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Abstract: Dynamical transitions, already found in the high- and low-density phases of the Totally
Asymmetric Simple Exclusion Process and a couple of its generalizations, are singularities in the
rate of relaxation towards the Non-Equilibrium Stationary State (NESS), which do not correspond
to any transition in the NESS itself. We investigate dynamical transitions in the one-dimensional
Katz–Lebowitz–Spohn model, a further generalization of the Totally Asymmetric Simple Exclusion
Process where the hopping rate depends on the occupation state of the 2 nodes adjacent to the nodes
affected by the hop. Following previous work, we choose Glauber rates and bulk-adapted boundary
conditions. In particular, we consider a value of the repulsion which parameterizes the Glauber
rates such that the fundamental diagram of the model exhibits 2 maxima and a minimum, and the
NESS phase diagram is especially rich. We provide evidence, based on pair approximation, domain
wall theory and exact finite size results, that dynamical transitions also occur in the one-dimensional
Katz–Lebowitz–Spohn model, and discuss 2 new phenomena which are peculiar to this model.

Keywords: driven diffusive systems; totally asymmetric simple exclusion process; dynamical transition

1. Introduction

The Totally Asymmetric Simple Exclusion Process (TASEP, see References [1,2] for recent reviews),
originally inspired by biological traffic problems [3,4], has now gained a prominent role in non-equilibrium
statistical physics, becoming a paradigmatic minimal model, with a status analogous to that of the Ising
model in equilibrium statistical physics. It can be simply generalized by including additional processes
and/or interactions, obtaining models with a small number of parameters that exhibit rich stationary state
phase diagrams, as generalized Ising models do in the equilibrium case.

The TASEP is defined on a one-dimensional lattice, whose nodes can be empty or occupied by one
particle. Particles can hop only in one direction and the physics depends strongly on the boundary
conditions. The most interesting situation is obtained with open boundary conditions [5], when the lattice
is connected to particle reservoirs at both ends. The non-equilibrium stationary state (NESS) of the model
is then determined by the particle densities of the boundary reservoirs.

Exact results are available for the NESS phase diagram [6–9], which can be rationalized in terms of the
so-called theory of boundary-induced phase transitions [10], based on certain maximum and minimum
current principles. It was observed [11–13] that, in order for this theory to be applicable to models with
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certain additional interactions, a specific choice of the coupling between the system and the boundary
reservoirs must be made.

More recently, on the basis of exact results [14–16] on relaxation towards the NESS, a dynamical
transition has been identified in the TASEP, that is a singularity in the relaxation rate which does not
correspond to any NESS phase transition. The existence of this dynamical transition has also been observed
in numerical investigations based on the density matrix renormalization group [17], although a physical
interpretation has long been lacking. In the last few years, two of us contributed to showing [18–20] that
this dynamical transition can be at least qualitatively predicted by suitable mean-field-like approaches and
is also exhibited by certain models (for which exact results are not available) which generalize the TASEP
by including additional processes or interactions, namely the TASEP with Langmuir kinetics [21,22] and
the Antal–Schütz (AS) model [11].

The picture which seems to emerge is that, in those NESS phases where the bulk density is determined
by one of the boundary reservoirs—that is, the so-called low-density (LD) and high-density (HD)
phases—two phases can be identified on the basis of the behaviour of the relaxation rate. In one phase,
dubbed slow in Reference [19] and typically located near a coexistence line (where the rate vanishes) in the
NESS phase diagram, the relaxation rate depends on both reservoir densities. In the other phase, dubbed
fast in Reference [19] and located away from coexistence lines, the relaxation rate depends only on the bulk
density, that is, on just one reservoir density. A natural interpretation is that in the fast phase the slowest
relaxation mode is a bulk one, while in the slow phase it is determined by the boundary.

Here we address the question of the existence of a dynamical transition in a one-dimensional (1D)
version [12,13] of the Katz–Lebowitz–Spohn (KLS) model [23]. This 1D KLS model is more general than
the AS model, since here the hopping rate between nodes i and i + 1 depends on the states of both nodes
i − 1 and i + 2 (in the AS model there is no dependence on node i − 1). It also exhibits a richer NESS
phase diagram, due to the appearance, for certain values of the model parameters, of 2 maxima in the bulk
current-density relation (the fundamental diagram, as it is called in the traffic literature). As a consequence,
a richer pattern of dynamical transitions can be expected.

The NESS phase diagram of the 1D KLS model with Glauber hopping rates has been determined in
References [12,13] using a Markov chain approach to kinetics (MCAK), kinetic Monte Carlo (KMC) and the
theory of boundary-induced phase transitions. A rich phase diagram has been obtained, which depends
strongly on the choice of boundary conditions. Among the possible choices, the so-called bulk-adapted
boundary conditions, or bulk-adapted coupling between system and reservoirs, play a special role, making
the theory of boundary-induced phase transitions applicable.

In the present work we look for dynamical transitions in the 1D KLS model with Glauber hopping
rates and bulk-adapted boundary conditions, using three different methods: the pair approximation (PA),
a modified domain wall theory (mDWT) and extrapolation of exact finite size results. The PA, that we have
already used in our study of the dynamical transitions in the AS model [19], is slightly more general than
the MCAK, and its use is justified by a property of the NESS of our model. Under particular conditions,
which are verified in the bulk in the large size limit, the NESS probability distribution is the equilibrium
Boltzmann distribution of a 1D Ising (or lattice gas) model with nearest-neighbour interactions [13]. This
makes the PA (and also the MCAK) exact for the NESS, and hence a good candidate, though no longer
exact, for the analysis of the relaxation towards the NESS. In the PA the probability distribution of the
system configuration is assumed to factor, at all times, into a product of its marginals, the largest marginal
involved being that of 2 nearest-neighbour nodes. In other words, the PA can be regarded as a truncation
of the entropy cumulant expansion, where the entropy cumulants beyond nearest–neighbours are assumed
to vanish. The mDWT is a simple heuristic approach introduced in Reference [16], which in the TASEP
case reproduces by construction the exact result for the relaxation rate and which we found useful in our
investigation of the AS model [19]. Finally, the extrapolation of exact finite size results was first used in
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Reference [24], with very accurate results which could have led to an early discovery of the dynamical
transition. Again, we found this technique useful in our study of the AS model [19].

