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Unified theory of structures based on micropolar
elasticity

R. Augello∗, E. Carrera†, A. Pagani‡

Mul 2 Group
Department of Mechanical and Aerospace Engineering, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Abstract: This paper intends to establish a unified theory of structures based on the Microp-
olar Elasticity (ME). ME allows taking into consideration the microstructure of the material,
through the adoption of four additional material parameters. In this way, the size-effects of
the structure can be caught. The proposed model is developed in the domain of the Carrera
Unified Formulation (CUF), according to which theories of structures can degenerate into un-
known kinematics that makes use of an arbitrary expansion of the generalized variables. CUF
is a hierarchical formulation that considers the order of the structural model as input of the
analysis, so that no specific approximation and manipulation is needed to implement refined
theories. Different types of structures have been analyzed in the present work, and the results
are compared and validated with benchmarks from the literature. The effects of the new mate-
rial parameters are addressed too, along with the capability of the proposed model to deal with
size-effects and high-order structural behaviors. Finally, stress analysis is detailed to further
highlight the differences between micropolar and classical elasticity.

Keywords: Micropolar elasticity; Unified theory; Refined model

1 Introduction

In engineering and scientific applications, the classical continuum mechanics represents the
most adopted tool to analyse structural problems. Based on classical elasticity, many reliable
engineering structural theories have been formulated over the centuries, see for example the
Euler-Bernoulli [1] or Timoshenko bending theories [2] and the Coulomb torsion theory [3],
extended to prisms of any shape by Saint-Venant [4]. These theories have produced accept-
able results for various applications. Classical Elasticity (CE) assumes that the rotations
within the continuum are a direct consequence of displacements and the interaction between
adjacent points occur only by means of translational forces. However, in many cases, it may
no longer represent an appropriate and reliable mathematical model to describe the physical
phenomena that happen within the structure. Kennedy [5] showed how CE cannot accurately
describe large stress gradients in the proximity of holes, analyzing notched plates with circular
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and elliptical holes and the strain-softening of the material at the notch. Besides, when the
size of the analysed structure is comparable to the microstructural scale, the body behaves
quite differently from the prediction that CE could lead to. As an example, this behavior is
evident when dealing with Micro-Electro Mechanical System (MEMS) and Nano-Electro Me-
chanical System (NEMS) devices. Li et al. [6] highlighted the need to perform an appropriate
micromechanical and nanomechanical characterization (through nanoindentation techniques)
to evaluate the mechanical properties of structures with micro and nano size. In these cases,
the microstructure of the material must be considered, as demonstrated by the experimental
research conducted by McFarland and Colton [7], and by Lam et al. [8]. Moreover, one of the
main advantages of ME is due to its regularization properties in physically nonlinear problems
(elasto-plasticity and damage) where localization occurs (see Peerlings et al. [9]).
To overcome the problems that arise when adopting CE in the aforementioned cases, several
generalized continua models have been developed; e.g., see Kunin [10, 11]. For a compre-
hensive review of the generalized continuum theories developed in history, interested readers
can refer to Maugin and Metrikine [12]. Among the generalized continuum theories, Microp-
olar Elasticity (ME) deserves particular attention. At the end of the 19th century, the main
ideas leading to the micropolar continuum (and, in general, to the other generalized media
models), were discussed by many authors. One of the most important work is the one made
by Voigt [13], who suggested that the interaction of two parts of the body is transmitted
not only through a translational force but also through a moment. The complete theory of
asymmetric elasticity was further developed by the brothers François and Eugène Cosserat
[14], who introduced the asymmetry of the force-stress tensor and deformations tensor. In
addition, every particle of the material is meant to be able to rotate independently of the
surrounding particles, and so additional unknown rotations are needed to describe the motion.
As a consequence, every particle has six degrees of freedom, three translations associated with
the macrostructure, and three rotations, associated with the microstructure. The theory was
further developed by Eringen [15, 16, 17] , who gave it the name Micropolar Elasticity, and
