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Abstract. Nanofibrous materials produced by electrospinning process,
may exhibit characteristic localized defects and anomalies (i.e. beads,
speck of dust) that make the nanostructure a network of nonhomoge-
neous nanofibers, unsuitable for an industrial production at large scale
of the nanoproducts. Therefore, monitoring and controlling the quality
of nanomaterials production has become increasingly important and in-
telligent anomalies detection systems have been emerging. In this study,
we propose an innovative framework based on machine (deep) learn-
ing for automatic anomaly detection. Specifically, a deep Convolutional
Neural Network (CNN) is proposed to automatically classify Scanning
Electron Microscope (SEM) images of homogeneous (HNF) and nonho-
mogeneous nanofibers (NHNF), interpreted as two different categories.
The proposed approach has been validated on experimental SEM im-
ages acquired through SEM images analyzer on Polyvinylacetate (PVAc)
nanofibers produced by electrospinning process. Experimental results
showed that the designed deep CNN achieved accuracy rate up to 80%
and average precision, recall, F score of, 78.5%, 79%, 78.5% respectively.
These promising results encourage the use of this effective technique in
industrial production.

Keywords: SEM images, Nanomaterials, Deep Learning, Convolutional
Neural Network

1 Introduction

Nanofibrous materials are ultra-fine fibers with diameters lower than 102 nm,
typically produced by an effectiveness and efficient technique called electrospin-
ning (or electrostatic spinning) [1]. In recent years, the applications of such
nanostructures have attracted a great deal of interest in fields as biomedicine
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[2], electronics [3], drug delivery and tissue engineering [4]. However, the pro-
duction of nanofibers (NF) is still difficult to monitor as several parameters (i.e.
applied voltage, polymeric concentration, temperature etc) may cause struc-
tural defects during the electrospinning process [5]. The most common defects
are beads, namely, micro or nano polymeric particles obtained mainly when the
concentration of the solution is very low. These anomalies reduce the large sur-
face area per unit volume, which is a typical advantage of electrospinning over
competing techniques of production, and influence time and cost of production.
The most efficient approach of monitoring the electrospun material is acquiring
Scanning Electron Microscope (SEM) images from the nanofibrous sample and
analyzing its structure. As the expert visual inspection is not the most effective
method to identify defects, also for practical reasons, there is an increasing in-
terest in developing automatic anomalies detection systems (ADS) through the
analysis of SEM images. However, a few works are reported in literature. Carrera
et al. [6] used the so called novelty detection algorithm also known as one-class
classification to address the issue of anomaly detection within SEM images. The
dictionary of only normal (anomaly-free) images patches previously developed
by Boracchi et al. [7] was employed. This dictionary was used during the test to
identify defects in a patch-wise modality. Experimental results showed that the
proposed method was able to outperform state-of-art algorithms (i.e. STSIM,
Coding) and provided good performance in detecting small defects. Recently,
advanced machine learning techniques known as deep learning (DL) have been
also employed in this context [8]. It has been proved that DL algorithms achieve
human-level performances in several real-world applications (i.e. speech recog-
nition [9], biomedicine [10],[11], cybersecurity [12], nondestructive testing and
evaluation [13] ), so DL based systems for anomalies detection in SEM images
have been emerging. Specifically, Carrera et al. [14] , proposed a DL method
based on Convolutional Neural Network (CNN) for automatic detection and lo-
calization of defects. They used the ResNet-18 network pre-trained on scene and
object images defined by the ILSVRC 2015 competition and built a dictionary
of features vectors extracted from normal patches. Abnormal patches were eval-
uated through similarity between a testing patch and an anomaly-free patch of
the dictionary. The performances were measured in terms of ROC curve and
coverage factor. Experimental results show that the proposed framework out-
performed the state-of-the-art of about 5%. However, similarly to their previous
works, the authors developed the DL system through a one-class classifier. In
this paper an Automatic Classification of SEM images of Nanomaterials Via a
Deep Learning Approach is proposed. Specifically, a deep Convolutional Neural
Network is developed to detect SEM images of homogeneous nanofibers (HNF,
anomalies-free) and SEM images of nonhomogeneous nanofibers (NHNF, with
defects). A dataset of 160 SEM images (85 NHNF and 75 HNF) of Polyvinylac-
etate (PVAc) nanofibers were manually collected after electrospinning process
at the Materials for Environmental and Energy Sustainability Laboratory of the
University Mediterranea of Reggio Calabria (Italy). Experimental results (Table
2) showed that the 2-way deep CNN classifier achieved accuracy up to 80%.
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The rest of this paper is organized as follows. Section 2 describes the proposed
methodology, including the electrospinning process, the experimental setup and
the proposed deep CNN classifier. Section 3 discusses the results achieved. Sec-
tion 4 concludes this paper.

