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Abstract 

The work evaluates the optimal properties of friction pendulum system (FPS) bearings for the 

seismic protection of bridge piers under earthquake excitations having different frequency 

characteristics representative of different soil conditions in order to reduce the seismic vulne-

rability of infrastructures. A two-degree-of-freedom model is adopted to describe, respective-

ly, the response of the infinitely rigid deck isolated by the FPS devices and the elastic 

behavior of the pier. By means of a non-dimensional formulation of the motion equations, a 

wide parametric analysis for several structural parameters is carried out. Seismic excitations, 

modelled as time-modulated filtered Gaussian white noise random processes having different 

intensities and frequency contents, are considered. Specifically, the filter parameters, which 

control the frequency contents, are properly calibrated to reproduce stiff, medium and soft 

soil conditions, respectively. Finally, the optimum values of the sliding friction coefficient 

able to minimize the pier displacements with respect to the ground are derived as a function 

of the structural properties, of the seismic input intensity and of the soil condition.  

 

 

Keywords: Bridge, Seismic Isolation, Soil Condition, Performance, Optimal friction coeffi-

cient. 

 

 

mailto:mripani@fi.uba.ar
mailto:r.lopriore@hotmail.it


P. Castaldo, M. Ripani and R. Lo Priore 

1 INTRODUCTION 

Seismic isolation of bridges makes it possible to uncouple the deck from the horizontal 

components of the earthquake motion, leading to a substantial reduction of the deck accelera-

tion and, consequently, of the forces transmitted to the pier [1]-[4]. In the last years, friction 

pendulum system (FPS) devices have often been preferred to other isolators for their capabili-

ty of providing an isolation period independent of the mass of the supported structure, their 

capacity to assure high dissipation and recentering, and their longevity and durability proper-

ties [5]-[12]. In [13], with reference to an equivalent two-degree-of-freedom (2dof) model for 

base-isolated building frames, a non-dimensionalization of the motion equation considering 

different isolator and system properties has been proposed. Contextually, other studies have 

been focused on the seismic response of bridge isolated with sliding pendulum isolators hig-

hlighting the advantages [14]-[15]. Moreover, other works have been more oriented to devel-

op design approaches for the isolators and to identify the optimal isolator properties. In this 

context, the seismic reliability-based design (SRBD) approach has been proposed and widely 

discussed in [16]-[22] as a new methodology useful to provide design solutions for seismic 

devices taking into account the main uncertainties relevant to the problem. Jangid [23], as-

suming a stochastic model of the earthquake ground motion, considered the seismic perfor-

mance of a bridge equipped with FPS devices, characterized by a Coulomb behavior, 

illustrating that there exists an optimal value of the friction coefficient for which the pier base 

shear and deck acceleration can be minimized. Other works (e.g., [24]-[26],[27]) concerning 

isolated bridges have also demonstrated that soft soil condition leads to a higher demand in 

terms of displacements and shear forces by negatively influencing the isolated systems. In 

[28], the optimal values of the friction coefficient taking into account the influence of the 

ground motion characteristics by means of the ratio between the Peak Ground Acceleration 

(PGA) and the Peak Ground Velocity (PGV) have been proposed. 

This work investigates the influence of soil characteristics in terms of frequency content on 

the seismic performance of bridges isolated with FPS isolators to define the optimal sliding 

friction coefficients. The two-degree-of-freedom model, as employed in [14],[29] is used for 

this purpose as an equivalent model representative of the dynamic behaviour of a single-

column bent viaduct to describe, respectively, the seismic response of the infinitely rigid deck 

isolated by the FPS devices and of the elastic behavior of the pier. In compliance with the 

non-dimensionalization of the motion equations presented for base-isolated building frames in 

[13], in this study, a non-dimensionalization of the motion equations for isolated bridges is 

proposed in order to carry out a wide parametric analysis considering different values of the 

structural properties and three different sets of artificial ground motion records. These latter 

ones are modelled as non-stationary stochastic processes and generated through the power 

spectral density method [30], with different frequency contents corresponding to stiff, me-

dium and soft soil conditions [31], respectively. Specifically, for each set of the random exci-

tations, numerical simulations are executed to estimate the influence of the characteristic 

system and isolator properties on the response parameters relevant to the structural perfor-

mance. Then, the optimal values of the sliding friction coefficient, able to minimize the pier 

displacements relative to the ground, are defined as a function of the structural parameters, of 

the seismic input intensity and of the soil condition.  

2 NON-DIMENSIONAL MOTION EQUATIONS FOR ISOLATED BRIDGES  

Assuming an equivalent 2dof model, the motion equations governing the response of a 

bridge equipped with single concave FPS devices (Figure 1), subjected to the seismic input 

 gu t , apply: 
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where 
du  denotes the displacement of the deck relative to pier, 

pu  the pier displacement rela-

tive to the ground, dm  and 
pm  respectively the mass of the deck and of the pier bridge, 

pk  

and 
pc  respectively the pier stiffness and inherent viscous damping coefficient, dc  the bear-

ing viscous damping factor, t  the time instant, the dot differentiation over time, and  bf t  

indicates the FPS force, that can be evaluated as: 

           sgnb d d d d df t k u t u m g u +     (2) 

where / /d dk W R m g R  , g  is the gravity constant, R is the radius of curvature of the FPS, 

  du t  the sliding friction coefficient, which depends on the bearing slip velocity  du t , 

and sgn(∙) denotes the sign function. It follows that, similarly to base-isolated structures [13], 

the fundamental vibration period of an isolated bridge, 2 /dT R g , corresponding to the 

pendulum component, is independent of the deck mass and related only to the radius of curva-

ture R. 