Nowacki [18, 19]. The asymmetry of the stresses and deformations tensors is achieved by ME
through the addition of four material parameters, which represents the contribution that the
microstructure has on the behavior of the structure at the macro-scale. The identification
of these material parameters is difficult to be performed by numerical simulation, and it is
limited to experimental research. See for example the work conducted on bones with torsion
and bending by Yang and Lakes [20], on notched bones by Lakes et al. [21] and on a poly-
meric foam by Lakes [22]. A review of the experiments conducted to micropolar materials has
been done by Hassanpour and Heppler [23], who also proposed some numerical and analytical
methods for the evaluation of the additional material parameters through homogenization
procedure.
There are some examples in the literature about the application of structural theories based
on ME. Huang et al. [24] developed a bending model for the analysis of beams, considering
the material as a micropolar one. This work made use of Euler-Bernoulli theory and the
Finite Element Method (FEM) to study the effects of the additional material parameters of
ME on the bending behavior of beams. Ramezani et al. [25] showed a bending model based
on the linear theory of beams based on micropolar continuum mechanics. In their work,
the Timoshenko First-Order Shear Deformation Beam Theory (FSDBT) was used, and the
microrotation was considered constant over the cross-section but different from the bending
rotation of the structure. Besides the bending theory, the torsional behavior of micropolar
beam model was analyzed by Hassanpour and Heppler [26], who developed a beam model
able to take into account both bending (based on Timoshenko theory) and torsional effects
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(based on an extended form of Duleau torsion theory). To evaluate local effects and thickness
and cross-section deformations, higher-order models were developed, for example, by Zozulya
[27, 28], who generated higher-order models for plates, shells and curved rods.
The purpose of this paper is to develop a unified structural theory based on ME. The frame-
work in which the proposed methodology is developed is the Carrera Unified Formulation
(CUF), according to which the unknowns field can be expressed as an arbitrary expansion of
the generalized variables. As a consequence, the theory of structure is considered as an input
of the analysis, so there is no need for an ad hoc implementation to obtain refined models.
In fact, any higher-order theory is obtained by means of the so-called fundamental nucleus
(FN), that represents the basic building blocks which can be expanded in an arbitrary way.
In recent years, CUF has explored various engineering problems, including thin-walled cross-
section beams by Carrera and Varello [29], post-buckling by Fazzolari and Carrera [30] and
geometrical nonlinearity for both metallic and composite structures by Pagani and Carrera
[31, 32], among the others. Many engineering fields have been investigated, such as civil by
Carrera and Pagani [33], aerospace by Carrera et al. [34] and multi-field by Miglioretti and
Carrera [35]. Recently, Carrera and Zozulya [36] developed an analytical solution based on
CUF and ME. In the present work, the formulation is further extended to make use of finite
element analysis and thus to deal with arbitrary boundary conditions, geometry and loadings.
This paper is organized as follows: (i) first, ME is briefly introduced in Section 2, and the
strain-displacement and constitutive relations are written in a unified manner; (ii) subse-
quently, in Section 3, the evaluation of the FN of the stiffness matrix is shown.; (iii) then,
in Section 4, numerical results are discussed and some comparisons with the results from the
literature are reported. Three-dimensional distribution of the stress field is addressed too;
(iv) finally, the main conclusions are drawn. Furthermore, appendix sections are provided,
and they give the components of the stiffness matrix.

2 Unified micropolar beam element

2.1 Preliminaries

Consider a beam structure whose cross-section Ω lays on the xz-plane of a Cartesian reference
system. As a consequence, the beam axis is placed along y and measures L. The transposed
unknowns vector is introduced in the following:

u(x, y, z) =
{
ux uy uz ωx ωy ωz

}T
(1)

where u represents displacements and ω represents micro-rotations. The force stress σ, mi-
cropolar couple stress µ, strain ε and twist χ components are expressed in vectorial form,

σ =
{
σxx σyy σzz σxy σyx σxz σzx σyz σzy

}T
ε =

{
εxx εyy εzz εxy εyx εxz εzx εyz εzy

}T
µ =

{
µxx µyy µzz µxy µyx µxz µzx µyz µzy

}T
χ =

{
χxx χyy χzz χxy χyx χxz χzx χyz χzy

}T
(2)
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In this work, linear elastic metallic structures are considered. Hence, Hooke’s law providing
the constitutive relation holds as follows (see Ref. [27]) is, in a tensorial form:

σ = λ(trε)I + (µ+ α)ε + (µ− α)εT , µ = β(trχ)I + (γ + ε)χ + (γ − ε)χT (3)

or, analogously,
σ = Cε, µ = Aχ (4)

where the material matrix C is

C =



C11 C12 C13 0 0 0 0 0 0

C12 C22 C23 0 0 0 0 0 0

C13 C23 C33 0 0 0 0 0 0

0 0 0 CM
44 CMT

44 0 0 0 0

0 0 0 CMT
44 CM

44 0 0 0 0

0 0 0 0 0 CM
55 CMT

55 0 0

0 0 0 0 0 CMT
55 CM

55 0 0

0 0 0 0 0 0 0 CM
66 CMT

66

0 0 0 0 0 0 0 CMT
66 CM

66



(5)

and
C11 = C22 = C33 = λ+ 2µ,

C12 = C13 = C23 = λ,

CM
44 = CM

55 = CM
66 = µ+ α,

CMT
44 = CMT

55 = CMT
66 = µ− α

(6)
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with λ and µ being Lamé constants of classical elasticity, and α micropolar constant. The
matrix A in Eq. (4) is:

A =



A11 A12 A13 0 0 0 0 0 0

A12 A22 A23 0 0 0 0 0 0

A13 A23 A33 0 0 0 0 0 0

0 0 0 AM44 AMT
44 0 0 0 0

0 0 0 AMT
44 AM44 0 0 0 0

0 0 0 0 0 AM55 AMT
55 0 0

0 0 0 0 0 AMT
55 AM55 0 0

0 0 0 0 0 0 0 AM66 AMT
66

0 0 0 0 0 0 0 AMT
66 AM66



(7)

where,
A11 = A22 = A33 = β + 2γ,

A12 = A13 = A23 = β,

AM44 = AM55 = AM66 = γ + ε,

AMT
44 = AMT

55 = AMT
66 = γ − ε

(8)

with β, γ and ε being additional micropolar elastic constant (see Ref. [27]).
The kinematic relations are expressed as:

ε = (bm1)u, χ = (bm2)u (9)
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where bm1 and bm2 are the differential operators:

bm1 =



∂x 0 0 0 0 0

0 ∂y 0 0 0 0

0 0 ∂z 0 0 0

∂y 0 0 0 0 1

0 ∂x 0 0 0 −1

∂z 0 0 0 −1 0

0 0 ∂x 0 1 0

0 ∂z 0 1 0 0

0 0 ∂y −1 0 0



, bm2 =



0 0 0 ∂x 0 0

0 0 0 0 ∂y 0

0 0 0 0 0 ∂z

0 0 0 ∂y 0 0

0 0 0 0 ∂x 0

0 0 0 ∂z 0 0

0 0 0 0 0 ∂x

0 0 0 0 ∂z 0

0 0 0 0 0 ∂y



(10)

where ∂x =
∂(·)
∂x

, ∂y =
∂(·)
∂y

, and ∂z =
∂(·)
∂z

.

2.2 Higher-order unified Micropolar beam model

Within the framework of the Carrera Unified Formulation (CUF), the three-dimensional dis-
placement field u(x, y, z) can be expressed as a general expansion of the primary unknowns,
see Carrera et al. [37]. In the case of one-dimensional theories, one has:

u(x, y, z) = Fs(x, z)us(y), s = 1, 2, ....,M (11)

where Fs are the functions of the coordinates x and z on the cross-section, us is the vector
of the generalized displacements which lay along the beam axis, M stands for the number
of the terms used in the expansion, and the repeated subscript s indicates summation. The
choice of Fs determines the class of the 1D CUF model that is required and subsequently to
be adopted. This notation is further discussed in Appendix A.
In this work, Lagrange Expansion (LE) beam theories based on CUF are employed (see
Carrera et al. [38]). According to LE, piece-wise, and eventually higher-order, Lagrange
polynomials are used as Fs to approximate the displacement and micro-rotation fields on the
cross-section. Over the years, LE models have been demonstrated to provide reliable results
for many applications, see for example [39, 33].
CUF has shown its capabilities in dealing with ME in the work made by Carrera and Zozulya
[36], where an analytical solution of higher-order micropolar beam is proposed in a unified
manner. In this work, instead, FEM is adopted to discretize the structure along the y axis.
Thus, the generalized displacement vector us(y) is approximated as follows:

us(y) = Nj(y)qsj j = 1, 2, . . . , p+ 1 (12)
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where Nj stands for the j-th shape function, p is the order of the shape functions and j
indicates summation. qsj is the following vector of the FE nodal parameters:

qsj =
{
quxsj quysj quzsj ωzsj ωzsj ωzsj

}T
(13)

For the sake of brevity, the shape functions Nj are not reported here. They can be found
for instance in Bathe [40] and in Carrera et al. [37]. It should be underlined that the choice
of the cross-section polynomials sets for the LE kinematics (i.e. the selection of the type,
the number and the distribution of cross-sectional polynomials) is completely independent of
the choice of the beam Finite Element (FE) to be used along the beam axis. In this work,
classical one-dimensional FEs with four nodes (B4) are adopted, i.e. a cubic approximation
along the y axis is assumed.

3 Fundamental nucleus of the micropolar FE stiffness

matrix

The equilibrium equations of an elastic body can be obtained with ease by using the principle
of virtual work:

δLint = δLext (14)

where Lint stands for the strain energy, Lext is the work of the external loads, and δ represents
the virtual variation. Given the stress (σ), couple stress (µ), strain (ε) and twist (χ) vectors
as in Eq. (2), the virtual variation of the internal strain energy can be written as

δLint =

∫
V

(
(δεTσ) + (δχTµ)

)
dV (15)

V = Ω × L is the volume of the beam structure. Introducing CUF (Eq. (11)) and FEM
(Eq. (12) relations into Eq. (9), the strain and twist vectors can be written in algebraic form
as follows:

ε = (Bsj
m1)qsj, χ = (Bsj

m2)qsj (16)

where Bsj
m1 and Bsj

m2 are the following algebraic matrices:
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Bsj
m1 = bm1(FsNj) =



F s,xNj 0 0 0 0 0

0 F sNj,y 0 0 0 0

0 0 F s,zNj 0 0 0

F sNj,y 0 0 0 0 F sNj

0 F s,xNj 0 0 0 −F sNj

F s,zNj 0 0 0 −F sNj 0

0 0 F s,xNj 0 F sNj 0

0 F s,zNj 0 F sNj 0 0

0 0 F sNj,y −F sNj 0 0



(17)

Bsj
m2 = bm2(FsNj) =



0 0 0 F s,xNj 0 0

0 0 0 0 F sNj,y 0

0 0 0 0 0 F s,zNj

0 0 0 F sNj,y 0 0

0 0 0 0 F s,xNj 0

0 0 0 F s,zNj 0 0

0 0 0 0 0 F s,xNj

0 0 0 0 F s,zNj 0

0 0 0 0 0 F sNj,y



(18)

Substituitting Eq. (16) and the constitutive equations for elastic materials (Eq. (3)) into
Eq. (15), one has:

δLint = δqTτi
∫ (

(Bτi
m1)TC(Bsj

m1) + (Bτi
m2)TA(Bsj

m2)
)
dV qsj

= δqTτi K
ijτs qsj

(19)

where Kijτs is the stiffness matrix. This matrix is given in terms of fundamental nucleus,
which consists in a 6×6 matrix that, given the theory approximation order i.e., given the
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cross-sectional functions (Fτ = Fs, for τ = s) and the shape functions (Ni = Nj, for i = j),
can be expanded by using the indexes τ, s = 1, ...,M and i, j = 1, ..., p+ 1 in order to obtain
the element stiffness matrices of any arbitrarily refined beam model. In other words, by op-
portunely choosing the beam kinematics, classical to higher-order beam theories and related
stiffness array can be implemented in an automatic manner by exploiting the index notation
of CUF. The expression of the matrix in Eq. (19) is given in Appendix A.