2 Methodology

The flowchart of the procedure is illustrated in Figure 1. Firstly, the polymeric
solution of PVAc dissolved in EtOH solvent is prepared and used to produce
PVAc nanofibers by electrospinning process (Figure 1 (a)). The morphology of
the electrospun nanofibers is examined by a scanning electron microscope, and
SEM images sized 1024 x 1024 of homogeneous and not-homogeneous nanofibers
are manually collected. Afterwards, given the jth SEM image, a sub-region (sized
128 x 128) is selected (Figure 1 (b)). This operation has been necessary due to
the limitations of the available processor. Finally, a deep learning classifier based
on CNN is employed to identify HNF and NHNF images (Figure 1 (c)).

Fig. 1. Flowchart of the method proposed.

2.1 Electrospinning Process

The electrospinning apparatus is schematized in Figure 2. It includes three basic
components: a high voltage supply, an extruder and a metallic collector screen.
The polymeric solution is initially placed into a glass syringe and pushed through
the metallic needle by the injection pump, which allows controlling the flow-rate.
A high voltage is applied between the needle (anode) and the collector (cathode),
which are electrostatically charged to a different electric potential. As the electric
field increases, the formed droplet loses surface tension and takes the form of a
cone, referred to as Taylor cone. When the electrostatic force exceeds the surface
tension, the polymeric jet is stretched within the high electric field; meanwhile
the solvent evaporates and is deposited on the collector in the form of nanofibers.
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Fig. 2. Electrospinning setup.

The viscosity has a great influence on the jet and diameter of nanofibers. Specifi-
cally, when the concentration of the solution is very low, micro or nano polymeric
particles are obtained and the electrospray phenomenon is observed [15]. How-
ever, applied voltage, tip-collector distance and flow-rate have also remarkable
effects on the fibers [16].

Material In this study, Polyvinylacetate (PVAc; average molecular weight
(Mw): 170,000) and Ethanol (EtOH) were used as polymer and solvent, respec-
tively. The spinnable solution was prepared by dissolving PVAc in EtOH and
stirring until a clear solution was obtained. The spinning process was carried
out at 20±1 C temperature and 40% relative air humidity, using a CH-01 Elec-
tro spinner 2.0 (Linari Engineering s.r.l.) and a 20 mL syringe, equipped with
a 40 mm long 0.8 mm gauge stainless steel needle. All reactants were supplied
by Sigma-Aldrich. The effects of concentration (v1), applied voltage (v2), flow
rate (v3) and tip-collector distance (v4) were evaluated to study the nanofibers
production process. The Phenom Pro-X scanning electron microscope (SEM),
equipped with an energy-dispersive x-ray (EDX) spectrometer, examined the
morphology of the electrospun fibers. Finally, the average diameter, the dis-
tribution of the nanofibers and the detection of beads were obtained by using
Fibermetric software (a SEM images analyzer).

Experimental Setup and Dataset Description Sixteen experiments (ξi,
i=1,2,..,16) were carried out by changing one parameter at time in the following
well-defined range of working: 10-25 wt.% concentration; 10-17.5 kV applied
voltage; 100-300 µL/min flow rate; 10-15 cm TCD. Table 1 reports the details of
the experiments. However, since the purpose of this study was the development
of a classification system based on SEM images, the average diameter was not
taken into account and it is not reported in Table 1.
Given the ith material sample under analysis, 10 significant and representative
areas were arbitrarily selected and evaluated through the SEM images analyzer,



Deep Learning and Nanomaterials 5

Table 1. Electrospinning setup of the 16 experiments.

ξ
Concentration (v1)

[%wt]
Applied Voltage (v2)

[kV ]
Flow Rate (v3)

[µL/min]
TCD (v4)

[cm]

ξ1 10 15 10 100
ξ2 15 10 10 100
ξ3 15 13,5 10 100
ξ4 15 15 10 100
ξ5 15 15 10 200
ξ6 15 15 10 300
ξ7 15 15 12,5 100
ξ8 15 15 13,5 100
ξ9 15 15 15 100
ξ10 20 10 10 100
ξ11 20 11,5 10 100
ξ12 20 13,5 10 100
ξ13 20 15 10 100
ξ14 20 16 10 100
ξ15 20 17,5 10 100
ξ16 25 15 10 100

