure 1b), thus defining a hierarchy of
processes, with nM\scrP > 0 Master processes, organized in different levels, and nS\scrP \geq 0
Slave processes at the bottom level. If the number of Slave processes is zero, the code
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is executed in serial. We assume that the Master-Slave tree is a completely balanced
tree. To each Master , the set \scrP \downarrow 

k of processes is then assigned, which might contain ei-
ther lower-level Masters or a set of Slave processes, such that \scrP k, k = 0, . . . , nM

\scrP  - 1,

manages the communications among all the processes in \scrP \downarrow 
k . The set \scrP \uparrow 

k contains
instead the unique process at a higher level for process \scrP k, k = 1, . . . , n\scrP (i.e., the
higher-level Master), and it is empty for \scrP 0.

On the Master process \scrP 0 the DFN is first split through the METIS balanced
graph partitioning tool into a number of parts equal to the number of processes in \scrP \downarrow 

0 ,

and then each part is assigned to a different process in \scrP \downarrow 
0 . In the case of Figure 1b,

\scrP \downarrow 
0 contains three Master processes, and then \Omega is first split into three parts. The

operation is repeated on each Master \scrP k \in \scrP \downarrow 
0 , splitting the assigned portion of the

network into subnetworks among the processes in \scrP \downarrow 
k , i.e., at the lower level, until

the level of the Slave processes is reached. In the example of Figure 1b, on each
of the three lower-level Master processes the DFN is split between two computing
processes, although in practical applications the number of Slaves is much larger than
the number of Masters. This procedures ensures that the communications at each
level of the topology graph are minimized, at the cost of multiple calls to the METIS
library. However, this approach is not expensive compared to the whole resolution
process, and it is capable of optimizing the partitioning of the graph. Information
on the connectivity among the various parts of the original DFN is stored during the
partitioning process, to be used for the communication phases of the algorithm.

An estimate of the number of DOFs per fracture and per trace is computed to
evaluate the computational cost related to the resolution of linear systems on the
fractures and the cost of communications related to each trace. This information can
then be used by METIS in order to perform the balanced partitioning of the DFN.

At the end of the partitioning process a set of fracture indexes is assigned to each
computing process \scrP k, k = nM\scrP , . . . , n\scrP , denoted by \scrI loc

k . Fractures Fi, i \in \scrI loc
k , are

called process-local fractures for \scrP k, whereas indexes of fractures that are not process-
local but that form at least one trace with a local fracture are stored in the set \scrI ext

k ,
i.e., j \in \scrI ext

k if j \not \in \scrI loc
k and \=Fj \cap \=Fr \not = \emptyset , for some r \in \scrI loc

k . We then define for each
computing process \scrP k the set \scrI tot

k = \scrI loc
k \cup \scrI ext

k . Further, process-local fractures are
split between communicating fractures, whose indexes are collected in the set \scrI com

k ,
that are fractures Fi, i \in \scrI loc

k , that have at least a trace in common with a fracture
Fj , j \in \scrI ext

k , and noncommunicating fractures, whose indexes are collected in \scrI noc
k ,

that are fractures Fi, i \in \scrI loc
k , forming traces only with other fractures Fj , j \in \scrI loc

k .
The indexes of the traces associated to each process are collected in the index set

\scrM loc
k , such thatm \in \scrM loc

k if Sm \in \scrS i for some i \in \scrI loc
k . Trace indexes in\scrM loc

k are split
into two sets: noncommunicating trace set \scrM noc

k , collecting indexes of traces formed
by two process-local fractures, i.e., m \in \scrM noc

k if IS(m) \subset \scrI loc
k , and communicating

trace set \scrM com
k := \scrM loc

k \setminus \scrM noc
k .

3.4. Mesh generation. The generation of the computational mesh is performed
by each computing process \scrP k, k = nM\scrP , . . . , n\scrP , on the set of local fractures Fi,
i \in \scrI loc

k , and local traces Sm, m \in \scrM loc
k . As already mentioned, the mesh for the

hydraulic head hi on each fracture Fi is independent from the mesh on the other
fractures and from the position of fracture intersections. The triangulation on the
fractures is obtained using the Triangle library [45].

