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Abstract 

The fracture behavior of lightweight foamed concrete (LWFC) is significantly influenced by microstructural properties, which are 
ascribed to the arrangement of air bubbles and pores as well as to the presence of different hydration products. In this contribution, 
an experimental investigation on the fracture behavior of LWFC is performed. Notched beams made of LWFC were tested in three-
point bending to determine the fracture energy based on the load-CMOD (Crack Mouth Opening Displacement) curve. The 
influence of the dry density is explored considering one density for non-structural purposes (equal to 800 kg/m3) and another 
density for structural applications (1600 kg/m3). Moreover, two curing conditions are considered (air and water). The load-CMOD 
curves reveal that for lower dry densities the fracture behavior of LWFC is particularly affected by the curing conditions, with 
better results achieved in air curing conditions, but this influence decreases with higher dry densities. The improved performance 
in air curing conditions for lower dry densities is also observed in terms of flexural strength, but is not particularly evident for the 
compressive strength. Micrographs across the crack surface determined via Scanning Electron Microscopy (SEM) are finally 
presented to analyze the experimental findings and justify the results in terms of microstructural configuration of the specimens.  
 
© 2019 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Gruppo Italiano Frattura (IGF) ExCo. 

Keywords: foamed concrete; curing conditions; dry density; lightweight concrete; fracture energy; flexural strength. 

 

 
* Corresponding author. Tel.: +39-0906765921 

E-mail address: dario.dedomenico@unime.it 

 

Available online at www.sciencedirect.com 

ScienceDirect 

Structural Integrity Procedia 00 (2019) 000–000  
www.elsevier.com/locate/procedia 

 

2452-3216 © 2019 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Gruppo Italiano Frattura (IGF) ExCo.  

25th International Conference on Fracture and Structural Integrity 

Investigation on the fracture behavior of foamed concrete 
Devid Fallianoa, Dario De Domenicoa*, Antonino Sciarronea, Giuseppe Ricciardia, 
Luciana Restucciab, Giuseppe Ferrob, Jean-Marc Tullianic, Ernesto Gugliandolod 

a Department of Engineering, University of Messina, Contrada Di Dio, 98166 Sant’Agata, Messina, Italy 
b Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy 

c Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy  
d G. Gugliandolo Srl, Via Galileo Galilei 8, 98124, Messina, Italy 

Abstract 

The fracture behavior of lightweight foamed concrete (LWFC) is significantly influenced by microstructural properties, which are 
ascribed to the arrangement of air bubbles and pores as well as to the presence of different hydration products. In this contribution, 
an experimental investigation on the fracture behavior of LWFC is performed. Notched beams made of LWFC were tested in three-
point bending to determine the fracture energy based on the load-CMOD (Crack Mouth Opening Displacement) curve. The 
influence of the dry density is explored considering one density for non-structural purposes (equal to 800 kg/m3) and another 
density for structural applications (1600 kg/m3). Moreover, two curing conditions are considered (air and water). The load-CMOD 
curves reveal that for lower dry densities the fracture behavior of LWFC is particularly affected by the curing conditions, with 
better results achieved in air curing conditions, but this influence decreases with higher dry densities. The improved performance 
in air curing conditions for lower dry densities is also observed in terms of flexural strength, but is not particularly evident for the 
compressive strength. Micrographs across the crack surface determined via Scanning Electron Microscopy (SEM) are finally 
presented to analyze the experimental findings and justify the results in terms of microstructural configuration of the specimens.  
 
© 2019 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Gruppo Italiano Frattura (IGF) ExCo. 

Keywords: foamed concrete; curing conditions; dry density; lightweight concrete; fracture energy; flexural strength. 