According to [8]-[10], the sliding friction coefficient of teflon-steel interfaces can be ex-

pressed as: 

       max expd du f Df u         (3) 

where maxf  and min maxf f Df   represent, respectively, the maximum value of sliding fric-

tion coefficient attained at large velocities and the value at zero velocity. In this study, it is 

considered that max min3f f  with the exponent   equal to 30 [13]. Considering the maximum 

value of the sliding friction coefficient, the effective stiffness of the FPS bearings 

 max1/ /eff dk W R f u   as well as the corresponding effective isolated period d,effT  [32],[33] 

(Fig. 1) can be computed depending on the displacement demand. Note that Eqn.(1) does not 

consider the effects of the higher modes due to flexibility of the pier and is verified if only the 

horizontal component of the bearing displacement is considered [18] (i.e., high radii of curva-

ture R). Furthermore, the equivalent 2dof model [14],[29] can be assumed representative of 

the dynamic behaviour of a single-column bent viaduct as long as the bridge is straight and 

consists of a large number of equal spans, of piers with equal height/stiffness and considering 

a superstructure (deck) that can be assumed to move as a rigid body [34].  

Let us introduce the time scale dt   in which /d d dk m   is the fundamental circular 

frequency of the isolated system with infinitely rigid superstructure, and the seismic intensity 

scale 0a , expressed as 0( ) ( )gu t a   where ( )  is a non-dimensional function of time de-

scribing the seismic input time-history, the following non-dimensional equations can be ob-

tained and herein proposed for isolated bridges: 
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where /p p pk m   and / 2p p p pc m   represent respectively the circular frequency and 

damping factor of the pier bridge; / /d d dk m g R    and / 2d d d dc m   are respec-

tively the circular frequency and the isolator damping factor of the FPS isolator; /p dm m   

[14],[29],[32] the mass ratio. The non-dimensional parameters 
2

0

d d
d

u

a


   and 

2

0

p d

p

u

a


   

describe the dynamic response of the deck and the pier, respectively. From Eqn.(4), it is poss-

ible to observe that the five non-dimensional   terms [13],[35]-[36] that govern the system 

non-dimensional response are: 

   
 

0

, , , ,
d p

p d

d d p

d

u g

a
    

 
   


           (5a,b,c,d,e) 

where   represents the isolation degree [32],[37],   is the mass ratio as previously de-

fined, 
p

  and 
d

  are related to the inherent viscous damping of the pier and the isolator, 

respectively,   denotes the isolator strength which depends on both the friction coefficient 

 du  and the seismic intensity. Since the sliding friction coefficient is a velocity-dependent 

parameter,   is considered as follows [13]:  

     * max

0

f g

a
        (6) 

From Eqn.s(4)-(6), note that only the non-dimensional terms 
d

 ,
p

 ,  ,  , *

 , the 

function   , describing the frequency content and time-modulation of the seismic input, 

and the time scale parameter d  influence the non-dimensional seismic response of the bridge 

system isolated by FPS.  
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Figure 1: 2dof model of a bridge isolated by FPS bearings. 

3 UNCERTAINTIES RELATED TO THE SEISMIC INPUT 

This section describes the stochastic model employed for the generation of the artificial 

ground motions in order to reproduce the uncertainty in terms of frequency characteristics for 

different soil conditions as well as the uncertainty corresponding to the seismic intensity. 
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3.1 Random excitations  

The "record-to-record" variability in terms of the dynamic characteristics of different seismic 

inputs related to stiff, medium and soft soil conditions, respectively, is herein described by 

means of three corresponding wide groups of artificial records having different frequency 

contents. These artificial inputs are modelled as time-modulated filtered Gaussian white noise 

random processes [30],[38] within the power spectral density (PSD) method [39] by adopting 

the Kanai-Tajimi model [40]-[41], modified by Clough and Penzien [42],[26],[43]-[53], as 

follows: 

   

4 2 2 2 4

02 2 2 2 2 2 2 2 2 2

4
( )

( ) 4 ( ) 4

g g g

f

g g g f f f

S S
    


         


 

   
   (7) 

in which 0S  is the amplitude of the bedrock excitation spectrum, modeled as a white noise 

process; 
f  and 

f  are the Clough-Penzien filter parameters assumed as deterministic values, 

set equal to 1.6f  (rad/s) and 0.6f  ;   is the circular frequency, assumed varying in the 

range 0 and 50 rad/s; g  and g  represent the fundamental circular frequency and damping 

factor of the soil, respectively, assumed as uniformly distributed independent random vari-

ables with appropriate ranges of variation [31],[54] as follows: g  varies in the range 5-9 

rad/s (high frequency/short period) with g =0.6-1 for stiff soil condition, g  is assumed 

ranging between 3 rad/s and 5 rad/s (intermediate frequency/ period) with g =0.4-0.6 for 

medium soil condition, and, finally, g  ranges from  to 3 (low frequency/high period) with 

g =0.2-0.4 for soft soil condition. Specific sampling techniques [47]-[52] are used to sample 

the data. Assuming the same duration [55],[56] equal to 31.25 s, longer than 25s as provided 

from [57], the Shinozuka-Sato function [58] is adopted as time-modulating function in order 

to define non-stationary stochastic processes for each set corresponding to each soil condition. 

Specifically, 100 artificial (non-stationary stochastic processes) records, generated through the 

Spectral Representation Method [30] and reflecting the wide uncertainty in terms of frequen-

cy content for each soil type [31],[54],[59] are defined for each soil condition.  
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Figure 2: PSD functions corresponding to stiff, medium and soft soil conditions (a); Pseudo-

acceleration response spectra for the 300 records scaled to the common seismic intensity 

measure SA(T) = 0.1 g, for T=4s (b). 
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Note also that, for each set of artificial records a high number of random excitations is defined 

in order to highly reduce the standard errors of the statistics of the response parameters [18]. 