On each trace Sm of each fracture Fi, a mesh is built for the discretization of
function umi , which is, in general, independent from the mesh for the hydraulic head
and from the mesh of the same trace on fracture Fj , (i, j) = IS(m). Thus, thanks to
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F1 S1

F2
S1

(a) Discretization

F1 S1

F2
S1

(b) Induced

F1 S1

F2
S1

S1

(c) Union and Interface

Fig. 2. Example meshes for trace S1 on F1 and F2.

the proposed optimization approach, the meshing process can be performed in parallel
and becomes a trivial task. Only a simple communication phase is required at the end
of the meshing process to build a support mesh on each trace for the evaluation of
the integrals on the traces of basis functions (or restriction of basis functions) defined
on the different meshes.

Concerning the mesh on the traces, we will distinguish among the Discretization
mesh, the Induced mesh, and the Union mesh; see Figure 2. Each of these meshes is
defined differently depending on whether the trace Sm is seen as an object of fracture
Fi or Fj , (i, j) = IS(m), m = 1, . . . ,M . In the following we will denote by S - 

m trace
Sm as an object of Fi and by S+

m trace Sm as an object of Fj , recalling that i < j. The
Discretization mesh can be arbitrarily chosen as, for example, a mesh of equally spaced
nodes, as shown in Figure 2a. In this case the nodes on S - 

m and S+
m are staggered, i.e.,

shifted of a given quantity (typically half of the interval length), with the exception
of the first and last nodes, which always coincide with the two extremes of the trace.
As another example, the Discretization mesh might instead coincide with the Induced
mesh. The Induced mesh is simply obtained taking as nodes the intersection points
between the trace and the elements of the fracture mesh (Figure 2b). Finally, the
Union mesh is given by the union of the Discretization and Induced meshes; see
Figure 2c. Another mesh is defined, the Interface mesh, which is unique for each
trace, and is given on Sm by the union of the Union mesh of S - 

m and S+
m, as depicted

in Figure 2c. This mesh is only used as a support for integration purposes, and
its construction requires the communication of the two Union meshes for each trace
Sm, m \in \scrM com

k . Values of basis functions \{ \varphi i,k| Sm
\} k=1,...,Ni

and \{ \psi m
i,k\} k=1,...,Nm

i

\forall i \in IS(m), for m = 1, . . . ,M , in each quadrature node of the Interface mesh are
computed on each process and then shared through an MPI communication by both
processes sharing the trace.

3.5. Discrete problem matrix assembly. As mentioned in section 2.2, (2.17)--
(2.19) can be split, at each iteration, into subproblems which can be solved in par-
allel. Problem (2.17)--(2.19) can be written fracturewise in the following way: for
i = 1, . . . , I,

Ai[hi]
n = \scrB i[ui]

n + qi,(3.1)

AT
i [pi]

n = Gh
i [h

+
i ]

n  - \alpha Bh
i [u

+
i ]

n,(3.2)

[gi]
n = \scrB T

i [pi]
n +Gu

i [u
+
i ]

n  - \alpha Bu
i [h

+
i ]

n,(3.3)
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where the array h+i is obtained appending columnwise to hi vectors hj for j = 1, . . . , I
such that j \not = i and \=Fi \cap \=Fj \not = \emptyset ; u+i is obtained in a similar way, grouping colum-
nwise vectors umi and umj for Sm \in \scrS i, (i, j) = IS(m). Matrices Gh

i and Bu
i are the

submatrices obtained from Gh and Bu, respectively, extracting the rows relative to
the position of the DOFs of hi in h, and the columns relative to the position of the
DOFs of h+i in h, and similarly matrices Gu

i and Bh
i are obtained from Gu and Bh

extracting the rows corresponding to the DOFs of ui in u and columns correspond-
ing to the DOFs of u+i in u; finally, gi is the local gradient direction. The parallel
implementation proposed in [15] is based on this fracturewise splitting of the network.