in order to augment the dataset. A grand total of 160 SEM images sized 1024 x
1024 was collected. Each image was examined by an expert operator, and labeled
as SEM image of homogeneous nanofibers (HNF) or nonhomogeneous nanofibers
(NHNF). Specifically, 75 images were classified as HNF and 85 as NHNF. Figure
3 shows representative SEM images of NHNF and HNF achieved during the
experiments. As can be observed, lower concentrations cause low viscosity of
the solution, instability of the polymeric jet and consequently beads structures
(Figure 3 a). With increasing TCD, the electrospun solution is affected by a less
intense electric field and causes a mixed morphology of fibers and beads (Figure
3 b). Higher applied voltages produce smaller dimensions of beads as they are
elongated and stretched by the higher electric field. Therefore, high voltages,
together with high concentrations, produce homogeneous networks of nanofibers
(Figure 3 c).
However, due to the computational limit of the available processor, we did not
process the whole SEM sized 1024 x 1024. Given the jth SEM image belonging
to NHNF or HNF class, it was firstly split into 64 sub-images sized 128 x 128,
then one representative sub-image was selected and used as input of the proposed
Convolutional Neural Network. It is worth noting that there is no downsampling
of the original SEM image to prevent distortion of the size of nanofibers.

2.2 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are deep learning architectures able to
learn discriminating features directly from raw input data through a deep hier-
archical organization. A typical CNN consists of subsequent modules of convolu-
tion, activation and pooling layers. The convolutional layer performs the convo-
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Fig. 3. Effect of the parameters variation on the morphology. (a-b) SEM images of
not-homogeneous nanofibers (NHNF) due to the presence of beads. (c) SEM image of
homogeneous nanofibers (HNF).

lution operation between a set of Fj learnable filters (or kernels) and the input
map Ii ∈ Rhxw. The result is the so called features map Oj =

∑
Ii ∗ Fj + Bj

where Bj is the bias term and * indicates the convolution operator. Each filter
convolves with a local area of Ii and then scans the whole plane with a stride
s, sharing the same values of weights. The Oj features map is sized o1 x o2
where o1 = h−f1+2p

s + 1, o2 = w−f2+2p
s + 1 and p is the zero padding parame-

ter used to control the output size by padding the input edges with zeros. The
convolutional layer is typically followed by the ”Rectified Linear Unit” (ReLu,
f(z) = max(0, z)) activation function, as it aids the system in generalization
and improves learning time [17]. The pooling layer reduces the input features
map through an average (average pooling) or maximum (max pooling) operation.
In this study, the max pooling operation is used. The Fj filter scans the input
features map with stride s̃ producing a sub-sampled representation of Oj sized

õ1 x õ2 where õ1 = y1−f̃1
s̃ + 1 and õ2 = o2−f̃2

s̃ + 1. Finally, the learned features
are the input of a standard multi-layer neural network (MLP) for classification
task.

Architecture Proposed and Learning Setup Figure 1 (c) shows the schematic
of the proposed deep CNN . It contains 5 convolutional (conv) layers, 5 max pool-
ing (pool), 1 fully connected layer (FC ) with 40 hidden neurons and 1 softmax
(SF ) output layer for binary classification task (NHNF - HNF). All convolu-
tional layers have filters size of 3 x 3, stride s=1 and padding parameter p=1;
whereas, all max pooling layers have filters size of 2 x 2 and stride s=2. The
rectified linear unit is employed as activation function and batch normalization
is applied to the hidden layers to avoid covariate shift phenomenon [18]. The de-
tails of architecture configuration are reported in Table 2. Learning set up was
based on the practical recommendations of [19], [20]. The layers are initialized
from a Gaussian distribution with zero mean and standard deviation of 10−2.
The stochastic gradient descent (SGD) algorithm with momentum of 0.9, weight
decay of 10−4, learning rate of 0.001 and mini-batch size of 32 shuffled SEM im-
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ages is used to train the deep neural network. The network was implemented
using MATLAB R2017b (The MathWorks, Inc., Natick, MA, USA) and trained
for 300 iterations on a single CPU of HP xw4600 workstation with 12 GB RAM.

Table 2. Layers configuration of the deep CNN proposed.

conv1 pool1 conv2 pool2 conv3 pool3 conv4 pool4 conv5 pool5 FC1 FC2

Input
(I)

128 x 128 128 x 128 64 x 64 64 x 64 32 x 32 32 x 32 16 x 16 16 x 16 8 x 8 4 x 4 2048 x 1 40 x 1

Number of filters
(F)

16 16 32 32 64 64 96 96 128 128 - -

Size of filters
(f1 x f2)

3 x 3 2 x 2 3 x 3 2 x 2 3 x 3 2 x 2 3 x 3 2 x 2 3 x 3 2 x 2 - -

Stride
(s)

1 2 1 2 1 2 1 2 1 2 - -

Padding
(p)

1 - 1 - 1 - 1 - 1 - - -

Output
(O)

128 x 128 64 x 64 64 x 64 32 x 32 32 x 32 16 x 16 16 x 16 8 x 8 8 x 8 4 x 4 40 x 1 2 x 1