As an example, Fig.s 2(a)-(b) show, respectively, the sampled PSD functions and the elastic 

pseudo-acceleration response spectra of the 300 artificial records, scaled to the common IM 

value SA(T) = 0.1g, for a period T = 4s. 

3.2 Intensity measure  

In order to take into account the uncertainty related to the seismic intensity, the intensity scale 

factor, 0a , of Eqn.(4), represents the seismic intensity measure (IM) in the context of the per-

formance-based earthquake engineering (PBEE) [60],[61]. In this study, the abovementioned 

IM is denoted by the spectral pseudo-acceleration,  ,A d dS T  , corresponding to the isolated 

period of the bridge 2 /d dT    with the damping ratio 
d d   . Note that, in the analyses 

herein developed, the damping ratio d  is set equal to zero [13],[23],[63] and the correspond-

ing IM is hereinafter denoted as  A dS T . 

4 PARAMETRIC STUDY 

This section describes the results of the parametric study carried out on the system of Figure 1 

to evaluate the seismic performance of bridge isolated with FPS bearings for different struc-

tural properties and soil conditions. The first subsection describes the response parameters 

relevant to the seismic performance, whereas the final subsection illustrates the parametric 

study results. More details may be found in [62]. 

4.1 Non-dimensional response parameters relevant to the seismic performance as-

sessment 

The following response parameters relevant to the seismic performance assessment of iso-

lated bridges are considered: the peak deck displacement relative to the pier d,maxu , the peak 

pier displacement p,maxu . These latter ones can be defined in non-dimensional form, as ex-

pressed in Eqn. (4), as: 

       

22
p,max p,maxd,max d,max

 ,   
d p

dd
u u

A d d d A d d d

u uu u

S T S T S T S T


        (8a,b,c,d) 

For each soil condition (i.e., set of the 100 ground motion records), Eqn. (4) is repeatedly 

solved computing a set of samples for each response parameter. As also described in [13]-

[22],[63]-[64], the response parameters are modeled in probabilistic terms by means of a log-

normal distribution. Specifically, the generic response parameter D (i.e., the extreme values 

du , 
pu  of Eq. (4)) can be fitted by a lognormal distribution estimating the sample geomet-

ric mean,  GM D , and the sample lognormal standard deviation  ln D , or dispersion 

 D , defined, respectively:  

       1 ...N
NGM D d d        (9) 

    
     

2 2

1

ln

ln ln ...... ln ln

1

         
 



Nd GM D d GM D
D D

N
    (10) 
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in which di is the i-th sample value of D, and N represents the total number of samples. The 

kth percentile of the generic response parameter D can be evaluated as: 

     exp[ ( ) () )( ]kd f kGM D D     (11) 

where ( )f k  is a function that assumes the following values (50) 0f  , (84) 1f   and 

(16) 1f    [65], for the 50th, 16th and 84th percentile, respectively.  

4.2 Parametric study results for each soil condition 

In this section, the results of the parametric study developed using the proposed non-

dimensionalization, for the different structural properties and for each set of 100 records, are 

illustrated and discussed. According to several studies [1]-[2],[4],[14]-[15],[29],[66]-[70], the 

parameters 
d d    and 

p p    are assumed respectively equal to 0% and 5%, the isolation 

period Td varies in the range between 2s and 4s, the pier period Tp ranges from 0.05s to 0.2s, 

    varies between 0.1 and 0.2, *

  ranges between 0 (no friction) and 2 (very high fric-

tion) [13]. Other uncertainties [71]-[76] are not considered. Indeed, a high value for the upper 

bound of *

  is considered in order to take also into account the very low values of the IM at 

high isolated periods (i.e., Td=4s) depending on the seismic hazard [57]. For each parameter 

combination, the differential motion equations, i.e., Eqn. (4), have been repeatedly solved 

adopting the Bogacki-Shampine integration algorithm available in Matlab-Simulink [77]. Af-

ter that, for each normalized response parameter, the geometric mean, GM, and the dispersion, 

, have been evaluated through Eqns. (9) and (10) and are plotted in Figs. 5-12 for each soil 

type. Each figure contains several meshes, corresponding to the different  . The results for 

deck and pier displacements related to the all pier periods are reported. 

Figs. 5-8 plot the results concerning the normalized deck displacement 
du , related to differ-

ent pier period values.  
duGM   is quite perfectly equal to unit for * 0   and pT = 0.05 be-

cause of the very reduced influence of the pier behaviour. For * 0  , and  
duGM   

increases slightly for increasing dT  because of the period elongation. Obviously,  
duGM   

decreases significantly as *

  increases while it is not heavily influenced by  . For soft soil 

condition and low *

  values, the decrease of  
duGM   for increasing *

  is more gradual, 

while, for high *

  values  
duGM   increases in the case of stiff soil, especially, for high pT  

values due to the pier influence. The dispersion  
du   for high dT  increases for increasing 

values of *

 , as a result of the reduction of the efficiency of the IM employed in the study for 

each soil condition. Moreover, with reference to soft soils, the values of  
du   also result to 

be the highest for low or high values of both dT  and *

 . Obviously, in the reference situation 

corresponding to * 0   and pT =0.05s, the dispersion is zero for all the values of dT  and of 

  considered and for all the soil conditions. The mass ratio   does not affect significantly 

the response dispersion, especially in the case of high pT  values.  
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Figure 5: Normalized deck displacement vs. 

and Td for Tp =0.05s and each soil condition: 

median value (a,b,c) and dispersion (d,e,f) for different values of l. The arrow denotes the 

increasing direction of . 
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Figure 6: Normalized deck displacement vs. 

and Td for Tp =0.1s and each soil type: me-

dian value (a,b,c) and dispersion (d,e,f) for different values of l. The arrow denotes the in-

creasing direction of . 
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Figure 7: Normalized deck displacement vs. 

and Td for Tp =0.15s and each soil type: me-

dian value (a,b,c) and dispersion (d,e,f) for different values of l. The arrow denotes the in-

creasing direction of . 