For implementation purposes a different organization of computations appears
more effective, with vectors and matrices assembled in blocks as explained in the
following, capable of optimizing the performances of the library used for linear alge-
bra computations and the efficiency of MPI communications. On each process \scrP k,
k = nM\scrP , . . . , n\scrP , the following vectors are defined: vector hcomk \in \BbbR Ncom

k , grouping
columnwise vectors hi, i \in \scrI com

k ; vector hnock \in \BbbR Nnoc
k , grouping vectors hi, i \in \scrI noc

k ;

and vector htotk \in \BbbR Ntot
k , obtained collecting all the vectors hi for i \in \scrI tot

k , such that
htotk contains hcomk , hnock , and finally vector hextk , which is given grouping vectors hi,

i \in \scrI ext
k . Other vectors are also assembled, called ucomk \in \BbbR NS,com

k , obtained by group-

ing umi and umj for m \in \scrM com
k with (i, j) = IS(m), and vectors ulock \in \BbbR NS,loc

k , group-

ing vectors umi and umj for m \in \scrM loc
k , (i, j) = IS(m). Matrix Acom

k \in \BbbR Ncom
k \times Ncom

k is
created as a block-diagonal matrix with blocks formed by matrices Ai with i \in \scrI com

k ,
and similarly matrix Anoc

k \in \BbbR Nnoc
k \times Nnoc

k is a block-diagonal matrix with blocks Ai for

i \in \scrI noc
k . Matrix \scrB com

k \in \BbbR Ncom
k \times NS,loc

k is instead formed by extracting from matrix \scrB 
the rows corresponding to the position of the DOFs of hcomk in h and the columns cor-

responding to the position of the DOFs of ulock in u; analogously \scrB noc
k \in \BbbR Nnoc

k \times NS,loc
k

is obtained from \scrB . Matrix Gh,com
k \in \BbbR Ncom

k \times Ntot
k is extracted from Gh by taking

the rows corresponding to the position of hcomk in h and the columns corresponding

to the position of htotk in h, and similarly for Gh,com
k \in \BbbR Nnoc

k \times Ntot
k . Finally, matrix

Bh,com
k \in \BbbR Ncom

k \times NS,loc
k is created by extracting rows from matrix Bh corresponding

again to the position of hcomk in h and to the columns corresponding to the position

of ulock in u, and similarly for Bh,noc
k \in \BbbR Nnoc

k \times NS,loc
k . Then, at iteration n, problem

(2.17)--(2.18) is rewritten, on each process \scrP k, as

Acom
k [hcomk ]n = qcomk + \scrB com

k [ulock ]n,(3.4)

Anoc
k [hnock ]n = qnock + \scrB noc

k [ulock ]n,(3.5)

(Acom
k )T [pcomk ]n = Gh,com

k [htotk ]n  - \alpha Bh,com
k [ulock ]n,(3.6)

(Anoc
k )T [pnock ]n = Gh,noc

k [htotk ]n  - \alpha Bh,noc
k [ulock ]n.(3.7)

This implementation allows for an improved use of the memory, as it avoids
multiple copies of the same data, with respect to a fracturewise organization, in which
arrays h+i and u+i would contain data already present in hi and ui, and in general
several copies of the same data would be present on each process.

Equations (3.4) and (3.5) are split since after the resolution of problems (3.4),
the data in the array houtk are sent to the Master process by each Slave process.
A nonblocking MPI send operation is used, and then each Slave process can proceed
with the resolution of problem (3.5) before receiving array hink from the Master , which
is required for the resolution of (3.6), where it appears in array htotk . This allows
maximization of the parallel performances of the algorithm, as communication time
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Algorithm 3.1. Parallel CG algorithm.

1: for each computing process \scrP k, k = nM\scrP , . . . , n\scrP do
2: Choose an initial guess [ulock ]0