2. Model and Methods

The 1D KLS model is defined on a linear chain of N nodes, labelled by i = 1, . . . , N. Each node can
be empty or occupied by a single particle. We introduce occupation number variables nt

i taking value 0
(respectively 1) if node i is empty (resp. occupied) at time t. A particle can hop in one direction only (say
rightward, or from node i to node i + 1), provided the destination node is empty. The hopping rate from
node i to node i + 1 depends on the configuration of the nodes i− 1 and i + 2 and will be denoted by
Γi,i+1(ni−1, ni+2). Following References [12,13] we shall use the Glauber rates

Γi,i+1(ni−1, ni+2) ≡ Γ(ni−1, ni+2) =
1

1 + exp[(ni+2 − ni−1)V]
. (1)

It can be shown [13] that, with this choice of the hopping rates the NESS probability distribution
in the bulk (e.g., in a model with periodic boundary conditions, with a given particle density which
will be independent of time) is the equilibrium Boltzmann distribution of a 1D lattice gas model with
repulsive (for V > 0) nearest-neighbour interaction V and thermal energy kBT = β−1 = 1, that is with a
dimensionless Hamiltonian

βH = V ∑
i

nini+1 − µ ∑
i

ni , (2)

where µ is a chemical potential, conjugate to the particle density, and the time index in the occupation
number variables has been dropped, since we are dealing with a steady state. A slightly more general
result actually holds [13]: the NESS is described by the above Hamiltonian if the hopping rates satisfy

Γ(0, 1) = e−VΓ(1, 0) , (3)

Γ(0, 1) + Γ(1, 0) = Γ(0, 0) + Γ(1, 1) . (4)

These conditions are clearly satisfied by the Glauber rates Equation (1), but other choices are possible,
for instance the AS model, where Γ(0, ni+2) = Γ(1, ni+2). It is important to stress here that the NESS
distribution does not satisfy detailed balance with respect to the dynamics of the 1D KLS model, so the
NESS is truly out of equilibrium.

The relationship between the bulk NESS and the 1D lattice gas has important consequences, since
the equilibrium distribution of a 1D lattice gas (or Ising) model factors in a simple way into a product of
local marginals, and the PA becomes exact [25]. In order to be more specific it is useful to introduce some
notation for marginal distributions and expectation values. In the following we will denote the marginal
distribution for a cluster of nodes starting at i, at time t, by

Pt
i [klm . . . ] ≡ P

{
nt

i = k , nt
i+1 = l , nt

i+2 = m , . . .
}

. (5)

We will also denote the local densities and correlations by

ρt
i ≡ Pt

i [1] = 〈nt
i〉 , (6)

φt
i ≡ Pt

i [11] = 〈nt
i n

t
i+1〉 , (7)
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respectively. In the NESS we will drop the time index (e.g., the local density will be ρi) and in a bulk NESS
we will also drop the position index (e.g., the bulk density will be ρ). The local densities and correlations
can be used to parameterize the 1-node and 2-node marginals as follows

Pt
i [1] = ρt

i , (8)

Pt
i [0] = 1− ρt

i , (9)

Pt
i [11] = φt

i , (10)

Pt
i [10] = ρt

i − φt
i , (11)

Pt
i [01] = ρt

i+1 − φt
i , (12)

Pt
i [00] = 1− ρt

i − ρt
i+1 + φt

i . (13)

The factorization property of the 1D lattice gas, and hence of a bulk NESS of our model, can now be
expressed by writing that k-node marginals (k ≥ 3) factor according to

Pi[nini+1 . . . ni+k−1] =
∏i+k−2

l=i Pl [nlnl+1]

∏i+k−2
l=i+1 Pl [nl ]

, (14)

that is into a product of 2-node and 1-node marginals (see e.g., Reference [25] for a derivation of this
property for an equilibrium 1D model with nearest-neighbour interactions, which includes the Hamiltonian
Equation (2)). The PA [18,19], as well as the MCAK [12,13] and related techniques [26–30], is based on the
assumption that the factorization Equation (14) holds at any time, and this explains why these techniques
can give exact results for a bulk NESS.

