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Abstract: The nonlinear elastic response of consolidated granular or damaged materials is the result of
the combination of nonlinear attenuation and velocity, coupled with hysteresis, which is linked to non
equilibrium effects (often termed conditioning). Thus, a preliminary step towards the comprehension
of the physical mechanisms responsible of the nonlinear elastic behaviours consists in quantifying
and separating the various contributions. To this purpose, an approach based on a semi-analytical
treatment of signals resulting from a monochromatic continuous wave excitation can be successfully
implemented. Its validation is discussed here, applying the proposed approach to the analysis of
numerical data obtained by using a finite difference spring model code. The accuracy, sensibility and
robustness of the protocol are verified in different nonlinear conditions.

Keywords: nonlinearity; elasticity; attenuation; velocity, continuous waves

1. Introduction

Materials with a very different microstructure, including consolidated [1–5] and
unconsolidated [6] granular media or damaged composites and metallic materials [7–11], share a very
similar elastic behaviour, in which hysteresis plays a crucial role. Their nonlinear response to an
ultrasonic excitation is governed by a combination of effects due to velocity dependence on strain and
attenuation nonlinearity [12–15]. Furthermore, even more important are effects due to conditioning,
relaxation and memory [16,17], i.e., the dependence of velocity and attenuation on time and maximum
strain (history).

Qualitatively, the nonlinear behaviour of such materials looks very similar. On the contrary, their
microstructure, which should suggest the physical mechanisms responsible of their elastic behaviour,
is very different. Consolidated granular materials feature grain contacts, which may give rise to
sliding [18] and/or static friction [19], together with adhesion mechanisms linked to the nonlinear
behaviour due to the presence of water at the interfaces between microcracks faces [20,21]. On the
other hand, in damaged composites, open or partially open cracks, responsible for clapping [22,23]
or dislocations [24], are more likely to be the cause of the observed nonlinearities. Furthermore,
the nonlinear elastic response increases dramatically in damaged materials. Again, the behaviour
remains qualitatively the same, but the effects of the damaging processes, e.g., in consolidated granular
media, could be very different: formation of open cracks for mechanical or thermal damaging [2,25–27],
chemical reactions with expansive compounds in carbonation, corrosion or salt reactions [28–30],
or even healing of cracks in some cases [31,32].

Consequently, it is hard to think of a single physical mechanism responsible for the elastic
nonlinearity observed and, thus, it could be important to highlight differences in nonlinear materials
with different microstructures, either intrinsic or damaged induced [33–35]. Nevertheless, to achieve
this purpose, a finer analysis is necessary, which requires developing novel experimental approaches
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beyond those existing in the literature, i.e., harmonics and sidebands analysis [36,37], determination of
the resonance frequency shift [25,38], quantification of the loss of proportionality [39,40], analysis of
subharmonics [41] and others [42,43].

The development of a method which could cope with experimental and physical constraints is
required, remaining at the same time able to separate nonlinearity due to damping from that due to
elastic modulus [44,45]. In this regard, a method has been recently proposed [45], which makes use of
a semianalytical analysis of experimental data obtained with a monochromatic continuous waves (cw)
excitation in one dimensional samples.

The novelty of this contribution is manifold. Indeed, the aim of the present work is: (i) to confirm
the correctness of the proposed method over a wide range of nonlinearity conditions (validation);
(ii) to quantify the sensibility of the approach (quantification); and (iii) to establish the limits of its
applicability (optimisation and robustness).

In the next section, we first present the approach to measure velocity and attenuation coefficient
as a function of amplitude, by using a monochromatic continuous wave excitation. The approach is
validated by analysing its efficiency in the treatment of synthetic data obtained using a numerical
approach [46], also discussed in Section 2. Validation of the efficiency in separating nonlinearities,
due to modulus or damping, is presented in Section 3. The validity of the approximations, needed to
comply with experimental constraints when applying this approach, is discussed in Section 4. Finally,
experimental results are shown in Section 5 to prove the suitability of the method to discriminate
between different nonlinearities in different media.

2. Semianalytical Approach for the Determination of Modulus and Damping

2.1. The Method: Modulus and Damping Nonlinearities Evaluation (MoDaNE)

The MoDaNE approach described in the following aims to allow separating velocity and
attenuation nonlinearities. It takes advantage of an exact analytical solution of the 1D problem
of monochromatic waves propagation in elastic bars. Of course, an analogous approach extended to
2D or 3D general cases would be more complete and also allow addressing issues which are not specific
to a 1D problem, such as those connected to directionality of nonlinear effects [47]. Nevertheless, a 1D
solution maintains its relevance, since a large number of samples and configurations used in laboratory
experiments can be usually considered 1D (e.g., cylinders, rods or prisms) and also 1D geometries are
often of interest in applications.