3: Solve Acom
k [hcomk ]0 = qcomk + \scrB com

k [ulock ]0

4: Communication: MPI Send [houtk ]0

5: Solve Anoc
k [hnock ]0 = qnock + \scrB noc

k [ulock ]0

6: Communication: MPI Recv [hink ]0

7: Solve (Acom
k )T [pcomk ]0 = Gh,com

k [htotk ]0  - \alpha Bh,com
k [ulock ]0

8: Solve (Anoc
k )T [pnock ]0 = Gh,noc

k [htotk ]0  - \alpha Bh,noc
k [ulock ]0

9: Compute [glock ]0 = (\scrB tot
k )T [ptotk ]0 +Gu,loc

k [ulock ]0  - \alpha Bu,tot
k [htotk ]0

10: Compute [\beta N,k]
0 = ([glock ]0)T [glock ]0

11: Communication: MPI All-Reduce [\beta N ]0 =
\sum n\scrP 

k=1[\beta N,k]
0

12: Set [dlock ]0 =  - [glock ]0

13: Communication: MPI Send [doutk ]0 and Recv [dink ]0

14: Set n = 0
15: while [glock ]n \not = 0 do
16: Solve Acom

k [\delta hcomk ]n = \scrB com
k [\delta dlock ]n

17: Communication: MPI Send [\delta houtk ]n

18: Solve Anoc
k [\delta hnock ]n = \scrB noc

k [\delta dlock ]n

19: Communication: MPI Recv [\delta hink ]n

20: Solve (Acom
k )T [\delta pcomk ]n = Gh,com

k [\delta htotk ]n  - \alpha Bh,com
k [dlock ]n

21: (Anoc
k )T [\delta pnock ]n = Gh,noc

k [\delta htotk ]n  - \alpha Bh,noc
k [dlock ]n

22: [\delta glock ]n = (\scrB tot
k )T [\delta ptotk ]n +Gu,loc

k [dlock ]n  - \alpha Bu,tot
k [\delta htotk ]n

23: Compute [\lambda N,k]
n = ([dlock ]n)T [glock ]n and [\lambda D,k]

n = ([dlock ]n)T [\delta glock ]n

24: Communication: MPI All-Reduce [\lambda N ]n =
\sum n\scrP 

k=1[\lambda N,k]
n, [\lambda D]n =\sum n\scrP 

k=1[\lambda D,k]
n

25: Compute [\lambda ]n = [\lambda N ]n

[\lambda D]n

26: Update [glock ]n+1 = [glock ]n + [\lambda ]n[\delta glock ]n

27: Set [\beta D]n+1 = [\beta N ]n and compute [\beta N,k]
n+1 = ([glock ]k+1)T [glock ]k+1

28: Communication: MPI All-Reduce [\beta N ]n+1 =
\sum n\scrP 

k=1[\beta N,k]
n+1

29: Compute [\beta ]n+1 = [\beta N ]n+1

[\beta D]n+1

30: Update [dlock ]n+1 =  - [glock ]n+1 + [\beta ]n+1[dlock ]n

31: Communication: MPI Send [doutk ]n+1 and Recv [dink ]n+1

32: Set n = n+ 1
33: end while
34: end for

can be shadowed on each Slave process by the resolution of the linear system related
to the noncommunicating fractures. Despite the fact that no communication occurs
between (3.6) and (3.7), they are split to save memory, reusing matrices Acom

k and
Anoc

k , or their factorizations. Finally, (2.19) is written on each process \scrP k, k =
1, . . . , n\scrP , as

(3.8) glock = (\scrB tot
k )T ptotk +Gu,loc

k ulock  - \alpha Bu,tot
k htotk ,

where glock is the gradient direction computed for the local traces, and matrices Gu,loc
k

and Bu,tot
k are extracted from Gu and Bu, respectively, analogously to what is de-
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Algorithm 3.2. Communication phase.

1: for k = 0, . . . , nM
\scrP  - 1 do

2: if n = 0 then
3: Initialize MPI indexed arrays hcomk and ucomk

4: Initialize the MPI SEND INIT and MPI RCV INIT buffers
5: end if
6: Receive [hout\ell ]n and [uout\ell ]n from processes \scrP \ell \in \scrP \downarrow 

k

7: Assemble [houtk ]n and [uoutk ]n

8: Send [houtk ]n and [uoutk ]n to process \scrP \uparrow 
k

9: Receive [hink ]n and [uink ]n from process \scrP \uparrow 
k

10: send [hin\ell ]n and [uin\ell ]n to processes \scrP \ell \in \scrP \downarrow 
k

11: end for

scribed above.
Let us define, for each trace Sm on fracture Fi a set of active DOFs, i.e., the

subset of DOFs of hi which determines the value of hi| Sm
, i.e., the solution on the

trace. Since coefficients of matrices Gh and Bh only depend on those basis functions
whose support has a nonempty intersection with a trace, for efficiency reasons, at
each iteration of the scheme (3.4)--(3.7), only the set of active DOFs in arrays htotk on
each process \scrP k needs to be updated. In more detail, \scrP k has to send to the Master
a subset of the array hcomk , denoted as houtk , containing the set of all active DOFs
of its communicating fractures Fi, i \in \scrI com

k , and in turn receives from the Master a
subset of hextk , denoted as hink , containing the active DOFs of fractures Fi, i \in \scrI ext