The above described peak values of both  
duGM   and  

du   in the case of soft soil condi-

tion are high due to the resonance effects which mainly affect the effective frequency charac-

tering the dynamic behaviour of the frictional bearings and the dominant frequency of the 

corresponding random excitations. 

Figs. 8-12 show the response statistics of the normalized pier displacements 
pu .  

puGM   

decreases for increasing values of dT  and of   as well as for decreasing values of pT , 

whereas it first decreases and then increases for increasing values of *

 . Thus, this means 

that there exists an optimal value of the normalized friction coefficient *

  such that the pier 

displacement is minimized for each soil condition. This optimal value is in the range between 

0.1 and 0.3 and depends on the values of pT , dT ,   and on the soil condition. Differently to 

the case of base-isolated systems, there is not a particular and specific trend of the optimal 

friction coefficients from stiff to soft soil condition, as discussed later in detail. There is a fur-

ther increase in the value of  
puGM   from soft soil to stiff soil due to resonance effects, es-

pecially, for lower values of dT . The values of the dispersion  
pu   are very low for low 

*

  values due to the high efficiency of the IM used in this work, and attain their peak for 

values of *

  close to the optimal ones. The other system parameters have a reduced influ-

ence on  
pu   compared to the influence of *

 . For the soft soil condition, the dispersion 

 
pu   strongly increases for increasing values of *

  for low isolation period and for higher 

pier periods because of the resonance effects which mainly affect the effective frequency of 

the frictional bearings and the dominant frequency of the corresponding random excitations.  

As observed in similar studies [13],[23],[78]-[81], the existence of an optimal value of the 

friction coefficient derives from a combination of different effects. Indeed, an increase of the 

sliding friction coefficient leads to higher isolator strengths (and thus higher values of the 

equivalent stiffness, with a lowering of the corresponding effective fundamental vibration pe-

riod (Fig.1)) and higher forces towards the deck. This also leads to an increase in the forces 

transmitted to the pier bridge due to inertial effect, relative to deck mass, on the pier. 
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Figure 8: Normalized deck displacement vs. 

and Td for Tp =0.2s and each soil type: me-

dian value (a,b,c) and dispersion (d,e,f) for different values of l. The arrow denotes the in-

creasing direction of . 
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Figure 9: Normalized pier displacement vs. 

and Td for Tp =0.05s and each soil condition: 

median value (a,b,c) and dispersion (d,e,f) for different values of l. The arrow denotes the 

increasing direction of . 
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Figure 10: Normalized pier displacement vs. 


and Td for Tp =0.1s and each soil condition: 

median value (a,b,c) and dispersion (d,e,f) for different values of l. The arrow denotes the 

increasing direction of . 
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Figure 11: Normalized pier displacement vs. 


and Td for Tp =0.15s and each soil condition: 

median value (a,b,c) and dispersion (d,e,f) for different values of l. The arrow denotes the 

increasing direction of . 
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Figure 12: Normalized pier displacement vs. 

and Td for Tp =0.2s and each soil condition: 

median value (a,b,c) and dispersion (d,e,f) for different values of l. The arrow denotes the 

increasing direction of . 

However, the forces transmitted to the substructure also depend on the bearing displacements, 

which decrease as the friction coefficient increases. An increase of the forces transmitted to 

the substructure generally increases the substructure displacements. Contextually, another ef-

fect is the increase in terms of energy dissipation (equivalent damping), which reduces the 

substructure displacements. The balance between these effects defines the optimal friction 

coefficient of the FPS devices.  

5 OPTIMAL SLIDING FRICTION COEFFICIENTS FOR ISOLATED BRIDGES 

DEPENDING ON SOIL CONDITIONS 

From the results defined in the previous section, for each parameter combination (i.e., 

  dT  and pT ) and soil condition, the optimal values of the normalized sliding friction coef-
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ficient, *
,opt , that minimize the median (50

th
 percentile) normalized pier displacements 

pu  

have been computed and are illustrated in Fig. 13. Minimizing the pier displacements relative 

to the ground represents a notable design requisite for the safety of bridges in order to assure 

an adequate seismic protection. In fact, an inelastic response of the pier can lead to a dispro-

portionately large displacement response that could also be amplified in the case of the reson-

ance effects. Figure 13 shows the variation of *
,opt  with  and 

pT  for dT = 2s (Figure 

13a,b,c) and dT = 4s (Figure 13d,e,f), for the three soil conditions.  
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Figure 13: Optimal values of normalized friction that minimize the 50
th

 percentile of the nor-

malized pier displacements vs. land Tp for each soil type and for Td =2s (a,b,c) and Td =4s 

(d,e,f). 
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According to [23], the optimal values of the (normalized) sliding friction coefficient slightly 

increase for decreasing dT , especially for low 
pT  and for each soil condition. It is also ob-

served that, for low dT , *
,opt  generally decreases by increasing   and 

pT . This trend is 

reversed with increasing of 
dT  and soil stiffness, when it is necessary to dissipate more energy, 

due to the resonance effects.  
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Figure 14: Optimal values of normalized friction that minimize the 84
th

 and 16
th

 percentiles of 

the normalized pier displacements vs. land Tp for each soil type and for Td =2s (a,b,c) and 

Td =4s (d,e,f). 