2.1.1. One-Dimensional Solution

The equation of motion for a 1D linear elastic medium, during the propagation of an elastic wave,
can be easily written as:

ρ
∂2u
∂t2 + λ

∂u
∂t

= S
∂2u
∂x2 (1)

where u(x, t) denotes the longitudinal displacement, ρ is the density, λ is the damping parameter and
S is the elastic modulus. In the case of an infinite medium (or semi-infinite with a monochromatic
forcing F(t) in x = 0), the solution is a monochromatic wave:

u(x, t) = U0e−αxej(ω(t−t0)−kx) (2)

with phase φ0 = −ωt0 and amplitude U0 at x = 0 and t = 0. The dispersion relation provides the
phase velocity c = ω/k and the Q-factor is derived from Q = ω/αc.
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There is a strong relation between the wave number k, the attenuation coefficient α, the elastic
modulus S and the damping parameter λ. Indeed, substituting the solution (Equation (2)) into the
wave equation (Equation (1)), one can derive the following expressions:

S =
ρω2

(k2 − α2)
(3)

λ = −2αkS
ω

(4)

The solution remains valid also in the presence of different attenuation mechanisms described
by different terms in Equation (1), but a different relation between the damping parameter λ and the
attenuation coefficient α is expected in this case. Furthermore, as discussed below, the equation and
solutions remain approximately valid also in the case of weakly nonlinear media, in which only small
distortions of the signal are detected. In this case, the effective modulus and damping play the same
role as S and λ, averaging over a period and over the propagation path.

Taking into account a finite medium of length L with free-free boundary conditions, the analytical
solution in x = L can be derived considering the solution as the superposition of multiple reflections:

u+(x, t) =
∞

∑
n=1

U0ej(ωt−k(2(n−1)L+x))+φ0 e−α(2(n−1)L+x)

u−(x, t) =
∞

∑
n=1

U0ej(ωt−k(2nL−x))+φ0 e−α(2nL−x) (5)

u(x, t) = u+(x, t) + u−(x, t)

The solution in (x = L) is still a sinusoidal monochromatic wave, but with different amplitude A
and phase φ:

u(L, t) = Aej(ω(t−t0)+φ)

= Aej(ωt+Φ) (6)

where their analytical expressions are

A =
U0√

cosh2(αL)− cos2(kL)
(7)

φ = − arctan
tan(kL)

tanh(αL)
(8)

It is useful to recall that U0 and φ0 are the amplitude and phase of the solution at x = 0 (see
Equation (2)).

2.1.2. Inversion: Dispersion Relation and Attenuation Coefficient

The analytical derivation of Equations (7) and (8) can be exploited to extract velocity c and
attenuation coefficient α from experimental data. To do this, let us consider to excite a 1D sample,
at x = 0, with a sinusoidal wave of frequency ω. The output signal at x = L is recorded and its
amplitude A and phase Φ = φ + φ0 (with φ0 = −ωt0) can be derived by fitting experimental data with
a cosine function. Furthermore, by using a suitable calibration of the experiment, U0 and φ0 = −ωt0

can be also derived. Hence, the phase φ = Φ− φ0 can be measured.
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Inverting Equations (7) and (8), the analytical expressions of the physical quantities velocity c and
attenuation coefficient α can be derived:

c = ω/k =
ω

1
L
(
πn± atan

√
z

2 cos2(φ)

) (9)

α =
1
L

atanh

√
z

2 sin2(φ)
(10)

where the sign is positive if φ + φ0 > 0, n is the order of the closest mode to ω and

z = −(A/U0)
2 − cos(2φ) +

√
1 + (A/U0)4 + 2 cos(2φ)(A/U0)2 (11)

2.2. Numerical Solutions

2.2.1. Numerical Approach

In order to investigate the influence of the physical and experimental constraints on the analysis,
the discussed approach was applied to synthetic data. In this way, the efficiency and robustness of
the proposed procedure may be quantified by comparing the results of the analysis with the known
theoretically expected values, i.e. the input parameters of the simulation.

Numerical data were obtained simulating, with a finite difference spring-model approach [48],
the propagation of elastic waves in classical nonlinear media, described by the classical wave equation
Equation (1). Details about the numerical solutions could be found in Ref. [46,48]. For the sake of
simplicity, the nonlinear contributions due to hysteresis were not considered.

The following expansions of the linear parameters as a function of the strain tensor were
considered:

S = S0

(
1 + δSε2 + γSε4

)
λ = λ0

(
1 + δλε2 + γλε4

)
(12)

where S0 and λ0 are the linear (at low amplitude of excitation) values of modulus and damping,
respectively. ε = ∂u/∂x is the strain and u(x, t) is the displacement (dependent on time t and space x).
For the simulations, a 1D sample 10 cm long, with S0 = 72 GPa, λ0 = 6.48 102 s−1 and density ρ = 2700
kg/m3 was considered, unless otherwise specified. The values of the nonlinear parameters δS, γS and
δλ were changed in the different simulations and are reported in the table of Figure 1. Notice that γλ

was set equal to zero for all simulations. Indeed, quartic nonlinear terms are usually negligible in real
materials for both modulus and damping. Here, a non-negligible quartic nonlinearity on the elastic
modulus was considered only for the sake of demonstrating that the MoDaNE approach is capable of
capturing different power law behaviours in the velocity/attenuation vs. strain dependence.
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Figure 1. Table of the nonlinear parameters used, for each different case, in the numerical simulations.