In terms of entropy, we can introduce 1-node and 2-node cluster entropies (in units such that kB = 1)

Si = − ∑
ni=0,1

Pi[ni] ln Pi[ni] , (15)

Si,i+1 = − ∑
ni=0,1

∑
ni+1=0,1

Pi[ni, ni+1] ln Pi[ni, ni+1] . (16)

Of course, cluster entropies can be defined analogously for clusters of any length. In particular, for a
k-node cluster, Equation (14) implies that

Si,...,i+k−1 =
i+k−2

∑
l=i

Sl,l+1 −
i+k−2

∑
l=i+1

Sl =
i+k−1

∑
l=i

Sl +
i+k−2

∑
l=i

S̃l,l+1 , (17)

where we have also introduced the 2-node entropy cumulants [25,31]

S̃l,l+1 = Sl,l+1 − Sl − Sl+1 . (18)

A simple consequence of Equation (17) is that the 3-node cumulants [25,31]

S̃l,l+1,l+2 = Sl,l+1,l+2 − Sl,l+1 − Sl+1,l+2 + Sl+1 , (19)

together with all the higher order ones, vanish in a bulk NESS of our model. Considering the PA (and
other techniques sharing the same factoring assumption), we can say that it approximates the kinetics by
neglecting 3-node (and higher order) entropy cumulants.
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Using the factorization Equation (14) we can write kinetic equations for 1-node and 2-node marginals,
that is for ρt

i and φt
i , at the PA level. Introducing the probability current

Jt
i = ∑

k,n=0,1
Pt

i−1[k10n] Γ(k, n) (20)

and marginalizing the full master equation of the model, one obtains

ρ̇t
i = Jt

i−1 − Jt
i = ∑

k,n=0,1
Pt

i−2[k10n]Γ(k, n)− ∑
k,n=0,1

Pt
i−1[k10n]Γ(k, n) , (21)

φ̇t
i = ∑

k=0,1
Pt

i−2[k101] Γ(k, 1)− ∑
n=0,1

Pt
i [110n] Γ(1, n) . (22)

The above equations, derived in the Appendix, are exact but not closed in that they depend on 4-node
marginals. The PA is indeed a possible closure scheme, using the factorization Equation (14) as an
approximation:

Pt
i [k10n] ∼=

Pt
i [k1] Pt

i+1[10] Pt
i+2[0n]

Pt
i+1[1] Pt

i+2[0]
. (23)

Before considering the kinetics according to the above equations, it is necessary to discuss bulk
solutions for the NESS in some detail, and then specify the boundary conditions. In order to find a bulk
NESS solution, that is a solution being invariant with respect to both time and position, we set ρt

i = ρ,
φt

i = φ, ρ̇t
i = φ̇t

i = 0 and drop all time and node indices in the marginals. From Equation (22) we obtain

P[1100]
P[0101]

=
Γ(0, 1)
Γ(1, 0)

, (24)

which in the PA becomes
P[11] P[00]

P[01]2
=

Γ(0, 1)
Γ(1, 0)

. (25)

In order to reduce the above equation to its simplest possible form we introduce the bulk correlator

η ≡ P[10]
P[1] P[0]

. (26)

We can then write the 1-node and 2-node marginals as

P[0] = 1− ρ , (27)

P[1] = ρ , (28)

P[10] = P[01] = ηρ(1− ρ) , (29)

P[00] = (1− ηρ) (1− ρ) , (30)

P[11] = [1− η(1− ρ)] ρ . (31)

Equation (25) can then be rewritten as

1
η2 −

1
η
+ ρ(1− ρ)

[
1− Γ(0, 1)

Γ(1, 0)

]
= 0 , (32)
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which establishes the relationship between ρ and η characterizing the bulk steady state, and in particular
it allows us to determine η as a function of ρ as

η(ρ) =
2

1 +
√

1− 4ρ(1− ρ) [1− Γ(0, 1)/Γ(1, 0)]
. (33)

We can now compute the bulk current from Equation (20). Using Equations (25)–(31) we obtain

J(ρ) = Γ(1, 0) {η(ρ) ρ(1− ρ) + [1− η(ρ)] (a + bρ)} , (34)

where we have also defined

a ≡ Γ(1, 0)− Γ(0, 0)
Γ(1, 0)− Γ(0, 1)

, b ≡ Γ(0, 0)− Γ(1, 1)
Γ(1, 0)− Γ(0, 1)

. (35)

With the Glauber rates Equation (1) we obtain a = 1/2 and b = 0 for the present model. Equation (34) can
also be used for the AS model, in which case one obtains a = 0 and b = 1. For pure TASEP instead one has
a = b = 0 and η = 1.

The bulk current-density relation (fundamental diagram) Equation (34) is illustrated in Figure 1 as a
function of both the repulsion V and the density ρ. It must be stressed that this result has already been
obtained in References [12,13] (using the MCAK), where the current was also shown to exhibit a single
maximum at density 1/2 for V < V∗ = 2 ln 3 and 2 maxima, symmetric with respect to a minimum at
density 1/2, for V > V∗.

Figure 1. Contour plot of the bulk current as a function of repulsion V and density ρ. Maxima with respect
to ρ are shown with full black lines. The vertical dashed line corresponds to V = 2V∗.

In the following we consider a system with open boundary conditions, coupled to 2 particle reservoirs,
characterized by particle densities ρL (the left reservoir) and ρR (the right one). Specifying the coupling
between the system and the reservoirs, that is the rates of particle injection from the left reservoir and
extraction to the right reservoir, is a delicate issue, and several choices are possible. We will use the
so-called bulk-adapted boundary conditions [11–13,26], which make the theory of boundary-induced
phase transitions applicable. These conditions can be defined in such a way that they would yield bulk
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NESS solutions in semi-infinite systems. In order to fix ideas, consider the left boundary: the injection
rate at node 1 will depend on the occupation of node 2. We would like to determine this injection rate in
such a way that a semi-infinite system with nodes i = 1, 2, . . ., coupled to a left reservoir of density ρL,
exhibits a bulk NESS of the type discussed above, with density ρL. This can be achieved if the left reservoir
is equivalent to another semi-infinite system (with nodes at i = 0,−1, . . .) whose NESS is a bulk one with
density ρL. Within this framework, the time evolution of our system, at the PA level, is still described by
Equations (21) (for i = 1, . . . , N) and (22) (for i = 1, . . . , N − 1), provided we define the 4-node marginals
Pt

i [k10n] pertaining sites “outside the system” (namely, for i = −1, 0, N − 2, N − 1) in a suitable way. In
particular, we have to generalize Equation (23) (which holds for i = 1, . . . , N − 3) to the following one