 

 
* Corresponding author. Tel.: +39-0906765921 

E-mail address: dario.dedomenico@unime.it 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.prostr.2019.08.196&domain=pdf


526 Devid Falliano  et al. / Procedia Structural Integrity 18 (2019) 525–5312 Devid Falliano et al./ Structural Integrity Procedia  00 (2019) 000–000 

1. Introduction 

Foamed concrete, obtained through addition of preformed foam into the cement paste, is an attractive construction 
material because of its lightweight properties associated with thermal insulation, acoustic absorption and fire 
resistance, especially in the low-density range [Wei et al. 2013; Falliano et al. 2019c; Kim et al. 2012; Valore 1954]. 
Moreover, previous studies demonstrated that the mechanical performances of foamed concrete can be improved by 
the introduction of mineral additions, like fly ash and silica fume [Jones and McCarthy 2005], or through the use of 
fibers of different nature [Falliano et al. 2019a; Ramamurthy et al. 2009; Bing et al., 2011; Kayali et al. 2003] or bi-
directional grid reinforcement [Falliano et al. 2019b]. It has been found that the mechanical properties of foamed 
concrete depend on the dry density, curing condition, foaming agent, and cement type [Falliano et al. 2018a; 2018b; 
Panesar 2013]. 

This study aims to expand the knowledge of the fracture behavior of lightweight foamed concrete (LWFC), because, 
to the authors’ best knowledge, relatively few research studies are present in the relevant literature [Kozłowski et al. 
2015; Kozłowski and Kadela 2018]. Previous studies showed that the fracture energy of foamed concrete is lower than 
that of ordinary concrete, generally < 25N/m [Hengst and Tressler, 1983]. In this experimental campaign, a new type 
of foamed concrete is analyzed, which is prepared with a specific viscosity enhancing agent (VEA) that increases 
consistency and viscosity at the fresh state. This VEA not only allows the production of foamed concrete via an 
extrusion process, but also makes this material suitable for 3D printing applications – the resulting material is called 
“extrudable lightweight foamed concrete” (ELWFC).  

A series of 24 notched beams made of ELWFC are prepared: 16 reached a final dry density of 800 kg/m3 (for non-
structural purposes, in order to exploit the acoustic absorption and thermal insulation properties) and 8 reached a final 
dry density of 1600 kg/m3 (more appropriate for structural applications with a lower self-weight in comparison with 
ordinary concrete elements). The specimens prepared with such two dry densities are then cured in two different 
conditions, namely in air at environmental temperature of 20°C and in water at controlled temperature of 20°C. In this 
manner, the influence of dry density and curing condition on the resulting fracture behavior of ELWFC is analyzed. 
In particular, prismatic notched specimens are prepared and tested according to JCI-S-001 standards, namely three-
point bending tests in CMOD (Crack Mouth Opening Displacement) mode, in order to evaluate the fracture energy 
GF. Comparison between specimens having different dry densities and curing conditions has been performed in terms 
of flexural and compressive strength values, as well as load-CMOD curves, fracture energy, and related ductility. At 
the end of the mechanical experimental campaign, some specimens were also analyzed through Scanning Electron 
Microscopy (SEM) in order to further justify the fracture behavior, based on the microstructural configuration of the 
specimens. 

2. Preparation of the specimens and testing conditions 

The notched beams of ELWFC were tested according to JCI-S-001 standards [JCI-S-001, 2003]. The dimensions 
of the beams are 20x20x80mm3 and the tests were carried out in displacement controlled mode using a Zwick Line-
Z010 testing equipment [Ahmad et al., 2015; Restuccia and Ferro, 2016; Restuccia et al. 2017; Restuccia and Ferro, 
2018] having a 1 kN load capacity. A Portland CEM I 52.5 R was used with a water-to-cement ratio equal to 0.3 and 
VEA was added to the cement mix to increase the cohesion and viscosity at the fresh state, without altering the 
workability of the paste. The lightweight properties of the ELFWC is obtained through the addition of preformed 
foam, using a foam-to-cement ratio (in weight) equal to 0.3 for the 800kg/m3 and equal to 0.08 for the 1600 kg/m3 dry 
density. Such preformed foam was obtained through an appropriate foam generator, using a protein-based foaming 
agent (concentration of 5%) and the resulting foam density was nearly equal to 85g/L. More details on samples 
preparation are reported in [Falliano et al. 2018a]. 