k .
Analogously, concerning trace variables, the part of ucomk sent to theMaster is denoted
as uoutk and the part received is denoted uink , now with uoutk and uink defining the whole
ucomk (actually, as shown in the next section, the increment of ucomk is communicated
at each iteration and not ucomk itself). The organization of arrays in blocks on each
process, as here proposed, also yields efficient MPI communications. Using persistent
MPI communication protocols (MPI SEND INIT andMPI RECV INIT instructions;
see, for example, [48]) and the MPI Type indexed [49] for htotk and ulock , it is possible
to define, at the first iteration, the indexes to the active DOFs in hcomk , hextk , and ucomk ,
allowing for an optimized indexing and a minimization of communication overhead.
In contrast, a fracturewise organization would require repeated indexing into fracture-
local arrays, with a detrimental impact on the efficiency of MPI communications.

3.6. Problem resolution. The optimization problem (2.16) is solved via a con-
jugate gradient scheme whose parallel implementation is detailed in Algorithm 3.1.
The notation \delta (\cdot ) is introduced to denote the increment of a variable between two
subsequent iterations of the method, as, e.g., [\delta hcomk ]n is the variation of hcomk on
process \scrP k between iterations n and n + 1, i.e., [\delta hcomk ]n = [hcomk ]n+1  - [hcomk ]n. Al-
gorithm 3.2 reports the steps of a communication phase for a Master process, at a
generic iteration number n \geq 0. The definition of arrays houtk , hink and uoutk , uink is
extended to Master processes \scrP k, k = 1, nM\scrP  - 1, as the set of DOFs that need to be
sent and received, respectively, from a different process. Steps 8--9 are not performed
by the top-level Master (\scrP \uparrow 

0 = \emptyset ).
A version of the code based on different C++ libraries for linear algebra is de-

scribed in [8], where the NVIDIA CUDA Toolkit [43] is used.
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4. Results. This section reports the performances of the proposed algorithm in
terms of achieved speedups in iteration time when the number of parallel processes
increases. In more detail, by iteration time we mean the average time per iteration
over 1000 iterations of Algorithm 3.1. The preprocessing time, needed to perform
tasks (1)--(5) described at the beginning of section 3, is negligible with respect to
resolution time (task (6)), and further, preprocessing is readily parallel as it involves
almost no communications.

The strong scalability and the weak scalability performances of the algorithm will
be shown. In strong scalability tests the dimension of the problem is fixed (number
of fractures and mesh parameter), and the time to obtain the solution is measured
when the number of parallel processes increases. Performances are measured in terms
of the speedup Sp := t1/tp, corresponding to the ratio between the serial execution
time t1 and the time with p parallel computing processes tp; and in terms of efficiency
Ep := Sp/p, representing the achieved speedup divided by the ideal speedup p/1. On
the other hand, in weak scalability tests, both the problem size (number of fractures,
with a fixed mesh parameter) and the number of parallel processes grow with a fixed
ratio. A measure of the performances is obtained, in this case, comparing the ratio
between computing time and number of processes (or, equivalently, problem size)
with the expected fixed one. Scalability performances are computed with respect
to the number of Slave processes, not taking into account the number of Masters.
This is done in order to provide insight into the optimality of the performances with
respect to the actual number of computing processes and to better highlight how
performances vary as the number of processes changes, being, instead, the number of
Master processes fixed for each simulation.

The networks used for the simulations are generated from random probability
distribution functions concerning the size, the position, the orientation, the number,
and the hydraulic transmissivity of fractures, adapted from the data available in [47].
The resulting networks display a large variability in terms of fracture sizes, which
span about four orders of magnitude; also, highly connected fractures, having more
than 102 traces, coexist with scarcely connected fractures, with only few traces.

An extensive set of simulations is reported; these were performed on the partition
A1 of cluster Marconi, located at the Italian HPC center CINECA [19]. The ma-
chine is composed of 720 nodes, with 2 x 18-cores Intel Xeon E5-2697 v4 (Broadwell)
processors at frequency 2.30 GHz, and 128 GB of RAM per node. The OpenMPI
implementation of the MPI communication protocol version 3 is used [50].