As previously discussed, it is also possible to observe that higher values of the optimum fric-

tion coefficient are required, especially for low isolated periods, for soft soil condition in or-

der to reduce the bearing displacements and, consequently, the forces transmitted to the pier 
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as well as to increase the energy dissipation (equivalent damping). A reversal of this trend oc-

curs for high values of both the isolation period and pier period, when it is necessary to dissi-

pate more seismic energy input due to the resonance effect that affects the pier for stiff soil 

condition. In order to assure a high safety level, it might be of interest to define the values of 
*

,opt  that minimize others response percentiles [63]. Fig. 14 shows the optimal values of 

normalized friction that minimize the 84
th

 and 16
th

 percentiles of the normalized pier response 

for the different values of   
pT , dT = 2s (Fig. 14a,b,c), dT = 4s (Fig. 14d,e,f) and for the 

three soil conditions. The trend is similar to the case of the 50
th

 percentile. Regression expres-

sions as statistics equations [82]-[87] to estimate the optimal friction coefficient may be found 

in [62]. 

6 CONCLUSIONS  

This paper describes the seismic performance of elastic bridge pier equipped with friction 

pendulum system (FPS) bearings in order to define the optimal isolator friction properties as a 

function of the structural properties and of the soil characteristics in terms of frequency con-

tent, corresponding to stiff, medium and soft soils, respectively. Assuming an equivalent two-

degree-of-freedom model, representative, respectively, of the dynamic behaviour of a single-

column bent viaduct, describing a continuous and infinitely rigid deck with an elastic pier, 

and the velocity-dependent FPS isolator behaviour, a non-dimensionalization of the motion 

equations is herein proposed. For each soil type, the uncertainty in the seismic inputs is taken 

into account by means of a set of 100 artificial non-stationary stochastic records, obtained 

through the power spectral density method, with different frequency content. By means of the 

proposed non-dimensionalization, a wide parametric analysis is developed for several isolator 

and pier properties, and for different soil conditions, by monitoring the response parameters of 

interest. 

With reference to the deck response, the geometric mean of the normalized deck displace-

ment increases slightly for increasing isolation period because of period elongation and it de-

creases significantly as normalized friction increases while it is not heavily influenced by the 

mass ratio. The dispersion for high isolation period increases for increasing values of normal-

ized friction. The mass ratio does not affect significantly the response dispersion, especially 

for high pier periods. There are resonance effects for soft soil condition and low normalized 

friction values, and for stiff soil condition and high normalized friction values, particularly, 

for higher values of the pier period. 

With reference to the pier response, the geometric mean of the normalized displacement 

decreases for increasing values of isolation period and of mass ratio as well as for decreasing 

values of pier period, whereas it first decreases and then increases for increasing values of 

normalized friction. Thus, there exists an optimal value of normalized friction coefficient such 

that the pier displacement is minimized for each soil condition. This optimal value varies in 

the range between 0.1 and 0.3 depending on the system parameters and the soil type. The val-

ues of the dispersion are generally very low. The other system parameters have a reduced in-

fluence on the dispersion compared to the influence of the normalized friction. There are 

resonance effects for the stiff soil condition with increasing normalized friction values, par-

ticularly, for higher values of pier period and lower isolation period values. 

REFERENCES  



P. Castaldo, M. Ripani and R. Lo Priore 

[1] P. Tsopelas, M. C. Constantinou, S. Okamoto, S. Fujii, D. Ozaki. Experimental study of 

bridge seismic sliding isolation systems. Engineering Str., Vol. 18, No. 4, pp. 301-310, 

1996. 

[2] R.S. Jangid. Seismic Response of Isolated Bridges. J. Bridge Eng., 2004, 9(2): 156-166. 

[3] A. Ghobarah and H. M. Ali. Seismic performance of highway bridges. Eng. Struct. 

1988, Vol. 10, July. 

[4] N.P. Tongaonkar, R.S. Jangid. Seismic response of isolated bridges with soil–structure 

interaction. Soil Dynamics and Earthquake Engineering 23 (2003) 287–302. 

[5] Su L, Ahmadi G, Tadjbakhsh IG. Comparative study of base isolation systems. Journal 

of Engineering Mechanic 1989; 115(9):1976–92.  

[6] Zayas VA, Low SS, Mahin SA. A simple pendulum technique for achieving seismic 

isolation. Earthquake Spectra 1990; 6(2):317–33. 

[7] Mosqueda G, Whittaker AS, Fenves GL. Characterization and modeling of Friction 

Pendulum bearings subjected to multiple components of excitation. J. of Str. Eng. 2004; 

130(3):433-442. 

[8] Mokha A, Constantinou MC, Reinhorn AM. Teflon Bearings in Base Isolation. I: Test-

ing. Journal of Structural Engineering 1990; 116(2):438-454. 

[9] Constantinou MC, Mokha A, Reinhorn AM. Teflon Bearings in Base Isolation. II: 

Modeling. Journal of Structural Engineering 1990; 116(2):455-474. 

[10] Constantinou MC, Whittaker AS, Kalpakidis Y, Fenz DM, Warn GP. Performance of 

Seismic Isolation Hardware Under Service and Seismic Loading. Technical Report 

MCEER-07-0012, 2007.  

[11] Almazàn JL, De la Llera JC. Physical model for dynamic analysis of structures with 

FPS isolators. Earth. Engineering and Structural Dynamics 2003;32(8):1157–1184. 

[12] Landi, L, Grazi G, and Diotallevi P P. Comparison of different models for friction pen-

dulum isolators in structures subjected to horizontal and vertical ground motions, Soil 

Dynamics and Earthquake Engineering 2016;81:75-83. 