3 Experimental results

The dataset included 160 SEM images (75 HNF and 85 NHNF) sized 128 x
128 (Subsection 2.1, Experimental setup and Dataset Description). A subset
of dataset was used to train the deep CNN (70% training dataset) and the
remaining 30% was used to test the trained model. The performance of the
proposed deep CNN was evaluated using standard metrics: precision, recall, F-
score and accuracy:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F score = 2 ∗ Precision ∗Recall
Precision+Recall

(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

where true positives (TP) represent the number of SEM images correctly identi-
fied as images of nonhomogeneous nanofibers; true negatives (TN) represent the
number of SEM images correctly identified as images of homogenous nanofibers
(anomalies-free); false positives (FP) are the number of normal images erro-
neously identified as images of nanofibers nonhomogeneous (with anomalies);
false negatives (FN) are the number of anomalies SEM images missclassified as
anomalies-free. The best CNN configuration was chosen by evaluating the effects
on the performance of changing the number of hidden layers. Table 2 reports the
outcome of the experiments on test set. Experimental results showed that the
CNN1 architecture with only one module of convolution (conv1), ReLU (relu1)
and pooling (pool1) layer produced the lowest performance (50% accuracy) and
was not capable of discriminating SEM images anomalies-free and with defects;
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whereas, the best classification result was reached with CNN5 achieving accu-
racy rate up to 72%. All the networks (CNN1 - CNN5) included a softmax
output layer for binary classification. However, it was observed that the accu-
racy performance improved of 8% by adding a fully connected layer with 40
hidden neurons and ReLu activation function. As can be observed in Table 4,
the CNN5 +FC +SF architecture achieved accuracy rate up to 80% and aver-
age precision, recall and F score of, 78.5%, 79%, 78.5% respectively. To our best
knowledge, this is the first work on classification among SEM images of homo-
geneous (anomaly-free) and nonhomogeneous (with anomaly) PVAc nanofibers
(produced by electrospinning process) by using DL techniques. However, it woth
mentioning that, recently, Napoletano et al. [14] proposed a per-pixel one-class
classification based on CNN but for detection and localization of defects within
SEM images. Specifically, the proposed patch-wise based method identifies de-
fects through visual similarity between the test-patch under analysis and a ref-
erence dictionary of normal subregions.

Table 3. Accuracy performance of deep CNN with different numbers of hidden layers.

CNN architecture Accuracy [%]

CNN1 [conv1+relu1+pool1]+SF 50
CNN2 [CNN1+conv2+relu2+pool2] + SF 66
CNN3 [CNN2+conv3+relu3+pool3] + SF 68
CNN4 [CNN3+conv4+relu4+pool4] + SF 70
CNN5 [CNN4+conv5+relu5+pool5] + SF 72
CNN∗

5 [CNN4+conv5+relu5+pool5] + FC +SF 80

Table 4. Precision, Recall, F score of the deep CNN∗
5 classifier.

SEM image Precision [%] Recall [%] F score [%]

NHNF 84 82 83
HNF 73 76 74

Average 78.5 79 78.5

4 Conclusions

In this paper, we proposed a deep learning based system to detect anomalies
in Scanning Electron Microscope (SEM) images of nanofibrous materials pro-
duced by electrospinning process. Specifically, a deep convolutional neural net-
work was developed to classify SEM images of homogeneous (HNF) and non-
homogeneous nanofibers (NHNF). The polyvinylacetate (PVAc, Mw 170,000)
dissolved in ethanol solvent was electrospun at the Materials for Environmental
and Energy Sustainability Laboratory of the University Mediterranea of Reggio
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Calabria (Italy) and 16 experiments were carried out under different experimen-
tal conditions. A total of 160 images of PVAc nanofibers was extracted from
the scanning electron microscope according the procedure described in Section
2 (Experimental setup and Dataset Description). A deep CNN was employed
to learn the most relevant features from the raw SEM input data and classify
PVAc HNF and NHNF images. Figure 4 shows examples of the features learned
by conv1 and conv3 layer on a NHNF and HNF SEM image sized 128 x 128.
Experimental results showed that the proposed deep CNN was able to correctly
discriminate HNF and NHNF with accuracy up to 80%. However, it is to be
noted that this study supposes to be a preliminary work for a more accurate
and versatile system. Future works will address the limit of SEM image process-
ing sized 1024 x 1024 (and above). Moreover, a larger number of experiments on
PVAc polymer will be performed through electrospinning process. In addition, in
the future, we intend to integrate the work here presented with the methodology
presented in [14] for detection and localization of defects in SEM images.

Fig. 4. Features maps learned by conv1 and conv3 on a SEM image input of homo-
geneous (HNF) and nonhomogeneous nanofibers (NHNF). (a-c) 16 feature maps sized
128 x 128 learned by conv1 of NHNF and HNF, respectively. (b-d) 64 feature maps
sized 32 x 32 learned by conv3 of NHNF and HNF, respectively.
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