Pt
i [k10n] =

P̃t
i [k1] P̃t

i+1[10] P̃t
i+2[0n]

P̃t
i+1[1] P̃t

i+2[0]
, i = −1, . . . , N − 1, (36)

where we have defined

P̃t
i [mn] =


PL[mn] , i = −1, 0

Pt
i [mn] , i = 1, . . . , N − 1

PR[mn] , i = N, N + 1

, (37)

P̃t
i [n] =


PL[n] , i = 0, 1

Pt
i [n] , i = 2, . . . , N − 1

PR[n] , i = N, N + 1

, (38)

where in turn PL[·] and PR[·] denote the bulk probabilities (Equations (27)–(31), together with Equation (33))
evaluated for ρ = ρL and ρ = ρR, respectively. From the above equations one can derive those reported in
Reference [13] for the boundary rates, if Glauber rates are chosen according to Equation (1).

With the above choice for the coupling between system and reservoirs, the 1D KLS model is now fully
specified, and we can discuss how our methods, namely the PA, the mDWT and the extrapolation of finite
size results, can be applied to characterize the NESS and the relaxation towards it.

The PA is based on Equations (21) (for i = 1, . . . , N), (22) (for i = 1, . . . , N − 1) and (36) (for i =

−1, . . . , N − 1), which can be rewritten as a whole by introducing the (2N − 1)-component vector xt =

(ρt
1, φt

1, . . . , ρt
N−1, φt

N−1, ρt
N), as

ẋt = f (xt) . (39)

The NESS x = (ρ1, φ1, . . . , ρN−1, φN−1, ρN) will be given by the condition f (x) = 0, and relaxation near
the NESS will be described by the relaxation matrix M, with elements

Mab = − ∂ fa

∂xt
b

∣∣∣∣∣
xt=x

, a, b = 1, . . . , 2N − 1 . (40)

In particular, the smallest eigenvalue λ1 of M is the slowest relaxation rate, that is the inverse of the longest
relaxation time, which, for our investigation of the dynamical transition, is the quantity we are mainly
interested in. It is important to stress that the PA gives exact results for the bulk NESS solutions, but not
for the relaxation rate λ1. It is therefore important to obtain estimates of λ1 from independent techniques.
In this work we will use the mDWT and the extrapolation of exact finite size results, as we did in the case
of the AS model [19].
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The mDWT was proposed in Reference [16], on the basis of a comparison between the standard DWT
result for the relaxation rate of pure TASEP and the exact one. In the DWT, the relaxation rate is given by

λ1 =
(√

DR −
√

DL

)2
, (41)

where DL,R = J(ρL,R)/|ρR − ρL|. It turns out that the DWT result is exact in the slow phase of pure TASEP,
and the dynamical transition corresponds to a maximum of the DWT rate. In the mDWT, which is exact by
construction for pure TASEP, one takes the DWT result in the slow phase and the maximum rate in the fast
phase. Based on our study of the AS model [19], we do not expect the mDWT to remain exact for models
with interactions, but just to provide an independent qualitative confirmation of the PA results.

Finally, the third independent approach we will use to estimate the relaxation rate of our model will
be the extrapolation of finite size results, along the lines of References [24,32], where very accurate results
were obtained for pure TASEP. The smallest nonzero eigenvalue of the transition matrix of the full master
equation is numerically computed for a set of small N values, and the N → ∞ limit is then extrapolated
using the Bulirsch–Stoer (BST) algorithm [33,34]. The parameter ω, characterizing the leading term in the
expected size dependence, has been set at 2 (as in our study of the AS model [19]), based on the exactly
known finite-size behaviour of the relaxation rate for pure TASEP [14,16], after verifying numerically that
this value gives near-optimal results according to the criterion proposed in Reference [34].

3. Results

In the present section we compute the relaxation rate of the 1D KLS model with bulk-adapted
boundary conditions, for V = 2V∗ (that is, in the case of the dashed line in Figure 1), as a function of the
reservoir densities. We choose this particular value because in this case the NESS phase diagram, reported
for convenience in Figure 2, has already been determined in Reference [13] by means of extremal current
principles which turn out to be exact in the case of bulk-adapted boundary conditions. In Reference [13] it
has been shown indeed that, as far as the NESS is concerned, this case exhibits all relevant new features of
the model.
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ρ
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ρ
M20 1/2 1

ρ
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ρ
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ρ
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ρ
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L
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II (ρ = ρ
M1
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(ρ = ρ
M2
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V (ρ = ρ
R
)

IV (ρ = 1/2)

III (ρ = ρ
R
)

(ρ = ρ
L
)

VII

VI

Figure 2. Non-equilibrium stationary state (NESS) phase diagram of the 1D Katz–Lebowitz–Spohn (KLS)
model with V = 2V∗. Solid (respectively dashed) thick lines denote discontinuous (resp. continuous) phase
transitions. Solid thin lines are lines at constant ρR = 0.45, 0.75 and 0.98 in the high-density (HD) phases,
where we perform our dynamical analysis.