[13] Castaldo, P, Tubaldi, E. Influence of FPS bearing properties on the seismic performance 

of base-isolated structures. Earthquake Engineering and Structural Dynamics 

2015;44(15):2817–2836.  

[14] Young-Suk Kim, Chung-Bang Yun. Seismic response characteristics of bridges using 

double concave friction pendulum bearings with tri-linear behaviour. Eng. Str., 2007, 

29:3082–3093. 

[15] Murat Eröz, Reginald DesRoches. Bridge seismic response as a function of the Friction 

Pendulum System (FPS) modeling assumptions. Eng. Str., 2008, 30: 3204–3212. 

[16] Castaldo P, Palazzo B, Della Vecchia P. Seismic reliability of base-isolated structures 

with friction pendulum bearings. Engineering Structures 2015;95:80-93.  

[17] Castaldo P., Palazzo B., Della Vecchia P. Life-cycle cost and seismic reliability analysis 

of 3D systems equipped with FPS for different isolation degrees, Engineering Struc-

tures, 2016;125:349–363, http://dx.doi.org/10.1016/j.engstruct.2016.06.056. 

http://dx.doi.org/10.1016/j.engstruct.2016.06.056


P. Castaldo, M. Ripani and R. Lo Priore 

 

[18] Castaldo P., Amendola G., Palazzo B. Seismic fragility and reliability of structures iso-

lated by friction pendulum devices: Seismic reliability-based design (SRBD), Earth-

quake Engineering and Structural Dynamics, 2017; 46(3); 425–446, DOI: 

10.1002/eqe.2798. 

[19] Castaldo P., Palazzo B., Ferrentino T., (2016) “Seismic reliability-based ductility de-

mand evaluation for inelastic base-isolated structures with friction pendulum devices”, 

Earthquake Engineering and Structural Dynamics, DOI: 10.1002/eqe.2854. 

[20] Castaldo, P., Mancini, G., Palazzo, B. (2018) Seismic reliability-based robustness as-

sessment of three-dimensional reinforced concrete systems equipped with single-

concave sliding devices, Engineering Structures 163, 373-387. 

[21] Castaldo, P., Palazzo, B., Alfano, G., Palumbo, M.F. (2018) Seismic reliability-based 

ductility demand for hardening and softening structures isolated by friction pendulum 

bearings, Structural Control and Health Monitoring 25(11),e2256. 

[22] Palazzo B, Castaldo P, Della Vecchia P. Seismic reliability analysis of base-isolated 

structures with friction pendulum system, 2014 IEEE Workshop on Environmental, 

Energy and Structural Monitoring Systems Proceedings, Napoli, September 17-18, 2014. 

[23] Jangid RS. Optimum friction pendulum system for near-fault motions. Engineering 

Structures 2005;27(3):349-359. 

[24] Dicleli, M., & Buddaram, S. Effect of isolator and ground motion characteristics on the 

performance of seismic-isolated bridges. Earthquake Engineering and Structural Dy-

namics 2006;35(2):233-250. 

[25] Safak, E., Frankel, A. Effects of ground motion characteristics on the response of base-

isolated structures. 11
th

 World Conference on Earthquake Engineering 1996 (paper no. 

1430). 

[26] Saritaş, F, Hasgür Z. Dynamic Behavior of an Isolated Bridge Pier under Earthquake 

Effects for Different Soil layers and Support Conditions, Digest 2014, 1733-1756. 

[27] Wai-Fah Chen and Lian Duan. Bridge Engineering Handbook - Second edition. Seismic 

design. Taylor & Francis Group. 2014. 

[28] Castaldo, P., Tubaldi, E. (2018). Influence of ground motion characteristics on the op-

timal single concave sliding bearing properties for base-isolated structures. Soil Dynam-

ics and Earthquake Engineering, 104: 346–364.  

[29] Masoud Malekzadeh, Touraj Taghikhany. Multi-Stage Performance of Seismically Iso-

lated Bridge Using Triple Pendulum Bearings. Advances in Str. Engineering Vol. 15 No. 

7, 2012. 

[30] Shinozuka M., Deodatis G. Simulation of stochastic processes by spectral representation. 

Applied Mechanics Reviews 1991;44(4):191-203. 

[31] Pinto P, Giannini R, Franchin P. Seismic Reliability Analysis of Structures. Iuss Press 

2004. 

[32] Kelly JM. Earthquake-Resistant Design with Rubber. 2nd ed. Berlin and New York: 

Springer-Verlag; 1997. 

[33] Building Seismic Safety Council. NEHRP Recommended Provisions: Design Examples 

FEMA 451 - Washington, D.C., August 2006. 

http://www.sciencedirect.com/science/journal/02677261/104/supp/C


P. Castaldo, M. Ripani and R. Lo Priore 

[34] Priestley, M.J.N., Seible, F., Calvi, G.M., Seismic design and retrofit of bridges. Wi-

ley,1996. 

[35] Karavasilis TL, Seo CY, Makris N. Dimensional Response Analysis of Bilinear Sys-

tems Subjected to Non-pulse like Earthquake Ground Motions. Journal of Structural 

Engineering 2011;137(5):600-606. 

[36] Barbato M, and Tubaldi E. A probabilistic performance-based approach for mitigating 

the seismic pounding risk between adjacent buildings. Earthquake Engineering & 

Structural Dynamics 2013;42(8):1203-1219. 

[37] Palazzo B. Seismic Behavior of base-isolated Buildings. Proceedings of the Internation-

al Meeting on earthquake Protection of Buildings, Ancona, 1991. 