4 Numerical results

4.1 Assessment

The capability of the proposed unified theory of structure based on ME is demonstrated by
the comparison with literature results. In the first analysis case, a cantilever, rectangular
cross-section beam undergoing a vertical loading was considered. The reference solution of
this analysis case comes from the work by Ramezani [25]. The beam is made by an isotropic

L

h

b
(a)

A

P

(b)

Figure 1: Geometric properties (a), loading condition and LE cross-section model (b) for the
first analysis case.

material with Young modulus E = 20 GPa and Poisson modulus ν = 0.3. The values of
the additional micropolar material parameters are those adopted in the reference paper, i.e.

α =
G

40
and ε = γ =

G

104
. Due to the different form of the constitutive relations between

the present work and the reference one, the value of the β parameter is missing. However,
static analyses were conducted with various values of the β and the results did not show any
dependency from that value. Figure 1(a) shows the geometric conditions of the beam, where
the aspect ratio L/h is equal to 10, and the aspect ratio of the cross-section h/b is equal to
4. One nine-node L9 Lagrange polynomial were adopted to discretize the cross-section as
shown in Fig. 1(b). A preliminary convergence analysis was conducted to demonstrate the
stability of the proposed FE approach when applied to Micropolar Elasticity (ME). Figure
2 shows non-dimensional displacements and micro-rotations for different mesh sizes and B4
beam elements. For all the cases considered, 10 B4 elements sufficed to meet convergence.
Nevertheless, it is well known that FEs can be affected by instabilities and locking phenomena
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in the case of ME and further assessment will be made in a future dedicated work. Figure 3

 0.94

 0.96

 0.98

 1

 0  10  20  30  40

u*

Number of elements
(a)

 7.1

 7.15

 7.2

 7.25

 7.3

 0  10  20  30  40

ω
*1

04

Number of elements
(b)

Figure 2: Convergence analysis of B4 FEs on the non-dimensional displacement (a) and

micro-rotation (b) at the free edge of the beam. u∗ =
3EIu(y)

FL3

shows the static results of the displacement and micro-rotation of point A (see Fig. 1(b))
obtained by the proposed model and by the reference paper. The results match both in
terms of displacement and micro-rotation, although there is an oscillatory behavior from the
reference solution, that has no physical meanings, as also revealed by Hassanpour and Heppler
[26]. Finally, in Fig. 3(a), the solution obtained using the present LE and classical elasticity
is illustrated, to highlight the difference from the ME.
The second numerical result deals with a comparison with the results obtained by Hassanpour
and Heppler [26]. A cantilever, square cross-section beam was analyzed, but in this analysis
case, the clamped unknowns were only the displacements, while the micro-rotations were
set free. The geometric properties and the loading condition are shown in Fig. 4, along
with the discretization adopted (one L9 Lagrange polynomial) over the cross-section. The

material properties are the following,
α

E
= 10−2,

γ

E
=

ε

E
= 2.5 × 10−4,

P

EA
= 5 × 10−6,

and
L√
I

A

= 10, where A is the area of the cross-section. The static solutions using both

CE and ME are shown in Fig. 5(a), where circles represent the solution proposed by the
reference paper, and it can be seen that the results offered by the present paper follow the
reference trend with high accuracy. In Fig. 5(b), the trend of the micro-rotations is shown. It
is important to note that the micro-rotation in the clamped zone is not null because only the
displacement variables are set to zero. It can be seen that the trend of the solution from the
reference paper is reproduced by the present model. Note that the reference solution is based
on the Timoshenko theory, while the present solution refers to an higher-order theory, so the
slight discrepancy between the two solutions is due to the deformation of the cross-section,
which cannot be taken into account from the reference model.
As an additional analysis, the trend of the normal and shear stress components is proposed
in the following. Non-dimensional values of σY Y h2/P and σY Z h2/P were evaluated along
the thickness of three cross-sections of the beam, at the clamped zone (y = 0.1L), at the
mid-span of the beam (y = 0.5L) and at the free end (y = 0.9L). Table 1 shows the values of
the axial stress component and the same values are reported in Fig. 6. The values from the
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Figure 3: Non-dimensional displacement (u∗ =
3EIu(y)

FL3
) over non-dimensional coordinate

(y∗ =
y

L
) (a) and micro-rotations [rad] over non-dimensional coordinate (b). Present results

are compared to the ones from Ramezani [25] and to the results using CE. α =
G

40
and

ε = γ =
G

104
.