This NESS phase diagram exhibits 7 different phases and a symmetry with respect to the diagonal
ρL + ρR = 1 due to the particle–hole symmetry of the model. In the portion of the phase diagram
corresponding to each phase we report an identifier of the phase (I to VII) and the value of the bulk density.
This is indeed a quantity which characterizes the NESS because, in the thermodynamical limit N → ∞,
the local density tends to the bulk density over the whole lattice, except in boundary regions whose size
remains finite as N → ∞. Phases I and VI are LD phases, whose bulk density ρL is determined by the left
reservoir. Symmetrically, phases III and V are HD phases, whose bulk density ρR is determined by the
right reservoir. In addition, there are the 2 maximal current phases II and VII, whose bulk densities ρM1

and ρM2 correspond to the maxima of the fundamental diagram along the dashed line in Figure 1, and
the minimal current phase IV, whose bulk density 1/2 corresponds to a minimum in the fundamental
diagram. Among the various NESS transitions separating these phases, it is important to observe here that
LD and HD phases are always separated by discontinuous (in the bulk density) transitions, denoted by
solid lines in Figure 2. Exactly at these transitions, the 2 phases coexist.

In the following we will compute the relaxation rate λ1, using the PA, the mDWT and extrapolation
of finite size exact results, in the HD phases. The corresponding results for the LD phases can be obtained
by symmetry, and λ1 vanishes at the discontinuous transitions between LD and HD phases. In the
maximal and minimal current phases instead the relaxation is not exponential, so the relaxation rate is not
defined. More precisely, the relaxation is power-law in these phases, and the relaxation rate vanishes upon
approaching these phases from LD or HD phases.

We will be especially interested in singularities in the relaxation rate, representing dynamical
transitions, which separate regions where λ1 depends only on the bulk density (that is, on just one
reservoir density) from regions where it depends on both reservoir densities. In order to exemplify the
various possible transitions, we shall consider three cases in detail, corresponding to the thin solid lines in
Figure 2, that is ρR = 0.75 (HD phase V), 0.98 (HD phase V) and 0.45 (HD phase III).

Before turning to a detailed analysis, let us anticipate our main results. For ρR = 0.75 a situation
similar to pure TASEP is found, that is a slow phase close to the coexistence line, separated from a fast
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phase by a dynamical transition. For ρR = 0.98, due to the proximity of the minimal current phase, new
features appear, suggesting the possibility of a new dynamical phase and additional dynamical transitions.
Finally, for ρR = 0.45, we clearly find 2 slow phases close to the coexistence lines. According to the PA,
these slow phases are separated by 2 dynamical transitions from a central phase which is a TASEP-like fast
phase, although this picture is not fully confirmed by BST results, maybe due to small system sizes.

0.7 0.8 0.9 1.0

0.000

0.002

0.004

0.006

0.008
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Figure 3. Relaxation rate λ1 as a function of the left reservoir density ρL, for V = 2V∗ and ρR = 0.75, in the
pair approximation (PA) (black lines, N = 50, 100, 200, 400 from top to bottom), domain wall theory (DWT)
(dashed red line), modified DWT (mDWT) (solid red line) and extrapolation of finite size results (grey dots,
see text for details).

As previously mentioned, we start our analysis with the simplest case, that is ρR = 0.75, in HD phase
V. The relaxation rate λ1 as a function of ρL is reported in Figure 3. The PA results (black lines) clearly
suggest that, in the thermodynamical limit N → ∞, 2 phases can be distinguished. For small ρL (slow
phase), close to the (discontinuous) transition with the LD phase VI, λ1 depends on ρL, starting from 0 at
the transition and then increasing. Notice that in this phase the size dependence is very weak, in particular
the asymptotic value is approached with an exponential decay in N. For large ρL (fast phase), λ1 becomes
independent of ρL (while the size dependence can be appreciated, the approach to the asymptotic value is
∼ N−2) and a singularity, corresponding to a dynamical transition, can be clearly identified. This is the
same behaviour observed in pure TASEP [16–18]. We can approximately locate the dynamical transition
by extrapolating, using the BST algorithm with ω = 2, the relaxation rate in the fast phase for ρL = 1 and
by looking for the point where the N = 400 results reaches this value. The corresponding estimate of the
transition point, computed for ρR ∈ (ρM2, 1), will be reported in the dynamical phase diagram with a blue
line.

In Figure 3 we also report the results of the DWT (dashed red line) and the mDWT (solid red line). As
in pure TASEP, the DWT result for λ1 starts correctly from 0 at the transition with the LD phase VI, then
increases with ρL until it reaches a maximum. In the pure TASEP case, the behaviour after the maximum
was shown [16] to be incorrect, and the mDWT was constructed by replacing the right portion of the curve
with a constant, equal to the maximum. Notice that the mDWT estimate is much smaller than the PA one
(as already observed in the case of the AS model [19]), but the location of the dynamical transition (solid
red line in Figure 6) is rather close to the PA one.
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We also report the results of the BST extrapolation (grey dots) of finite size exact results. The relaxation
rate is computed, in a numerically exact way, for N = 4÷ 24. The BST algorithm with ω = 2 is then
applied to the subsequences N = 4÷ 24 to N = 17÷ 24. The results seem consistent with the qualitative
behaviour found in the other techniques and suggest that the PA (respectively the mDWT) overestimate
(resp. underestimate) the relaxation rate.0.02 0.04 0.06 0.08 0.100.0000.0020.0040.0060.2 0.4 0.6 0.8 1.00.000.050.100.150.200.250.30  

λ
1

ρ
L

Figure 4. Same as Figure 3 for ρR = 0.98.