The cement mixes are then poured in formworks and, afterwards, a half of specimens (12) were cured in air and 
the other half (12) in water. The fresh density of the two mixes (target dry density of 800 ± 50 kg/m3 and 1600 ± 50 
kg/m3) was of 1041 kg/m3 and of 1700 kg/m3, respectively. After the tests, the specimens were dried in oven (at 
110°C) until achievement of a constant weight in order to determine the actual dry density of the samples. After 28 
days, the specimens were prepared for the mechanical tests and notched with a band saw in compliance with the JCI-
S-001-2003 standards [JCI-S-001, 2003], as reported in Figure 1. In particular, the height of the notch ranged from 6.0 
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to 7.0 mm. To measure the CMOD, a clip-on strain gauge was installed at the two edges of the notch as illustrated in 
Figure 2. 

 
Figure 1 Dimensional requirements prescribed by JCI-S-001-2003 standards. 

 
Figure 2 Preparation of the notch on the beams (left) and installation of clip-on strain gauge on the two edges (right). 

The load was applied with a displacement rate of 0.005 mm/min, and the rollers are adjusted such that the resulting 
beam span was equal to 70 mm. After the beam collapsed, the two halves of the broken specimen were tested in 
compression in another testing equipment with load capacity of 50 kN and displacement rate of 0.5 mm/min.  

3. Results and discussion 

The main results of the experimental campaign are summarized in this section. The flexural strength f of the 
samples is computed through the formula: 
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where Fmax denotes the maximum load [N], L is the span length [mm], b the specimen depth [mm] and h the net 
ligament height [mm] as shown in Figure 1. Moreover, the fracture energy GF of the specimens is calculated through 
the expression reported in JCI-S-001 standards: 
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where Alig denotes the area of nominal ligament [mm2], W0 represents the area below the CMOD curve up to rupture 
of specimen [Nmm] and W1 is the work done by the self-weight and the applied loading [Nmm], which is calculated 
as follows 
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where L is the entire length of the specimen [mm], m1 is the mass of the notched specimen [kg], m2 represents the 
mass of the loading arrangement part not attached to the testing machine but placed on beam until rupture [mm], g is 
the acceleration of gravity [9.807 m/s2] and CMODc is the crack mouth opening displacement at the rupture [mm].  

The average results for the different classes of specimens are listed in Table 1. It is possible to notice that the curing 
conditions significantly affect the results in terms of flexural strength and fracture energy for the lower dry density of 
800 kg/m3, and the better performance is surprisingly observed in air curing conditions. However, this influence of 
the curing conditions becomes marginal in terms of compressive strength (with moderately higher values for air curing 
conditions). On the other hand, with increasing values of the dry density, the behavior becomes closer to that of 
ordinary (normal-weight) concretes. Consequently, this marked difference in terms of curing conditions is no longer 
apparent, and the results are more or less comparable in the two conditions. At the dry density value of 1600 kg/m3 
the compressive strength is higher than 40 MPa, which justifies the potential use of this material for structural 
applications.  

Table 1. Average results of ELWFC specimens with different curing conditions and dry densities 

Specimen class 
CMOD at peak load Flexural strength Fracture energy Compressive strength 

dFmax [mm] σf [MPa] GF [N/m] σc [MPa] 

800 kg/m3 air 0.0165 1.02 10.46 8.24 

800 kg/m3 water 0.0053 0.43 3.09 7.35 

1600 kg/m3 air 0.0167 3.28 21.80 46.15 

1600 kg/m3 water 0.0177 2.40 27.65 44.01 

 
A set of comparative histograms of the results for different dry densities and curing conditions are shown in Figure 

3. In these graphs, we can notice that passing from 800 to 1600 kg/m3 there is an increase of flexural strength of almost 
75%, an increase of the fracture energy of around 50% in air curing conditions, and an increase of the compressive 
strength of more than 80%. These increases are even more marked in water curing conditions, which is consistent 
with the previous remarks.  