2.2.2. Estimation of Nonlinear Parameters on Velocity and Attenuation

From Equations (3) and (4), it is possible to derive the expressions which evidence how
nonlinearities on modulus and damping may determine nonlinearities on velocity and attenuation:

c =

√
S
ρ

2
(1 + λ2/(ρ2ω2))

α =
cλ

2S
(13)

It follows that nonlinearity on velocity c is due to both nonlinearities on modulus S and damping
λ, and similarly for what concerns nonlinearity on attenuation α.

Normally, in the literature, it is assumed that nonlinearities on c and α are decoupled, in the sense
that, assuming small λ and small nonlinearity on S, we have:

∆c
c0

=
1
2

∆S
S0

∆α

α0
=

∆λ

λ0
(14)

However, as we shown here, this is not always the case, since Equation (13) provides a more
complex relation. Substituting the Taylor expansion for S and λ, in principle the nonlinear dependence
of c and α could be derived with a Taylor expansion for small strains:

c = c0

(
1 + δcε2 + γcε4

)
α = α0

(
1 + δαε2 + γαε4

)
(15)

The analytical solution is very cumbersome and it is not reported here.
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A simpler procedure to estimate the coupling between modulus/damping and
velocity/attenuation nonlinearities can be adopted. For given values of modulus/damping
nonlinear parameters, c and α can be derived using Equation (13) and plotted vs. strain. The resulting
curves are fit with a polynomial function to derive numerically the coefficients of Equation (15).
An example of derivation is shown in Figure 2.

Results of the calculation for the various cases analysed in the following are reported in the last
two columns of the table in Figure 1. We recall that in the cases considered in this paper we always
have γα ≈ 0, since the input nonlinear parameter γλ was always set equal to zero. Results indicate that
neglecting, as often done, the effects of damping nonlinearity on velocity nonlinearity is not always
correct, while even more critical is neglecting modulus nonlinearity effects on attenuation coefficient
nonlinearity. Indeed:

• For Cases 1 and 2, δc = 0.5 δS. In Case 3, the relationship between δc and δS given by Equation (14)
is still approximately valid, being the effect of δλ on δc about 1% only.

• In all cases, the effect of modulus nonlinearity δS on attenuation nonlinearity δα is more significant
(more than 3% in Case 3). Therefore, the assumption ∆λ/λ0 = ∆α/α0 is not accurate. The effect
increases when increasing the modulus nonlinear parameter.

• In the case of materials with high damping, Cases C and D, a significant effect of damping
nonlinearity δλ on velocity nonlinearity is found and ∆c/c0 6= 0.5 ∆S/S0.

0 1 2 3 4

Strain 10-5

-0.04

-0.02

0

S
 / 

S
0

S = -107; S = 0

S = -107; S = -1016

0 1 2 3 4

Strain 10-5

0

0.2

0.4

0.6

 / 
0

 = 3.39 108

 = 3.39 108

0 1 2 3 4

Strain 10-5

-0.02

-0.01

0

c 
/ c

0

c = -5.04 106 ; c  0

c = -5.05 106 ; c = -5.07 1015

Fitting function
Fitting function

0 1 2 3 4

Strain 10-5

0

0.2

0.4

0.6

 / 
0

 = 3.51 108

 = 3.51 108

Fitting function
Fitting function

Figure 2. Derivation of the nonlinear parameters for velocity and attenuation, once given the nonlinear
parameters for modulus and damping, for Cases 3 (cyan circles) and 4 (red circles). The nonlinear
dependence on strain of S and λ is shown in the upper row. The derived values (using Equation (13))
of c and α are plotted vs. strain in the lower row. Solid line corresponds to the best fitting obtained
using a fourth-order polynomial of the curves, from which the nonlinear parameters for c and α are
derived using Equation (15).
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2.2.3. Numerical Analysis

Several simulations were performed varying the input parameters describing the nonlinearity:
δS, γS and δλ. For each simulation, the excitation source (simulating a PZT transducer) was chosen as a
monochromatic forcing applied in x = 0:

F(0, t) = Bi cos(ωt) (16)

with varying amplitude Bi and frequency ω. Frequency was chosen close to the first linear resonance
mode: ω = 25.82 kHz. The corresponding output signals ui(t) were recorded in x = L, as required
by the proposed approach and as done in experiments (using a PZT receiving transducer or laser
vibrometer). To simulate noise, a white noise ni(t) was added to the detected signals, with amplitude
corresponding to 5% of the amplitude of the signal detected at the lowest amplitude of excitation (u1(t)),
corresponding to the order of magnitude of the signal-to-noise ratio usually observed in experiments.

The numerical results were treated using the Modulus and Damping Nonlinearities Evaluation
method (MoDaNE), previously discussed in this section, in order to derive the dependence of
attenuation and velocity on amplitude from the recorded signals. To validate the approach, our
aim was:

• to verify the capability of the approach to separate nonlinearity in α and c, comparing Cases 1, 2
and 3;

• validate the possibility to reproduce qualitatively the expected functional dependences (quadratic
or quartic plus quadratic) of c and α on strain: comparison of Cases 3 and 4;

• verify that the approach allows to detect the effects of S/λ nonlinearities on c/α nonlinearities:
Cases 3 and C; and

• verify that, at least in some circumstances as shown below, the approach allows quantifying
correctly the nonlinear parameters δc, γc and δ′α: Cases 3, 5 and 6.