4.1. Strong scalability. Strong scalability results are shown for three different
networks with an increasing number of fractures. The three networks, labeled 64K,
128K, and 256K, are displayed in Figure 3. Table 1 reports, for each DFN, the
initial number of fractures (column Tot. Fracs), i.e., before the definition of the main
connected component, the number of connected fractures (column Conn. Fracs) and
their traces (column Traces), and the minimum and maximum number of traces per
fracture (columns Min Trcs and Max Trcs, respectively). The chosen mesh parameter
and the resulting DOFs on the fractures, DOFs on the traces, and their sum are shown
in Table 2. Linear finite elements are used for the description of the discrete hydraulic
head h on the fractures, and trace-meshes with staggered nodes and piecewise-constant
basis functions are used to describe function u on the traces. The diameter of the
mesh on each trace Sm, m = 1, . . . ,M , is chosen equal to the average between the
maximum diameter of the triangular elements intersected by the trace on Fi and Fj ,
(i, j) = IS(m).
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(a) DFN 64K (b) DFN 128K (c) DFN 256K

Fig. 3. DFNs used for strong scalability tests.

Table 1
Strong scalability tests: Network data.

Id Tot. Fracs Conn. Fracs Traces Min Trcs Max Trcs

64K 64186 64178 122543 1 390
128K 167321 129552 248422 1 392
256K 328206 253150 482755 1 442

Table 2
Strong scalability tests: DOF data.

Id Mesh Fracture DOFs Trace DOFs Total DOFs

64K 100 6.07 \cdot 106 6.13 \cdot 105 6.68 \cdot 106
128K 100 1.23 \cdot 107 1.24 \cdot 106 1.35 \cdot 107
256K 100 2.39 \cdot 107 2.41 \cdot 106 2.64 \cdot 107

Figure 4 plots the speedup Sp for p ranging between 1 and 15 for the 64K and
128K networks, also reporting, in the embedded table, the corresponding efficiency
values. Simulations are performed ensuring that no more than a single process is
allocated on each computing node of the cluster, thus avoiding any possible memory-
related access conflict between processes. An optimal speedup is achieved for the
smaller network, whereas a speedup exceeding the optimal one is observed for the
larger DFN. This circumstance is not an isolated case, as shown in the following, and is
given by the combined effect of a very low communication cost, achieved by the present
implementation, with the behavior of the cost of linear algebra operations when the
size of the involved matrices varies. This behavior is described by the example in
Figure 5, reporting how the cost of sparse matrix-vector product performed with
Eigen changes when the same matrix is split into several submatrices taking chunks
of rows, keeping fixed the size of the vector instead. The test is performed on a single
core and does not involve communications: starting from an initial reference matrix,
seven subsequent simulations are performed, each time defining a submatrix taking
one half of the number of rows of the matrix at the previous simulation, and measuring
the time required to perform the sparse matrix-vector product. This mimics what
happens in Algorithm 3.1 when the network is split among an increasing number
of parallel processes. Speedup measurements for this test are obtained by dividing
the time for the computation of the matrix-vector product for the initial reference
matrix by the time required to perform the same operation on each fraction of the
reference matrix. In Figure 5 the achieved speedups are shown with respect to the
NNZ Ratio, defined as the ratio between the nonzero elements of the initial reference
matrix and the number of nonzero elements of the considered fractions of this matrix;
also efficiency values are shown in the embedded table, defined, as usual, as the ratio
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100
109.21
109.97
109.62
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64K - 1 task × node
128K - 1 task × node

Fig. 4. Strong scalability on DFN 64K and
128K.
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NNZ Ratio

Sp

Expected
Obtained

Fig. 5. Sparse matrix-vector product perfor-
mance test.

between the achieved speedup and the ideal one. It can be seen that a speedup much
larger than optimal is obtained: as an example, when the number of nonzero elements
of the matrix is reduced by a factor 71, the computing time is reduced by a factor
close to 150. Consequently, efficiency values exceeding 200\% are reached. This effect
becomes less relevant when the number of nonzero elements further decreases. Similar
behavior is documented for the Eigen library in [23] in the case of full matrices and
also applies to other linear algebra libraries. As the DFN is partitioned among a
larger number of parallel processes, the size of the matrices in (3.4)--(3.8) is reduced,
as fewer fractures are present in sets \scrI loc

k , k = nM\scrP , . . . , n\scrP , and thus the number of
nonzero entries of the matrices on each process reduces. The cost of communications is
negligible with respect to the cost of linear algebra computations and is well shadowed
by the operations on the noncommunicating fractures, especially when the number of
parallel processes is relatively small. Thus a speedup higher than the ideal one can
be achieved, and this is more evident, as expected, on larger networks, where the cost
of linear algebra operations is more relevant. When more than a single process per
node is allocated, cache memory access conflicts of different processes on the same
computing node can deteriorate the speedup, with an impact that increases on larger
networks, for which more memory is used; see Figure 6.