L

h

(a)

A

P

(b)

Figure 4: Geometric properties (a), loading condition and LE cross-section model (b) for the
second analysis case.
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Figure 5: Non-dimensional displacement (u∗ =
3EILu(y)

FAL2
) over non-dimensional coordinate

(y∗ =
y

L
) (a) and micro-rotations [rad] over non-dimensional coordinate (b). Present results

are compared to the ones from Ramezani [26] and to the results using CE.
α

E
= 10−2,

γ

E
=

ε

E
= 2.5× 10−4.

σY Y h
2/P

y=0 y=0.5L y=L
z/h CE ME CE ME CE ME

0.500 15.28 14.88 8.663 8.259 1.938 1.841
0.333 10.19 9.920 5.775 5.506 1.292 1.227
0.167 5.090 4.960 2.888 2.735 0.646 0.614
0.000 0.000 0.000 0.000 0.000 0.000 0.000
-0.167 -5.090 -4.960 -2.888 -2.735 -0.646 -0.614
-0.333 -10.19 -9.920 -5.775 -5.506 -1.292 -1.227
0.500 -15.28 -14.88 -8.663 -8.259 -1.938 -1.841

Table 1: Values of the axial stress σY Y h
2/P component adopting both CE and ME solutions

along the non-dimensional thickness z/h of three cross-section of the beam. 1L9 LE model.
α

E
= 10−2,

γ

E
=

ε

E
= 2.5× 10−4.
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Figure 6: Distributions of the axial stress σY Y h2/P component adopting both CE and

ME solutions along the thickness (z∗ = z/h) of the beam. 1L9 LE model.
α

E
= 10−2,

γ

E
=

ε

E
= 2.5× 10−4.

ME solution is always lower than the ones from the CE solution, proving that a portion of the
energy coming from the external force is absorbed by the work of the micro-rotations. Shear
stress, σY Z and the σZY components distributions from CE and ME along the beam thickness
at the mid-span beam cross-section, y = 0.5L, are depicted in Fig. 7. For their evaluation,
1L16 LE cross-section model was used, instead of the 1L9 adopted for the calculation of the
displacement, micro-rotation and the axial component of the stress. The reason is that the
L9 model cannot accurately describe the quadratic distribution of the shear stress, so the
adoption of a cubic interpolation, provided by a L16 LE, is mandatory, see [38, 41].

4.2 Effect of micropolar mechanical properties

In this section, the influence of the additional micropolar material parameters on the response
of beam structures is addressed. The geometric, material and loading conditions are the same
as in the previous analysis case. The elastic constants E and ν are taken as constant, while
varying the micropolar parameters α, γ and ε. In the first analysis, the α parameter was
varying, whereas γ and ε were fixed. The results are shown in Fig. 8, which gives the value
of the ratio between the transverse displacement from CE and ME over the logarithmic value
of the α parameter. When the value of the parameter decreases, the ratio increases. So, the
lower is α, the closer is the solution between the two elasticity theories. On the contrary,
increasing the value of the α parameter, the difference increases as well. Figure 9 shows the
influence of the values of parameters γ and ε. As in the previous case, the ratio between
the transverse displacement components from CE and ME is shown, over the values of the
two additional material micropolar parameters. The trend is similar to the one shown in
the previous figure. Finally, note that the effect of the variation of ε and γ is more evident
than the variation of α. As a further analysis, the influence of the length of the beam was
evaluated. Figure 10 shows the trend of the percentage difference between CE and ME for
very short to long beams. The cross-section geometry changes every analysis according to the
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Figure 7: Trend of the transverse stress σY Z h2/P component adopting both CE and ME

solutions along the thickness (z∗ = z/h). 1L9 LE beam model.
α

E
= 10−2,

γ

E
=

ε

E
=

2.5× 10−4.
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Figure 9: Influence of γ and ε on the static response of the cantilever beam.

length of the beam, keeping fixed the value of the parameter
L√
I

A

= 10. From the results

shown in the figure, it is clear that the length of the beam has a strong influence on the static
solution of the ME, that has higher importance when the scale of the beam is low.
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Figure 10: Influence of the length of the beam on the static response of the cantilever beam.