[38] Pradlwarter H. J., SchuiRler G. I., Dorka U. Reliability of MDOF-systems with hyste-

retic devices. Engineering Structures, 1998;20(8):685-691. 

[39] Tung ATY, Wang JN, Kiremidjian A, Kavazanjian E. Statistical parameters of AM and 

PSD functions for the generation of site-specific strong ground motions. Proceedings of 

the 10th World Conference on Earthquake Engineering, Madrid, Spain, 1992;2:867-872. 

[40] Kanai K. Semiempirical formula for the seismic characteristics of the ground. Bulletin 

of earthquake research institute 1957;35:309-325. 

[41] Tajimi H. A statistical method of determining the maximum response of a building 

structure during an earthquake. Proc., 2
nd

 World Conf. on earthquake Engineering 

1960;II:781-798. 

[42] Clough R.W., Penzien J.: Dynamics of Structures, 2nd edn. McGraw-Hill, New York; 

1993. 

[43] Zentner I., Allain F., Humbert N., Caudron M. Generation of spectrum compatible 

ground motion and its use in regulatory and performance-based seismic analysis. Pro-

ceedings of the 9th Internat. Conf. on Str. Dyn.s, EURODYN 2014 Porto, Portugal, 30 

June - 2 July 2014. 

[44] Peng Y., Chen J., Li J. Nonlinear Response of Structures Subjected to Stochastic Exci-

tations via Probability Density Evolution Method. Advances in Structural Engineering, 

2014;17(6):801-816.  

[45] Li, C., Liu, Y. Ground Motion Dominant Frequency Effect On The Design Of Multiple 

Tuned Mass Dampers. Journal of Earthquake Engineering, 2004;8(1):89-105. 

[46] Lopez-Garcia, D., Soong T.T. Assessment of the separation necessary to prevent seis-

mic pounding between linear structural systems. Prob. Engineering Mechanics, 

2009;24:210-223. 

[47] Castaldo P, Gino D, Carbone VI, Mancini G. Framework for definition of design formu-

lations from empirical and semi-empirical resistance models, Structural Concrete, 19(4), 

980-987, 2018 https://doi.org/10.1002/suco.201800083. 

[48] Castaldo, P., De Iuliis, M. (2014) Effects of deep excavation on seismic vulnerability of 

existing reinforced concrete framed structures, Soil Dynamics and Earthquake Engi-

neering 64, 102-112. 

[49] Castaldo, P., Palazzo, B., Perri, F. (2016) Fem simulations of a new hysteretic damper: 

The dissipative column, Ingegneria Sismica, 33(1), 34-45. 

https://doi.org/10.1002/suco.201800083


P. Castaldo, M. Ripani and R. Lo Priore 

 

[50] Castaldo, P., Calvello, M., Palazzo, B. (2013) Probabilistic analysis of excavation-

induced damages to existing structures, Computers and Geotechnics, 53, 17-30. 

[51] Castaldo P, Gino D, Bertagnoli G, Mancini G. Partial safety factor for resistance model 

uncertainties in 2D non-linear finite element analysis of reinforced concrete structures, 

Engineering Structures, 176(2018), 746-762. 

[52] Castaldo, P., Jalayer, F., Palazzo, B. (2018) Probabilistic assessment of groundwater 

leakage in diaphragm wall joints for deep excavations, Tunnelling and Underground 

Space Technology 71, 531-543. 

[53] Tubaldi, E., Barbato, M., Ghazizadeh S. A probabilistic performance-based risk assess-

ment approach for seismic pounding with efficient application to linear systems. Struc-

tural Safety 2012;36-37:14–22. 

[54] Talaslidis D.G., Manolis G.D., Paraskevopoulos E.A., Panagiotopoulos C.G. Risk anal-

ysis of industrial structures with hazardous materials under seismic input, 13
th

 World 

Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1-6, 2004.  

[55] Hancock J, Bommer JJ. A state-of-knowledge review of the influence of strong- motion 

duration on structural damage. Earthquake Spectra 2006;22(3):827-845. 

[56] Hancock J, Bommer JJ. Using spectral matched records to explore the influence of 

strong-motion duration on inelastic structural response. Soil Dynamics and Earthquake 

Engineering 2007;27:291-299. 

[57] NTC08. Norme tecniche per le costruzioni. Gazzetta Ufficiale del 04.02.08, DM 

14.01.08, Ministero delle Infrastrutture. 

[58] Shinozuka M, Sato Y. Simulation of nonstationary random process. J. Engrg. Mech. 

Div. 1967;93(1):11-40. 

[59] Armouti, N.S. Response of structures to synthetic earthquakes. Emerging Technologies 

in Structural Engineering. Proc. of the 9
th

 Arab Structural Engineering Conf., Nov. 29 – 

Dec. 1, 2003, Abu Dhabi, UAE, 331-340. 

[60] Aslani H, Miranda E. Probability-based seismic response analysis. Engineering Struc-

tures 2005;27(8):1151-1163. 

[61] Porter KA. An overview of PEER’s performance-based earthquake engineering metho-

dology. Proceedings, Proceedings of the 9th International Conference on Application of 

Statistics and Probability in Civil Engineering (ICASP9), San Francisco, California, 

2003. 

[62] Castaldo, P., Ripani, M., Priore, R.L. (2018) Influence of soil conditions on the optimal 

sliding friction coefficient for isolated bridges, Soil Dynamics and Earthquake Engi-

neering 111, 131-148. 

[63] Ryan K, Chopra A. Estimation of Seismic Demands on Isolators Based on Nonlinear 

Analysis. Journal of Structural Engineering 2004;130(3):392-402. 