Figure 7 shows the achieved speedup for a number of computing processes ranging
between 15 and 127, using eight cores on each node of the cluster, for the 64K, 128K,
and 256K networks. Solid lines represent the speedups obtained with a single Master
process. A scalability higher than the ideal optimal value is again observed, which
is more evident for the larger 256K network. However, when the number of parallel
processes increases, the cost of the communications becomes more and more relevant,
outweighing the cost related to linear algebra manipulations. This happens earlier for
the smaller networks, for the reduced cost of linear algebra operations. The reason
for the decay of the parallel performances of the method, however, lies in the overload
of the Master process, as demonstrated when observing the results in dashed lines,
where the same tests are repeated using a two-level multi-Master topology, with one
top-level Master process, three bottom-level Master processes (as in Figure 1b), and
an increasing number of Slave processes. It can be seen that now the decay of speedup
performances is completely cured on all of the considered networks. The performances
in the predecay range, i.e., 15--63 Slaves for the 64K and 128K networks and 15--104
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Slaves

Sp

Ideal
64K - 4 tasks × node
64K - 8 tasks × node
64K - 16 tasks × node

(a) DFN 64K

1 3 7 15 31 47
3
7

15

31

47

Slaves

Sp
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128K - 4 tasks × node
128K - 8 tasks × node
128K - 16 tasks × node

(b) DFN 128K

Fig. 6. Strong scalability with different task\times node configurations.

15 31 63 95 127

31

63

95

127

Slaves

Sp

64K
128K
256K
64K
128K
256K

Fig. 7. Strong scalability with 8 tasks\times node and one (solid line) or four (dashed line) Master
processes.

Slaves for the 256K network, are unaffected by the change of the communication
topology, again showing the negligible weight of communications in the proposed
algorithm when the Master process is undersaturated.

Results in Table 3 show the effect of an increment in the connectivity of the net-
work on the scalability performances. A new DFN, labeled 64K \star , is introduced, having
about the same number of fractures as the 64K network, but with about 1.7 \times 106

traces, i.e., more than 10 times the number of traces of the 64K DFN. Using the
same mesh parameter of the previous simulations, 5.86\times 106 DOFs for the hydraulic
head (i.e., approximately the same number as DFN 64K) and 1.4 \times 107 DOFs for
the variables on the traces are obtained, which is over one order of magnitude more
than the 64K network. Despite the sensible increase in the number of traces and
trace DOFs, and the consequent increase of the cost of communications, the scala-
bility performances of the code are only marginally affected, as can be noticed when
comparing columns 64K and 64K \star of Table 3, where speedup and efficiency values are

D
ow

nl
oa

de
d 

08
/2

6/
19

 to
 1

30
.1

92
.2

2.
14

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C334 S. BERRONE, S. SCIAL\`O, AND F. VICINI

Table 3
Strong scalability test on a high density network and on a different architecture.

Slaves 64K 64K \star 64K \star (MM)

Sp Ep (\%) Sp Ep (\%) Sp Ep (\%)

8 7.94 99.28 7.96 99.48 7.96 99.48
16 15.70 98.10 14.45 90.34 15.01 93.85

Table 4
Weak scalabilty tests: Data on DFN families.

\ell I\ell Samples Tot. Fracs Conn. Fracs Traces DOFs

1 1000 13 1037 1035 1901 1.33 \cdot 105
2 2000 25 2073 2070 3896 2.67 \cdot 105
3 4000 19 4260 4254 8197 5.51 \cdot 105
4 8000 20 8366 8357 15991 1.08 \cdot 106
5 16000 11 16125 16116 30747 2.08 \cdot 106
6 32000 16 32000 31987 60923 4.12 \cdot 106
7 64000 12 77302 64535 123848 8.34 \cdot 106
8 128000 10 167321 129479 248275 1.67 \cdot 107

reported for the 64K and 64K \star networks, respectively. Scalability performances on
the 64K \star network can be further improved introducing a multi-Master topology, as
shown in column 64K \star (MM). For memory capacity reasons, scalability data are com-
puted using the time with four computing processes as reference, and using a single
core per node. The results of Table 3 are computed on the partition A2 of the cluster
Marconi, equipped with Intel Xeon Phi7250 1.4 GHz (KnightLandings) processors,
a different architecture from that used for the previous tests, thus also showing the
good scalability of the code on different architectures.