3. Validation

3.1. Feasibility of the Separation of Modulus and Damping Contributions

Understanding the functional dependence of c and α on strain is a first goal of the analysis of
nonlinear elasticity in complex media, since it allows observing differences for different materials.
As discussed above, nonlinearities in velocity are normally associated to modulus nonlinearities,
while nonlinearities in attenuation coefficient are associated to damping nonlinearities.

However, as we have shown, some corrections must be considered and this could be important in
particular cases, e.g., for strongly attenuative media. Here, we focus on validating the capability of the
method to separate correctly the two kind of nonlinearities.

3.1.1. Low Linear Damping

When damping is low (high Q-factor materials), Equation (13) and table reported in Figure 1
suggest that the velocity dependence on amplitude is due only to the modulus nonlinearity (being
the damping contribution to velocity very small). Furthermore, if damping nonlinearity is strong,
contribution of modulus nonlinearity to the amplitude dependence of attenuation coefficient is slightly
more significant but still almost negligible.

To validate our approach under these conditions, numerical simulations were performed for the
four combinations of nonlinear parameters reported in Figure 1. More specifically, we consider here a
quadratic nonlinearity for damping parameter (Case 1), quadratic nonlinearity for elastic modulus
(Case 2), quadratic nonlinearity in both modulus and damping (Case 3) and quartic and quadratic
nonlinearity in modulus and quadratic nonlinearity in damping (Case 4).
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Results of the analysis of the data are reported in Figure 3, where the relative variations of velocity
and attenuation coefficient (respect to their corresponding linear values) are reported vs. amplitude A.
The analysis of the data demonstrates that:

• The method allows separation of modulus and damping contributions. Indeed, in Cases 1 and
2, in which only one physical parameter is nonlinear (either S or λ), only the corresponding
measurable quantity (either c or α) manifests nonlinearity.

• The method allows determining accurately the functional dependence on A of velocity and
attenuation coefficient relative variations. Curves were fitted with a polynomial function in
the form:

y = q1 A2 + q2 A4 (17)

While in Cases 1, 2 and 3 the fitting coefficient q2 was negligible (for the velocity dependence on
A), in Case 4 the coefficient plays a crucial role (more details in comments on Figure 4).

• In this analysis, there is no quantitative prediction of the nonlinear parameters. Indeed, numerical
solutions were based on a dependence of velocity and attenuation on strain, and not on
displacement amplitude. Hence, as expected, the fitting coefficients q1 and q2, both for the
relative variations of velocity and attenuation, do not correspond to the nonlinear parameters
used as input in the numerical code. A quantitative analysis, which is discussed in Section 3.2, is
possible but it implies further considerations.

0 1 2 3
A [m] 10-6

0

5

10

15

- 
c 

/ c
0

10-3

Case 1
Case 2
Case 3
Case 4

0 1 2 3
A [m] 10-6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 / 
0

Figure 3. Validation of the method: behaviour of ∆c/c0 and ∆α/α0 vs. displacement amplitude for
different input values of nonlinear parameters, as shown in Figure 1. Solid lines correspond to the
best fit obtained using the function defined in Equation (17). The same colours were used in the two
subplots and are related to the cases reported in the legend.
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3.1.2. Estimation of the Relative Weight of Nonlinearities

As discussed in the previous subsection, the method was proven to be efficient in qualitatively
identifying the functional dependence of c and α on strain. This is useful to support the development
of physical models, aiming to describe nonlinearity. Furthermore, this approach in principle
allows comparing nonlinearities in different media studied experimentally in the same conditions,
with obvious implications for materials characterisation and particularly for quantitative non
destructive testing.

To demonstrate the feasibility of such analysis, we demonstrate here the proportionality between
the true nonlinear parameters (input of simulations) and the corresponding nonlinear coefficients
of the fitting of Equation (17). To this purpose, velocity and attenuation coefficient variations vs.
amplitude A are plotted, in log-log scale, in Figure 4 for different cases.

10-6

A [m]

10-4

10-3

10-2

- 
c 

/ c
0

Case 3
Case 4
Case 5
Case 6

10-6

A [m]

10-2

10-1

 / 
0

Figure 4. Comparison of results for increasing nonlinear coefficients δS, γS and δλ, as shown in Table 1.
Plots of ∆c/c0 and ∆α/α0 vs. amplitude A, in log-log scale. Solid lines correspond to the best fitting
obtained using the function defined in Equation (17). The same colours were used in the two subplots
and are related to the cases reported in the legend.

Results reported in Figure 4 show that:

• The curves are straight lines with slope 2 (we recall that the slope in log-log scale of a power
law function corresponds to the power law exponent), except for velocity in Case 4. Indeed,
in this case, the modulus dependence on strain is not a power law (see also Equation (12)). It is
important to observe that in this case the power law quadratic dependence of damping is still well
reconstructed by the analysis.