4.3 Human bone specimen

The following case deals with the analysis of a human bone specimen. The geometric and
material properties come from the work of Yang and Lakes [20] and Lakes [42]. The human
bone specimen selected in this case was modeled as a cylinder with a circular cross-section,
which can be seen in Fig.11(a). The bone is made by a material with Young modulus E =
14.1 GPa, G = 4000 GPa, γ = 2487 N, ε = 0 N and α = 7428 N/mm2. The structure is
subjected to clamped-free boundary condition and undergoes a transverse load. The diameter
d is equal to 7 mm, and the total length of the bone is 53.4 mm. 12L9 Lagrange polynomials
were adopted to discretize the cross-section, as displayed in Fig.11(b), along with the pattern
of the points. Displacement on the z-direction and micro-rotation of the middle point of
the cross-section, shown in Fig. 11(b), are given in Figure 12. Figure 12(a) compares the
displacement calculated with both CE and ME over the beam axis coordinate. The percentage
difference between the two solutions calculated at the tip of the beam is 8.2%, that is higher
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Figure 11: Geometric properties, loading condition (a) and LE cross-section model (b) for
the human bone specimen analysis case.

than the ones from the previous cases described in the previous sections. This behavior proves
how a micropolar approach describes the behavior of the human bone better than the CE, as
already stated by the reference paper. Figure 12(b) shows the value of the micro-rotation of
the same point over the beam axis coordinate. Finally, an analysis of the force stress is given
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Figure 12: Non-dimensional displacement (u∗ =
3EILu(y)

FAL2
) over non-dimensional coordinate

(y∗ =
y

L
) (a) and micro-rotations [rad] over non-dimensional coordinate (b). Present ME

results are compared to the ones using CE. E = 14.1 GPa, G = 4000 GPa, γ = 2487 N, ε =
0 N and α = 7428 N/mm2.

hereafter. Figure 13 shows the normal stress σY Y h3/PL component over the thickness of
the beam for three cross-sections at 0.1 L, 0.5 L and 0.9 L. The figure shows a similar trend
than in the previous cases, and it shows a very slight difference between the two solutions.
Finally, Fig. 14 show the transverse σY Z h2/P component over the thickness at the middle
cross-sections of the beam. The difference between the solutions is mainly at the center of
the beam, where the σY Z and the σZY components reach lower values than the shear stress
calculated with the CE.
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Figure 13: Trend of the axial stress σY Y h
2/P component adopting both CE and ME solutions

along the thickness (z∗ = z/h). E = 14.1 GPa, G = 4000 GPa, γ = 2487 N, ε = 0 N and α
= 7428 N/mm2.
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5 Conclusions

A unified theory of structures based on Micropolar Elasticity (ME) has been proposed in this
work. This theory has been developed in the framework of the Carrera Unified Formulation
(CUF), which allows the 3D generalized displacements to be expressed as an arbitrary expan-
sion of the primary variables. The ME can overcome the problems deriving from the adoption
of Classical Elasticity (CE), such as the identification of local and size-effects, with the in-
troduction of the micro-rotation vector as an unknown for every particle of the structure and
four additional material parameters. The results demonstrate the validity of the proposed
approach, trough a comparison with literature results, both in terms of displacements and
micro-rotations. Stress distributions are considered as well, to compare the results between
CE and ME. An analysis of the influence of the material parameters and the length of the
beam has been conducted, highlighting the importance of adopting the ME. Finally, the adop-
tion of ME for the analysis of a human bone specimen has been discussed, highlighting the
differences between CE and ME.
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Gesellschaft der Wissenschaften zu Göttingen, 1887.

[14] E. Cosserat and F. Cosserat. Théorie des corps déformables. A. Hermann et fils, Paris,
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Appendix A Components of the secant stiffness matrix
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