4.2. Weak scalability. Weak scalability tests are performed on families \scrD \ell ,
\ell = 1, . . . , 8, of randomly generated DFNs: each family is characterized by networks
having approximately the same number of fractures, whereas all other properties, such
as the position, orientation, density, and hydraulic conductivity of the fractures, are
randomly generated starting from the same probability distributions, based on the
data in [47]. For each family \scrD \ell , an initial total number of fractures is fixed, and then
various samples are generated, according to the distributions of the various parame-
ters; information on each DFN family can be found in Table 4, where the number of
networks considered (column Samples), the initial total number of fractures (column
Tot. Fracs), the average number of connected fractures (column Conn. Fracs), the
average number of traces (column Traces), and the average total number of DOFs
(column DOFs) are reported. It can be seen that networks with a number of fractures
ranging between about 103 = I1 and 128 \times 103 = I8 are used, and the total number
of DOFs spans two orders of magnitude. Given p, the number of parallel comput-
ing processes, and I\ell , the number of fractures characterizing family \scrD \ell , \ell = 1, . . . , 8,
three different tests are performed, each with an approximately fixed ratio Np := I\ell /p
obtained varying p between 1 and 63 and choosing \ell accordingly.

Weak scalability performances are reported in Figure 8 for values of Np \sim 1000
and Np \sim 2000 and a number of computing processes ranging between 2 and 16,
with a single process allocated on each computing node of the cluster. Each point
in the picture represents the value of iteration time for one of the networks, and
the dashed lines correspond to the best fitting line of the data for each of the two
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Fig. 8. Weak scalability: Case Np = 1000
and Np = 2000.
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Fig. 9. Weak scalability: Case Np = 2000
with 8 cores per node.

Np-values considered. Similar results are obtained for both values of Np. It can
be seen that best fitting lines are nearly parallel and horizontal, thus showing that
iteration time is, on average, constant when the number of processes increases and Np

is kept almost constant. We also observe that the variability in computing time among
DFNs belonging to the same family tends to decrease as the number of fractures in
the network increases.

For values of Np \lesssim 1000 the scalability performances start to gradually deterio-
rate, suggesting that, for optimal performances, each parallel process should handle
no fewer than 105 DOFs.

Figure 9 plots the results obtained with Np = 2000 by using eight cores per node
and a number of parallel computing processes ranging between 7 and 63. Again, each
point in this figure corresponds to the computing time of a different network, and
the dashed line is the best fitting of the data. The fitting line is almost horizontal
and slightly decreasing, and this probably can be related again to the superscalability
behavior observed in terms of strong scalability for the larger networks.

5. Conclusions. A new implementation of an optimization-based approach for
the simulation of subsurface flows has been described and tested. Mesh genera-
tion, problem discretization, and resolution as well as other preprocessing and post-
processing operations are all performed in parallel by the proposed code. Full imple-
mentation details are given, particularly on the organization of algebraic operations,
on the use of MPI communications, and on the chosen graph topology for the paral-
lel environment. Results are shown in terms of both strong and weak scalability on
massive networks of over 105 fractures, using up to 128 parallel processes, obtaining
optimal scalability performances. In contrast to other numerical schemes for DFN flow
simulations, where meshing time can be orders of magnitude larger than resolution
time, the proposed approach achieves negligible meshing time without compromising
resolution time and is thus a new efficient tool for underground flow simulations at
the reservoir scale.

Similar scalability performances are expected in the resolution of nonstationary
advection-dispersion problems, where, following the method described in [14], a prob-
lem analogous to (2.11) needs to be solved at each time-step. In the framework of
time-dependent simulations, excellent scalability properties are of paramount impor-
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tance for the practical applicability of the method. The same setting, as proposed
in the present work, can be used for the parallel implementation of the optimization
method for fracture-matrix flow simulations on nonconforming meshes with the DFM
approach proposed in [13]. In this case, the balancing of the load among the computing
processes turns out to be more difficult, as now bidimensional and three-dimensional
problems need to be solved simultaneously.
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