We now move on to the case ρR = 0.98 (Figure 4), which is still in the HD phase V but, due to the
proximity of the minimal current phase IV, exhibits a richer behaviour. Both the PA and DWT estimates
behave in the same way as above for sufficiently small and sufficiently large ρL. There is however an
intermediate region, close to the minimal current phase IV, where new features appear. The PA estimate
becomes nearly constant, whereas the DWT one exhibits another maximum, followed by a minimum. One
might be tempted to think that 2 more singularities, corresponding to additional dynamical transitions,
appear, and the apparently unphysical non-monotonical behaviour of the DWT could be fixed in the
mDWT by replacing the oscillating part of the curve with a constant equal to the minimum (solid red line
in Figure 4). The mDWT estimates of these additional dynamical transitions are reported in Figure 6 with
dashed lines, and the fact that they start from 3-phase points, like the transition discussed above (and like
those found in pure TASEP and in the AS model), is encouraging. On the other hand, the PA rate shows a
very weak size dependence here, as it usually happens in the slow phase where the rate depends on ρL, so
the evidence is contrasting. The BST extrapolation of finite size results is again qualitatively consistent
with the PA and mDWT, which in this case both overestimate the relaxation rate for most ρL values. In the
inset we can see that the mDWT seems very accurate (based on the comparison with the BST results) for
ρL < 0.05, and then deviates from the BST results. This may suggest that a dynamical transition occurs
near ρL = 0.05, giving some support to the scenario with additional dynamical transitions, though this
issue is far from being settled.
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Figure 5. Same as Figure 3 for ρR = 0.45.
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Figure 6. Same as Figure 2, with dynamical transition lines predicted by the PA (blue lines) and the mDWT
(red lines). See text for the distinction between solid and dashed red lines.

Finally, we switch to HD phase III and we consider the case ρR = 0.45 (Figure 5). Here the PA rates
seem to suggest the existence of 2 dynamical transitions, separating a central fast phase from 2 slow phases,
close to the LD phases I and VI. The 2 maxima exhibited by the DWT estimate are also consistent with this
scenario. The approximate location of these dynamical transitions (blue lines in Figure 6) can be found in
the PA following the criterion outlined above. It is instead more tricky to find a heuristic modification of
the DWT, because the location and height of the 2 maxima depend in a non-trivial way on ρR. In particular,
for ρR < 0.43 the highest maximum becomes the right one. A criterion which leads to results qualitatively
consistent with the PA would be to choose the constant value of the rate in the fast phase equal to the
lowest maximum, but this would lead to an apparently unphysical singularity in the dynamical transition
lines close to ρR = 0.43, where the 2 maxima exchange their role. For this reason we do not report the
transition lines estimated according to this criterion in Figure 6. The BST results seem to confirm the DWT
ones close to the LD phases I and VI, but not in the central region, supporting the scenario with 2 slow



Entropy 2019, 21, 1028 13 of 19

phases separated by a central fast phase. Let us note indeed that in the central region the BST results are
affected by a very high noise level (in some cases giving extrapolated results out of the figure range), which
suggests they are not reliable at all and that longer sequences (by now beyond our current computational
resources) would be needed to obtain convergence.

The full dynamical phase diagram, including the dynamical transitions in the LD phases, obtained by
symmetry, is reported in Figure 6.

4. Discussion

Dynamical transitions are singularities in the relaxation (towards a NESS) rate, which do not
correspond to any transition in the NESS itself. They have been already found in the TASEP [16] and,
with approximate methods, in both the AS model [19] and the TASEP with Langmuir kinetics [20].
Dynamical transitions occur in those NESS phases where the bulk density equals the density of a boundary
reservoir (HD and LD phases) and separate a fast phase, where the relaxation rate λ1 depends only on
the bulk density (suggesting that the slowest relaxation mode is a bulk one), from slow phases, where
λ1 depends on the density of both boundary reservoirs (suggesting that the slowest relaxation mode is
boundary–dependent). The terms fast and slow were introduced in Reference [19] on the basis of the
observation that, keeping fixed the bulk density (that is the density ρR of the right reservoir in the HD
phases) and varying the density of the other reservoir (ρL in the HD phases), the relaxation rate takes
its maximum value in the fast phase. In the NESS phase diagram the slow phases are typically located
close to HD–LD coexistence (discontinuous transition) lines, where λ1 vanishes. In a slow phase then the
relaxation rate grows from 0 at the coexistence line to its maximum value, which depends on the bulk
density, at the dynamical transition line.

We have investigated dynamical transitions in the 1D KLS model, which generalizes the TASEP by
assuming that the hopping rate depends on the occupation state of the 2 nodes adjacent to the nodes
affected by the hop. The 1D KLS model is more general than the AS model, where the dependence is
only on the adjacent node in the direction of motion, and this dependence reflects in a richer fundamental
diagram, which can exhibit 2 maxima and a minimum, and consequently in a richer NESS phase diagram.
Following Reference [13] we have chosen Glauber rates and bulk-adapted boundary conditions. We have
used the same techniques as in our previous work on the AS model [19], namely the PA, the DWT and its
heuristic modification (mDWT), and the BST extrapolation of exact finite size results. The use of the PA is
well justified, since with Glauber rates and bulk-adapted boundary conditions many PA results for the
NESS are exact.