• Cases 5 and 6 differ from Case 3 only because the nonlinear parameters are scaled: δS → kδS and
δλ → kδλ. In both cases, the slope of the curves describing c and α vs. amplitude remains 2 (as
expected). Furthermore, the vertical shift of the curves of a quantity ∆ with respect to that of Case 3
preserves the proportionality with respect to the theoretical nonlinear coefficients. Indeed, results
of the fit show that for each of the two cases ∆ ≈ 20log10(k). Therefore, monitoring nonlinearity
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evolution as a function of time, in samples subjected to progressive damage, is feasible with the
proposed approach.

3.1.3. High Linear Damping

As mentioned, Equation (3) suggests that nonlinearity of the damping parameter λ has influence
on nonlinearity in velocity c. Normally, the damping contribution to velocity is negligible, but this is
no longer true when λ0 is large. Here, the goal is to prove that the approach proposed in this paper
can also deal with such extreme cases.

To this purpose, we compare the results of Figure 3 (obtained when linear damping is low:
λ0 = 6.48 102 s−1), with those obtained in the case of high linear damping (λ0 = 3.24 103 s−1), reported
in Figure 5. Details on nonlinear parameters used in simulations for all the cases, are reported in the
table of Figure 1. Note that in Case B only the modulus was chosen to be nonlinear (δS 6= 0, δλ = 0)
and its nonlinearity is supposed to have a small effect on attenuation nonlinearity; in Case C only the
damping was chosen to be nonlinear (δS = 0, δλ 6= 0) and its nonlinearity is supposed to have a small
but identifiable effect on velocity nonlinearity.

0 1 2 3
A [m] 10-4

-2

0

2

4

6

8

10

12

14

- 
c 

/ c
0

10-3

Case A
Case B
Case C
Case D

0 1 2 3
A [m] 10-4

-0.05

0

0.05

0.1

0.15

0.2

0.25

 / 
0

Figure 5. Effects of damping nonlinearity on velocity in the case of strong linear damping: behaviour
of ∆c/c0 and ∆α/α0 vs. amplitude A for different nonlinear conditions. The same colours were used in
the two subplots and are related to the cases reported in the legend.

Hence, it is possible to note that:

• Case A: As expected, in the linear case, there are no variations on both velocity and
attenuation coefficient.

• Cases B and D: In both cases, nonlinearity in c (Case B) or both in c and α (Case D) are observed,
as expected. For attenuation coefficients with respect to the expected behaviour for the two cases,
this is not the case for the estimated velocity nonlinearity, even though the nonlinear modulus
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parameters are the same for the two cases. The slight difference (appreciable for high strain levels)
is due to the small damping contribution to velocity nonlinearity when damping is strong.

• Case C: In this case, the effects of damping nonlinearity on velocity are more easily appreciated.
In fact, the imposed quadratic nonlinearity on damping induces nonlinearity on attenuation
coefficient as well as on velocity (green circles).

3.1.4. Hysteresis

Finally, the MoDaNE approach in presence of hysteretic nonlinearity was also validated. In this
case, as a consequence of memory effects, the material parameters at a given amplitude of excitation
depend not only on the actual nonlinearity, but also on the previous stress history. It follows that a
hysteretic loop is observed when considering the dependence of velocity (and attenuation) on strain
applying a protocol with increasing and then decreasing amplitudes of excitation [15].

To prove the capability of the MoDaNE approach in separating velocity and attenuation
nonlinearities also in the presence of hysteresis, numerical simulations were performed using a
phenomenological model. The model, described in [49] and validated in [46,50], is based on a
Preisach–Maiergoytz approach in which hysteresis in modulus and damping are linked together.
Results of the analysis of the numerical data are reported in Figure 6 and allow observing that the
MoDaNE approach is sensitive to memory effects.
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Figure 6. Validation of the method: behaviour of ∆c/c0 and ∆α/α0 vs. displacement amplitude
for hysteretic nonlinearity. Arrows indicate branches for increasing and decreasing amplitudes
of excitation.

3.2. Quantitative Behaviour

As discussed in Section 3.1, the parameters derived by fitting the curves of the relative variations
of velocity and attenuation vs. amplitude do not correspond to those theoretically expected. This is
not surprising, since S and λ (and hence c and α) are defined as a function of strain. In addition,
detected signals (both numerically and experimentally obtained) are resulting from waves travelling
in space and time and are analysed using a long time window (a few cycles of the signals). Hence,
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the nonlinear signature contained in the signal is the result of averaging nonlinearities over space and
time. Equivalently, it is feasible asserting that for each amplitude A, the signals are influenced by an
averaged strain.

Thus, a comparison of the theoretical values of the nonlinear parameters (δth
c , γth

c and δth
α , i.e., the

input parameters of the simulations derived in the table of Figure 1) and the coefficients of the
polynomial fitting of the curves obtained from the analysis of numerical data of curves reported in
Figure 3 (δ f it

c , γ
f it
c and δ

f it
α ), must be carefully performed. Indeed, we could expect that:

cth = c0

(
1 + δth

c ε2 + γth
c ε4

)
cmeasured = c0

(
1 + δ

f it
c < ε2 > +γ

f it
c < ε4 >

)
(18)

and similarly for α. In Equation (18), the symbols “ <>′′ represent the average over space (between 0
and the sample length L) and time (between 0 and one period T).