[64] Karavasilis T, Seo C. Seismic structural and non-structural performance evaluation of 

highly damped self-centering and conventional systems. Eng. Structures 

2011,33(8):2248-2258. 

[65] Ang AHS, Tang WH. Probability Concepts in Engineering-Emphasis on Applications to 

Civil and Environmental Engineering. John Wiley & Sons, New York, USA; 2007. 



P. Castaldo, M. Ripani and R. Lo Priore 

[66] Yen-Po Wang, Lap-Loi Chung, Wei-Hsin Liao. Seismic response analysis of bridges 

isolated with friction pendulum bearings. Earth.Eng.& Str. Dyn., 1998; 27, 1069-1093. 

[67] M.C. Kunde, R.S. Jangid. Seismic behavior of isolated bridges: A-state-of-the-art re-

view. Electronic Journal of Structural Engineering, 3 (2003). 

[68] Evan m. Lapointe. An investigation of the principles and practices of seismic isolation 

in bridge structures. Department of Civil and Environmental Engineering; 2004. 

[69] Michael D. Symans, Steven W. Kelly. Fuzzy logic control of bridge structures using in-

telligent semi-active seismic isolation systems. Earth. Engng. Struct. Dyn. 28, 37-60, 

(1999). 

[70] Jangid R.S. Stochastic response of bridges seismically isolated by friction pendulum 

system. J. Bridfe Eng., 2008, 13(4): 319-330. 

[71] Di Lauro, F., Montuori, R., Nastri, E., Piluso, V. (2019)  Partial safety factors and over-

strength coefficient evaluation for the design of connections equipped with friction 

dampers, Engineering Structures, 178, pp. 645-655.  

[72] Fusco, R., Montuori, R., Nastri, E., Piluso, V. Critical analysis of ultimate rotation for-

mula for R.C. columns subjected to cyclic loadings (2018) Engineering Structures, 177, 

pp. 160-174.  

[73] Dell'Aglio, G., Montuori, R., Nastri, E., Piluso, V. A critical review of plastic design 

approaches for failure mode control of steel moment resisting frames (2017) Ingegneria 

Sismica, 34 (4), pp. 82-102.  

[74] Nastri, E., Vergato, M., Latour, M. Performance evaluation of a seismic retrofitted R.C. 

precast industrial building (2017) Earthquake and Structures, 12 (1), pp. 13-21.  

[75] Piluso, V., Montuori, R., Nastri, E., Paciello, A. Seismic response of MRF-CBF dual 

systems equipped with low damage friction connections (2019) Journal of Construc-

tional Steel Research, 154, pp. 263-277.  

[76] Dell’Aglio, G., Montuori, R., Nastri, E., Piluso, V. Consideration of second-order ef-

fects on plastic design of steel moment resisting frames (2019) Bulletin of Earthquake 

Engineering. 

[77] Math Works Inc. MATLAB-High Performance Numeric Computation and Visualiza-

tion Software. User’s Guide. Natick: MA, USA; 1997. 

[78] Chung LL, Kao PS, Yang CY, Wu LY, Chen HM. Optimal frictional coefficient of 

structural isolation system. Journal of Vibration and Control 2013, Early view. DOI: 

10.1177/1077546313487938. 

[79] Iemura H, Taghikhany T, Jain S. Optimum design of resilient sliding isolation system 

for seismic protection of equipments. Bulletin of Eart. Engineering 2007;5(1):85-103. 

[80] Bucher C. Probability-based optimization of friction-based seismic isolation devices. 

Structural Safety 2009;31(6):500-507. 

[81] Fallah, N., Zamiri G. Multi-objective optimal design of sliding base isolation using ge-

netic algorithm. Scientia Iranica A, 2013;20(1):87–96. 

[82] Garzillo, Carmine; Troisi, Roberta (2015) Le decisioni dell’EMA nel campo delle me-

dicine umane. pp.85-133. In EMA e le relazioni con le Big Pharma - I profili organizza-

tivi della filiera del farmaco - ISBN:9788892102279 - G. Giappichelli 



P. Castaldo, M. Ripani and R. Lo Priore 

 

[83] Nese, Annamaria; Troisi, Roberta (2018) Corruption among mayors: evidence from 

Italian Court of Cassation judgments. DOI:10.1007/s12117-018-9349-4. pp.1-26. In 

TRENDS IN ORGANIZED CRIME - ISSN:1084-4791 vol. agosto 2018 

[84] Troisi, Roberta; Golzio, Luigi Enrico (2016). Legal studies and organization theory: a 

possible cooperation. pp.1-23. In Manageable cooperation? - ISBN:0024667498 - Eu-

ropean Academy of Management, Convegno: 16th EURAM Conference, Paris, 1-4 June 

(ISSN 2466-7498). 

[85] Troisi, Roberta; Guida, Vittorio (2018). Is the Appointee Procedure a Real Selection or 

a Mere Political Exchange? The Case of the Italian Health-Care Chief Executive Offic-

ers. DOI:10.5947/jeod.2018.008. pp.19-38. In JOURNAL OF ENTREPRENEURIAL 

AND ORGANIZATIONAL DIVERSITY - ISSN:2281-8642 vol. 7 (2). 

[86] Troisi Roberta (2012). Le risorse umane nelle BCC: lavoro e motivazioni al lavoro. 

pp.399-417. In Progetto aree bianche. Il sistema del credito cooperativo in Campania - 

ISBN:8865580526 vol. 1. 

[87] Golzio Luigi Enrico; Troisi Roberta (2013). 'The value of interdisciplinary research: a 

model of interdisciplinarity between legal research and research in organizations". 

pp.23-38. In JOURNAL FOR DEVELOPMENT AND LEADERSHIP , vol. 2. 

 