Our results, summarized in the dynamical phase diagram in Figure 6, seem to confirm the general
picture outlined above, with slow phases close to coexistence lines, separated from fast phases by dynamical
transitions. In addition, the 1D KLS model seems to exhibit certain qualitatively new phenomena. In the
HD phase V we find evidence of additional phase transitions, possibly related to the appearance of a new
dynamical phase close to the minimal current phase IV (by symmetry, this also applies to the LD phase I).
This evidence is however only partial, and needs to be verified by additional investigations. Moreover, in
the HD phase III, the nature of the central phase, a fast phase according to the PA, is not clearly confirmed
by the BST results, and further investigations are also needed in this case (again by symmetry, this also
applies to the LD phase VI). In both cases, further work may involve increasing the largest lattice sizes that
we used in the exact finite size approach and/or moving in the parameter space of the model. In particular,
varying the repulsion V in the range V > V∗ can be expected to shrink, or enlarge, the portions of the
phase diagram occupied by the various phases, possibly making the analysis of the dynamical transition
numerically simpler in certain cases. The results for V ≤ V∗ can instead be expected to be qualitatively
similar to pure TASEP (V = 0), hence less interesting from the point of view of the present study.
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Finally, it would also be interesting to check how the overall picture is affected by a change in the
boundary conditions. The bulk-adapted boundary conditions that we have used here, following Reference
[13], are not the only possibility. For instance, in Reference [13], a different choice was considered, named
equilibrated-bath couplings, which leads to a significantly different NESS phase diagram. It is reasonable
to expect that the dynamical transitions would also be strongly affected by such a change in the boundary
conditions.
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Appendix

This appendix is devoted to a formal derivation of the time-evolution Equations (21) and (22) for the
local densities and nearest-neighbor correlations, respectively. Let us start from the generic master equation

Ṗt[n] = ∑
m

{
Pt[m]W[m→ n]− Pt[n]W[n→ m]

}
, (A1)

where of course Pt[n] ≡ Pt[n1 . . . nN ] denotes the probability of the lattice configuration n ∈ {0, 1}N at
time t and W[m → n] denotes the transition rate from m to n. The matrix of transition rates can be
expanded as a sum over the elementary processes occurring in the system, namely injection, extraction
and hopping. In formulae we can write

W[m→ n] =
N

∑
`=0

W`[m→ n] , (A2)

where we assume in particular that ` = 1, . . . , N − 1 corresponds to hopping from node ` to `+ 1, whereas
` = 0 and ` = N correspond respectively to injection (at node 1) and extraction (from node N). One
key assumption of the model under investigation is that the hopping rate Equation (1) depends on the
configurations of nearby nodes (namely, `− 1 and `+ 2 for the ` to `+ 1 hopping process). Given that
such nodes actually exist only for ` = 2, . . . , N − 2, in these cases we can write

W`[m→ n] = m`m`+1Γ(m`−1, m`+2) n`n`+1

N

∏
j=1

j 6=`,`+1

δ(mj, nj) , (A3)

where δ denotes a Kronecker delta and a bar over occupation numbers denotes the boolean complement.
Note that, apart from the hopping rate Γ, the remainder of the above expression is meant to ensure that
W`[m→ n] takes a nonzero value only when the following conditions are verified:

m` = n`+1 = 1 , (A4)

m`+1 = n` = 0 , (A5)

mj = nj ∀j ∈ {1, . . . , N} \ {`, `+ 1} . (A6)
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Equations (A4) and (A5) together mean that, in the “departure” configuration m, node ` is occupied and
node `+ 1 is empty, whereas the opposite happens in the “arrival” configuration n. Equation (A6) means
that all the other nodes do not change their occupation state from m to n.

Appendix A.1 Local Density Equation

The local densities, Equation (6), can be written in terms of the full probability distribution function
Pt[n] as

ρt
i = ∑

n
niPt[n] , i = 1, . . . , N , (A7)

where it is understood that the sum runs over all possible lattice configurations n. Taking the time
derivative of Equation (A7) and using the expression of Ṗt[n] obtained by Equation (A1) in combination
with Equation (A2), by simple algebra we can obtain

ρ̇t
i = ∑

`
∑
m

Pt[m] ∑
n
(ni −mi)W`[m→ n] . (A8)

Let us now consider the inner sum in Equation (A8). Taking into account Equation (A3), we can
observe that in the elementary summation term (ni −mi)W`[m→ n] there always appears a factor
(ni −mi) δ(mi, ni) ≡ 0 except when i = ` or i = `+ 1. As a consequence, the sum over ` in Equation (A8)
turns out to contain just two terms, namely ` = i and ` = i− 1, which we analyze below.
For ` = i we can write

∑
n
(ni −mi)Wi[m→ n] = −mimi+1 Γ(mi−1, mi+2) , (A9)

which can be obtained using Equation (A3) to express the elementary transition rate Wi[m → n] and
observing that, since mi and ni are boolean variables, mi

2 ≡ mi and nini ≡ 0.
In the other case, ` = i− 1, by analogous arguments we get

∑
n
(ni −mi)Wi−1[m→ n] = mi−1mi Γ(mi−2, mi+1) . (A10)

In the end, plugging Equation (A9) and Equation (A10) into Equation (A8) (and remembering that the
sum over ` contains only these two terms), we obtain

ρ̇t
i = ∑

m
Pt[m]mi−1mi Γ(mi−2, mi+1)−∑

m
Pt[m]mimi+1 Γ(mi−1, mi+2) . (A11)

By marginalization, this last equation is equivalent to Equation (21). Let us stress the fact that the above
derivation is correct as long as the elementary transition-rate matrices Wi and Wi−1 take the form of
Equation (A3), which is the case (according to the previous discussion) for i = 3, . . . , N − 2. The remaining
cases, namely i = 1, 2, N − 1, N, require the definition of boundary rates (including injection and extraction
rates), and will be discussed below in the last paragraph.