Furthermore, as shown in Appendix C, averaged quadratic and quartic strains are proportional
to the amplitude A of the displacement at x = L (hence, the preservation of proportionality discussed
before). Therefore,

< ε2(x, t) >= K2
1 A2

< ε4(x, t) >= K4
2 A4 (19)

where K1 6= K2 and both could be analytically calculated and depend on S0, λ0 (connected to c0 and α0

as discussed previously) and L, as shown in Appendix C. It follows that

cmeasured = c0

(
1 + δ

f it
c K2

1 A2 + γ
f it
c K4

2 A4
)

αmeasured = α0

(
1 + δ

f it
α K2

1 A2
)

(20)

Thus, when fitting the measured curves (e.g., those in Figure 3) with a polynomial function,

∆cmeasured/c0 = q1 A2 + q2 A4

∆αmeasured/α0 = r1 A2

(21)

we obtain the estimated nonlinear parameters as:

δ
f it
c = q1/K2

1

γ
f it
c = q2/K2

2

δ
f it
α = r1/K2

1 (22)

Calculations were performed and results are shown in Table 1 for the data reported in Figure 3.
We obtain an excellent agreement between measured nonlinear parameters with those theoretically
expected in Cases 1, 2 and 3. The efficiency of the approach in detecting accurately effects of
nonlinearities in modulus/damping on nonlinearities in velocity/attenuation (Case 3) is remarkable.

The estimation of nonlinear parameters of velocity is poorer when the dependence of the nonlinear
parameter is a combination of two power laws (quadratic and quartic). We have a reasonable (at least
as far as the order of magnitude is concerned) estimation of both quadratic and quartic nonlinear
parameters, but the error increases to about 15–20%. This is probably due to the fact that the hypothesis
of Equation (18) is no longer valid. The estimated parameters for attenuation are still well predicted.
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Table 1. Theoretical nonlinear parameters (input of the simulations) and derived nonlinear parameters
obtained as described in the main text: Equation (22). We analysed the data shown in Figure 3.

NL Case 1 Case 2 Case 3 Case 4

δc
δth

c −5.00 × 106 0 −5.05 × 106 −5.06 × 106

δ
f it
c −5.01 × 106 ≈ 0 −5.07 × 106 −4.23 × 106

γc
γth

c 0 0 0 −5.07 × 1015

γ
f it
c ≈ 0 ≈ 0 ≈ 0 −6.31 × 1015

δα
δth

α 0 3.39 × 108 3.51 × 108 3.51 × 108

δ
f it
α ≈ 0 3.38 × 108 3.56 × 108 3.54 × 108

In conclusion, quantification of the nonlinear parameters is thus satisfactory, with small errors
when nonlinearity (either in modulus or damping) is a power law function of strain (Cases 1–3).
In more complex situations, errors could be larger and perhaps alternative approaches should be
identified (work in progress).

4. Efficiency and Robustness of the Approach

Besides having verified the efficiency of the approach, the robustness of the procedure is studied
here, also in view of a possible optimisation. In this section, simulations were performed considering
the values of the nonlinear parameters used in simulations for Case 3 in the table of Figure 1,
i.e., quadratic nonlinearity for both S and λ.

4.1. Frequency Dependence

Robustness of the approach was tested by first verifying that results are independent from the
choice of the testing frequency. To this purpose, quadratic nonlinearity on both S and λ were considered
and the procedure was applied varying the frequency of the excitation around the first resonance
mode. The linear resonance frequency was at ω = ωr = 25.82 kHz. Plots in Figure 7 report velocity
and attenuation variations as a function of the averaged quadratic strain, as defined in Equation (19).

The results show that both amplitudes and phases vary with different functional dependences on
the averaged quadratic strain. This is expected as a result of the shift of the resonance frequency which
could give an apparent increase in amplitude, even though damping is increasing. On the contrary,
variations of velocity and attenuation coefficient, calculated using the proposed method, result to be
frequency independent.

4.2. Dependence on Calibration Errors

One of the major sources of possible errors in the proposed approach is related to the numerical
calibration procedure. In Figure 8, the effects of errors on the calibration parameters U0 and φ0

(indicated with wU0 and wφ0 , respectively) in the estimation of quadratic nonlinear parameters are
shown. Here, the relative errors in velocity and attenuation coefficient are plotted, obtained from the
analysis of the simulation data with respect to those theoretically expected, in the case of quadratic
nonlinearities imposed both on modulus and damping.

The error in the quantitative determination of the nonlinear parameters increases roughly
proportionally to the errors in the calibration procedure. It is interesting to note that errors in the
calibration amplitude U0 have negligible influence on the attenuation coefficient (Figure 8d). On the
contrary the estimation of the attenuation nonlinear parameter δα is extremely sensitive to errors in the
calibration phase φ0 (Figure 8b). Instead, the influence of errors on U0 and φ0 in the estimation of the
velocity nonlinear quadratic parameter δc is of the same order of magnitude.