 

Figure 3. Comparative histograms of average flexural strength, fracture energy and compressive strength of LWFC cured in air and in water 
for two different dry densities of the specimens. 

 
The load-CMOD curves are depicted in Figure 4 for two representative specimens, for the two different dry densities 

and curing conditions analyzed. In air (left-hand of the figure) the behavior is qualitatively similar, despite the lower 
level of load (and resulting flexural strength) for the lower dry density. Instead, in water there is a marked increase in 
the fracture energy (and the resulting area enclosed by the curve) for the higher dry density. Moreover, there is a 
significant increase of the ultimate displacement, which denotes an increase of ductility of the samples. There is a 

air curing conditions water curing conditions
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change of behavior for the two dry densities: the ultimate displacement in water for 1600 kg/m3 is higher than that in 
air at the same dry density, whereas the ultimate displacement in water at 800 kg/m3 is lower than that in air at the 
same dry density. The post-peak branch of the load-CMOD curve is more evident for higher densities, especially in 
water curing conditions.  

 

 
Figure 4. Comparison of load-CMOD curves from the three-point-bending test on two pairs of LWFC beams cured in air and in water. 

 
The different fracture behavior observed in the specimens was further evaluated through SEM observations. In 

particular, in Figure 5 a qualitative comparison of the pores dimensions and distributions is shown for the two dry 
densities of 800 and 1600 kg/m3. It is possible to appreciate that by increasing the dry density, the dimensions of the 
pores decrease and become more uniformly distributed throughout the cement matrix. This contributes to a higher 
mechanical performance in both flexure and compressive tests.  

 

 

Figure 5. Qualitative comparison of pores dimensions and distribution through SEM micrographs of a representative portion of water-cured 
ELWFC specimen with a dry density of 800kg/m3 (left) and 1600 kg/m3 (right). 

The SEM micrographs have given justifications on the different fracture behavior of air- and water-cured specimens 
for the lower dry density. In particular, specimens cured in air at 800 kg/m3 have a more tortuous crack surface than 
specimens cured in water at the same dry density, which is responsible for the increase of the fracture energy reported 
in Table 1 and in the comparative histograms of Figure 3. Moreover, we also noticed that different curing conditions 
led to different morphology of the hydration products, especially close to the pores surface, where there is a high 
concentration of foaming agent molecules.  

Two SEM micrographs of a representative portion of air-cured ELWFC specimen having density of 800 kg/m3 
extracted across the crack surface are reported in Figure 6. In this figure, the coalescence phenomena of the pores can 
be observed. This is particularly evident for lower dry densities, where these defects represent weak zones in the 
sample. Wider cracks and a more apparent crack pattern are observed in such class of specimens. The distribution of 



 Devid Falliano  et al. / Procedia Structural Integrity 18 (2019) 525–531 5294 Devid Falliano et al./ Structural Integrity Procedia  00 (2019) 000–000 

1 1 20.75 2 CMODcW m g m g
L

   
 


 (3) 
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the pores is an important factor for the crack onset and development and, consequently, the final fracture energy value 
of the sample.  

 

 

Figure 6. SEM micrographs of a representative portion of air-cured ELWFC specimens with 800 kg/m3 along the crack surface representing how 
the crack pattern develops along the porosities in two different situations. 
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an increase of the load-CMOD curve and an increase of the fracture energy of around 50% for air curing 
conditions, and of more than 80% for water curing conditions; 

4) The microstructural tortuosity of the specimens, ascribed to the distribution and dimensions of the pores as 
well as to the different morphology of the hydration products (not discussed in this paper), explains the 
different macroscopic behavior observed in the tests; 

5) The compressive strength of specimens with 1600 kg/m3 is around 45 MPa, which allows the potential use of 
this material for structural applications, benefitting from the advantages related to the lower self-weight. 
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