Appendix A.2 Local Correlation Equation

The local nearest-neighbor correlations, Equation (7), can be written in terms of Pt[n] as

φt
i = ∑

n
nini+1Pt[n] , i = 1, . . . , N − 1 , (A12)
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where as usual the sum runs over all possible lattice configurations n. The calculation proceeds in close
analogy with the density equation, leading to

φ̇t
i = ∑

`
∑
m

Pt[m] ∑
n
(nini+1 −mimi+1)W`[m→ n] . (A13)

Let us then consider the inner sum in Equation (A13). Still taking into account Equation (A3), in this case
we can observe that in the elementary summation term (nini+1 −mimi+1)W`[m→ n] there appears a
factor (nini+1 −mimi+1) δ(mi, ni) δ(mi+1, ni+1) ≡ 0, except when i = ` or i = `± 1. As a consequence, the
sum over ` in Equation (A13) turns out to contain (at most) three terms, namely ` = i and ` = i∓ 1, which
we analyze below.
For ` = i we can write

∑
n
(nini+1 −mimi+1)Wi[m→ n] = 0 , (A14)

which as usual is obtained using Equation (A3) to express the elementary transition rate Wi[m→ n]. This
term can be argued to vanish, by observing that mi+1mi+1 ≡ 0 and nini ≡ 0.
For ` = i− 1 we have

∑
n
(nini+1 −mimi+1)Wi−1[m→ n] = mi−1mimi+1 Γ(mi−2, mi+1) , (A15)

which is again obtained by expressing the elementary transition rate Wi−1[m→ n] by Equation (A3), and
by simple algebra.

In the remaining case, ` = i + 1, by analogous arguments we get

∑
n
(nini+1 −mimi+1)Wi+1[m→ n] = −mimi+1mi+2 Γ(mi, mi+3) . (A16)

In the end, plugging Equation (A15) and Equation (A16) into Equation (A13) (and recalling that the sum
over ` contains only these two terms, as we have argued that even the term ` = i vanishes), we obtain

φ̇t
i = ∑

m
Pt[m]mi−1mimi+1 Γ(mi−2, mi+1)−∑

m
Pt[m]mimi+1mi+2 Γ(mi, mi+3) . (A17)

By marginalization, this last equation is equivalent to Equation (22). Even in this case, let us stress the fact
that the derivation is correct as long as Wi, Wi−1 and Wi+1 can be written as in Equation (A3), which is the
case for i = 3, . . . , N − 3. The remaining cases i = 1, 2, N − 2, N − 1 depend on the definition of boundary
rates, which we discuss in the next paragraph.

Appendix A.3 Bulk-Adapted Boundary Conditions

As already mentioned above, the reason why the previous derivation leaves out some boundary
equations is that the rates of certain processes have not been defined yet. Such processes are in particular:
injection, extraction, and hopping from node 1 to 2 and from node N − 1 to N. As far as hopping is
concerned, a special definition is required because in the two cases, respectively, the previous or next
node does not exist, so that the rate Γ would remain undetermined. The definition of all these rates is
important as it corresponds to fixing the boundary conditions or, in other words, coupling the system to the
boundary reservoirs. In order to do so, one possibility is to introduce some extra “virtual” nodes, namely
i = −1, 0 at the left boundary and i = N + 1, N + 2 at the right boundary, and to reinterpret injection and
extraction as hopping processes, respectively from 0 to 1 and from N to N + 1, all with the same rate
Γ (in this framework, nodes i = −1 and i = N + 2 are just needed to ensure that all hoppings possess
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both a previous and a next node). To complete this alternative description, one also needs to define an
extended probability distribution function incorporating the virtual nodes, which we shall denote as
Pt[n−1n0n1 . . . nNnN+1nN+2], to be used to compute the averages in Equations (A11) and (A17) even in
the boundary cases. One possibility for defining the extended distribution, which we have considered in
this paper and which is usually denoted as bulk-adapted [13], amounts to building up a continuation of the
“ordinary” distribution Pt[n] ≡ Pt[n1 . . . nN ] on both the left and right boundary, in a pairwise factorized
form like that of Equation (14), which we have previously mentioned to be exact in a bulk steady state. In
particular, define

Pt[n−1n0n1 . . . nNnN+1nN+2] ≡
PL[n−1n0] PL[n0n1]

PL[n0] PL[n1]
Pt[n]

PR[nNnN+1] PR[nN+1nN+2]

PR[nN ] PR[nN+1]
, (A18)

where, as in the main text, PL[·] and PR[·] denote the bulk probabilities (Equations (27)–(31), together with
Equation (33)) evaluated respectively for ρ = ρL and ρ = ρR. The basic intuition is that, if the steady state
is characterized by a bulk region on either the left or the right side of the system (which we recall to be the
case in LD and HD phases, respectively), such a bulk region smoothly continues outside the system. From
a formal point of view, this choice for the boundary conditions also has the advantage that time-evolution
equations for all local densities ρt

i (for i = 1, . . . , N) and all local correlations φt
i (for i = 1, . . . , N − 1) take

the same form of Equations (A11) and (A17), and therefore Equations (21) and (22).
Let us finally observe that, in the framework of the PA, the ordinary distribution Pt[n] is itself

expressed in the (approximate) pairwise-factorized form

Pt[n] =
∏N−1

i=1 Pt
i [nini+1]

∏N−1
i=2 Pt

i [ni]
. (A19)

As a consequence, plugging Equation (A19) into Equation (A18), we can write

Pt[n−1n0n1 . . . nNnN+1nN+2] =
∏N+1

i=−1 P̃t
i [nini+1]

∏N+1
i=0 P̃t

i [ni]
, (A20)

where the pair and node probabilities P̃t
i [·] are precisely those defined in Equations (37) and (38). The

4-node marginals can then be written as in Equation (36).
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