It is worth pointing out here that in experiments calibration of the phase is always very accurate,
thus errors induced by calibration could be confined to a range of few per cent. Concluding this section,
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it is also notable to highlight that errors in the calibration do not affect at all the determination of the
functional dependence of velocity and attenuation coefficient on strain.
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Figure 7. Results of the analysis in the case of quadratic nonlinearities S and λ, varying frequencies
of the source: (a,b) amplitudes and phases of the signals vary in different ways depending on the
source frequency; and (c,d) ∆c/c0 and ∆α/α0 calculated with the MoDaNE approach, are frequency
independent as theoretically expected for the simulations performed.
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Figure 8. Influence of the calibration errors in the quantification of quadratic nonlinearity parameters.
Plots of variations of the nonlinear parameters δc and δα, respect to their theoretical values: (a,b)
varying the calibration error wU0 on U0; (c,d) varying the calibration error wφ0 on φ0.
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4.3. Dependence on Signal Distortions

The proposed procedure is based on fitting experimental data with a sinusoidal function.
The presence of nonlinearity induces distortions of the signals from the pure cosine wave behavior,
e.g., due to the appearance of higher order harmonics. In general, being nonlinearity weak, distortions
are negligible and the approach is expected to work well.

However, for strong nonlinearities (or large amplitudes), the proposed procedure might no longer
be correct. The problem was analysed and results are presented in Figure 9. Simulations were carried
out varying the nonlinear parameter δS (keeping fixed the nonlinear parameter on damping δλ) and
the relative error in the estimate of the nonlinear parameters of velocity δc and attenuation δα are
calculated as a function of the distortions of the signal. The latter are estimated as the ratio of generated
third harmonic amplitude over fundamental harmonic amplitude.
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Figure 9. Relative errors in the estimation of the nonlinear parameters for increasing modulus
nonlinearity. The signal distortion, defined as the ratio between third harmonic and fundamental
amplitudes, increases with increasing nonlinearity. Arrows in the plot indicate the result corresponding
to Case 3 of Figure 3.

As expected, increasing the nonlinear parameters corresponds to increasing distortions of the
signal and the estimation obtained from our method becomes poorer and poorer. However, in particular
for the velocity nonlinearity (Figure 9, left), the accuracy remains excellent up to a few per cent of
distortion, which is high if compared to nonlinearity observed in the cases of interest.

5. Experimental Validation

To show an actual implementation of MoDaNE approach and its ability to discriminate between
different nonlinearities in different media, a few experimental results are presented in this section.
The characteristics of the investigated samples are the following:

• The concrete sample (B06) was in the shape of a cylinder (4 cm diameter and 16 cm length),
and was drilled from a casting prepared with 340 kg of cement (CEM II A-L 42.5 R), 957 kg of sand
(0–5 mm), 846 kg of gravel (5–15 mm) and 200 kg of water (w/c ratio ≈ 0.59).



Appl. Sci. 2019, xx, 5 16 of 21

• The Berea sandstone sample was a thin cylinder with a diameter of 1 cm and 15 cm long. The size
of the grains in this sample is of the order of tens of micrometers.

• The two linear samples (PMMA and copper) were in the shape of cylinders (section of 2.25 cm2

and length of 14.5 cm). Both samples were intact.

The experiments were carried out as follows. A waveform generator (Tektronix AFG 3022B)
generating monochromatic waves at increasing amplitudes is connected to a linear amplifier (CIPRIAN
Model US-TXP-3, 200×). Two ultrasonic sensors with a diameter of 2.5 cm and a centre frequency at
55 kHz (MATEST C370-02) were connected one to the amplifier (source) and the other (receiver) to a
digital oscilloscope (Lecroy 324A) for data acquisition. The signals, recorded in a short time window
in standing wave conditions, are monochromatic waves and treated using the MoDaNE approach
described before. Furthermore, the linearity of the system (including transducers and coupling media)
was verified before starting the measurements.

In Figure 10, it is easy to observe that copper and PMMA behave linearly and no variation in c and
α is present increasing the amplitude of excitation. Differently, the other two samples (consolidated
granular media) exhibit high nonlinearity, both for relative variations of velocity and attenuation.
However, some differences, most probably due to very different grain structures, can be appreciated:
B06 shows a higher nonlinearity in the attenuation coefficient α with respect to Berea sandstone, while
the situation is the opposite when the variation of velocity c is considered for the two samples.

0 0.5 1 1.5 2
A [V]

-0.005

0

0.005

0.01

0.015

0.02

0.025

- 
c 

/ c
0

Berea
B06
Copper
PMMA

0 0.5 1 1.5 2
A [V]

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 / 
0

Figure 10. Experimental behaviour of ∆c/c0 and ∆α/α0 vs. amplitude, for the four investigated
samples. The same colours are used in the two subplots and are related to the samples reported in
the legend.

6. Conclusions

We discuss here the efficiency, robustness and limitations of an approach recently proposed [45]
and able to measure the nonlinearity in velocity and attenuation coefficient and separate their
contributions. This method, based on a semi-analytical solution of the problem valid for quasi
one-dimensional samples, is a faster and simpler alternative to standard approaches, such as
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nonlinear resonant ultrasound spectroscopy [51], nonlinear elastic wave spectroscopy [12] or Dynamic
AcoustoElastic Testing [52].

The optimisation and definition of the limits of the MoDaNE approach are discussed by using
the method to invert virtual data (resulting from numerical simulations). Different nonlinear cases
were investigated and results show that the method allows measuring independently nonlinearity in
velocity and attenuation coefficient and therefore to monitor their dependence on strain. The approach
is extremely efficient in determining the coupling between modulus/damping nonlinearities and
velocity/attenuation nonlinearities, which are normally neglected in other approaches. The robustness
of the approach in determining the functional dependence of velocity and attenuation on strain has
been demonstrated and the importance of a correct calibration has been quantified as well.

As far as quantification of nonlinear parameters is concerned, some approximations/hypothesis
have to be added. Since ultrasonic measurements, in which multiple reflections are present, detect
signals resulting from the superposition of waves travelling along different paths, the nonlinear
signature is intrinsically averaged over time and space. In the case of pure power law nonlinearities,
assuming measured velocities and attenuation to be dependent on averaged quadratic strains,
the discussed method provides an excellent approach to quantify correctly the nonlinear parameters.
In more complex situations, e.g., when the nonlinear dependence is not quadratic or when conditioning
is present [53], other approaches must be developed.

The work presented here opens interesting perspectives in the field of non-destructive testing and
characterisation of materials. Detection and correct quantification of elastic nonlinearity is indeed of
great importance in view of applications of the several results obtained in the laboratory and reported
in the literature. Furthermore, a method such as the one proposed and validated here allows easy and
fast measurements, providing information on both velocity and attenuation coefficient. Extracting
correctly from this information the corresponding physical nonlinear parameters (e.g., damaged-related
nonlinearity in modulus and damping) is fundamental in order to achieve a classification of materials
or damage types into classes exhibiting different nonlinear elastic responses.
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Appendix A. Displacement Solution

In the main text, the solution of the equation of motion is derived in terms of displacement and
the analytical form of the solution is given at x = L only. A general solution for each position x could
easily be derived, which allows obtaining the strain distribution in the sample.

Starting from Equation (6), the general expression for the superposition of multiple reflections is:

u(x, t) =
U0 ej[ω(t−t0)−kx] e−αx

1− e−(2jkL+2αL)
+

U0 ej[ω(t−t0)+kx] e+αx

1− e−(2jkL+2αL)
e−(2jkL+2αL) (A1)

Therefore,

u(x, t) = B ej[ω(t−t0)+φ1+φ2] (A2)
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with

B =
U0

√
cosh2(α(L− x))− sin2(k(L− x))√

cosh2(αL)− cos2(kL)

= A
√

cosh2(α(L− x))− sin2(k(L− x)) (A3)

φ1 = − arctan
tan(kL)

tanh(αL)

φ2 = arctan
tan(k(L− x)

coth(α(L− x))
(A4)

When x = L, we obtain again Equation (6).

Appendix B. Strain Solution

Starting from Equation (A2), the strain distribution in the sample could be obtained:

ε(x, t) =
∂u(x, t)

∂x
= C ej[ω(t−t0)+φ1+φ3] (A5)

where

C = A
√
(k2 + α2) [cosh2(α(L− x))− cos2(k(L− x))] (A6)

and

φ3 = − arctan
a + b
c− d

(A7)

In the above equations, we define:

a = k cos(k(L− x)) sinh(α(L− x))

b = α sin(k(L− x)) cosh(α(L− x))

c = k sin(k(L− x)) cosh(α(L− x))

d = α cos(k(L− x)) sinh(α(L− x)) (A8)

Appendix C. Proportionality between Spatial and Temporal Averaged Strain and
Output Amplitude

As discussed in the main text, averaged quadratic and quartic strains (over a single period
T and over the length L of the sample) are proportional to a certain power of the amplitude A of
the displacement at x = L. The proportionality constant is reported here. The derivation takes
advantage of the possibility to separate integration over space and over time. Detailed calculations are
straightforward and are omitted here for brevity.

To derive the expression of the averaged quadratic strain, we take into account the square of the
real part of Equation (A5). Therefore,

< ε2(x, t) >= K1 A2

=
k2 + α2

8L

(
sinh(2αL)

α
− sin(2kL)

k

)
A2 (A9)
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In a similar way, the expression for the averaged quartic strain can also be derived:

< ε4(x, t) >= K2 A4

=
3(k2 + α2)2

64L

[
− 3L

4
+

sin(4kL) + 32 sin(2kL)
16k

+

− 3
16α

(
8 sinh(2αL) + sinh(4αL)

)
+

− 1
α + 2k

(
sinh(2αL) + cos(4kL)+

+
k
α

cosh(2αL) sin(4kL)
)
+

− 1
16(α + k)

(
sinh(4αL) + cos(4kL)+

+
k
α

cosh(4kL) sin(4kL)
)]

A4 (A10)
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