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Abstract—In the last decades, several positioning and naviga-
tion algorithms have been developed to enhance vehicular local-
ization capabilities. Thanks to ad-hoc communication networks,
the exchange of navigation data and positioning solutions has
been exploited to the purpose. This trend has recently suggested
the extension of state-of-the art navigation algorithms to the
hybridization of independent heterogeneous measurements within
collaborative frameworks. In this paper an integration paradigm
based on the combination of Global Navigation Satellite System
(GNSS) observable measurements is analysed. In this work, a
comparison among legacy Extended Kalman Filter (EKF) and a
suboptimal Particle Filter (s-PF) is proposed. First we show that
under the same assumptions in non-collaborative framework the
s-PF easily overcome EKF performances at the cost of a higher
computational cost. On the contrary, by analysing a realistic
scenario in which a target agent is aided by a set of collaborating
peers we showed that a hybridized EKF implementation allows
reaching and overcome PF performance at the only expense
of network connectivity among few GNSS receivers, while the
proposed integration induces minor benefits for an efficient s-PF.

Index Terms—GNSS, Extended Kalman Filter, Particle Filter,
Navigation Performance, Collaborative Ranging

I. INTRODUCTION

IN the last decades a considerable research effort has been
spent in the field of vehicular navigation and positioning by

addressing sensors integration to Global Navigation Satellite
System (GNSS) [1]. In parallel, remarkable contributions
to cooperative approaches have been proposed to enhance
positioning and navigation performance in vehicular networks,
mostly relying on end-to-end ad-hoc connectivity [2], [3].
The most effective implementations have addressed line-of-
sight range information (e.g. UWB, Lidar, Sonar) and the
integration of proprioceptive sensors as auxiliary source of
information, while few contributions have focused on GNSS-
based collaborative ranges obtained by means of non-Line-
of-Sight network communication [4]. Next to the relevant
opportunities offered by modern communication networks to
vehicular navigation, the recent release of raw measurements
in mass market devices has opened a number of opportunities
for the development of improved positioning algorithms, by
guaranteeing the access to measurements data prior to the
positioning solution [5]. Similarly to previous solutions relying
on cooperative estimation of positioning and navigation data,

such as for example belief propagation [6], [7], we aim at
reconsidering the exchange of raw GNSS data (i.e. satellite-
to-user raw pseudorange measurements) to extract auxiliary
range information that can be beneficial to improve both
accuracy and precision of the navigation solution. The idea
of overcoming the limits of LoS ranging through common
satellites in visibility is appealing especially for the fully-
connected devices contemplated within Intelligent Transporta-
tion Systems (ITS) and Smart Cities paradigms. The inte-
gration of auxiliary measurements is typically exploited by
means of Kalman Filter (KF) which is an effective algorithm
to perform a Bayesian estimation of the Position, Time and
Velocity (PVT) of dynamic GNSS receivers. Despite KF is
a good compromise in terms of accuracy and computational
complexity, Particle Filter (PF) has become a popular alter-
native which can increase the estimation accuracy by means
of Monte Carlo approach [8]. PFs have been extensively
investigated in navigation for robotics and several solutions
and optimizations have been discussed in literature [9]–[12]
to fit a variety of different applications. Following previous
contributions about collaborative inter-agent range estimation
[13], [14] and the proposed integration in the positioning and
navigation algorithms [15], [16], this work aims at comparing
the accuracy of the two different Bayesian navigation filters
(i.e. KF, PF) and at verifying the effectiveness of integrating a
combination of asynchronous GNSS-based measurements for
the improvement of the positioning accuracy.

The paper is organized as follows. Section II recalls the
Hidden Markov Model (HMM), extended through the inves-
tigation of correlated inter-agent measurements. Section III
provides a brief description of the implemented Bayesian
navigation filters. Section IV illustrates the scenario used for
the comparison and Section V gives a summary of the analysis.
In Section VI, the findings of the work are summarized.

II. PROBLEM STATEMENT

The estimation problem to be solved in positioning and
navigation is often referred in literature to as object tracking,
where the object can be indeed a GNSS receiver in the form
of a stand-alone equipment or embedded in a number of
possible devices (e.g. vehicular navigation systems, smart-
phones, smartwatches). As depicted in Figure 1, the problem



Fig. 1. Hidden Markov Model (HMM) for single agent state-space
estimation.

is modelled as a Hidden Markov Model (HMM) where the
state space, θk, of the target dynamic system can be known
only through a set of observable measurements, zk [8].

In the following, the state space vector is defined as

θk =
[
xk yk zk bk ẋk ẏk żk ḃk

]
. (1)

Equation (1) describes the relevant information about the
position, xk =

[
xk yk zk

]
, and the velocity ẋk =[

ẋk ẏk żk
]
, of a generic GNSS receiver, provided in a

conventional reference frame (i.e. Earth Centred Earth Fixed,
East-North-Up). bk and ḃk are respectively the bias and the
drift of the local clock w.r.t. a reference time scale (GNSS
time). Bayesian navigation filters are devoted to the joint
estimation of the state vector and the associated error covari-
ance matrix, Pθ,k = E

[
(θk − E (θk)) (θk − E (θk))

T
]
, which

describes the uncertainty on the estimated solution [17]. The
state transitions, represented by the horizontal arrows in Figure
1, are associated to a transition probability, p (xk|xk−1) which
is defined accordingly to a state transition function

θk+1 = fk (θk,vk) (2)

where fk is a generic function of the vector state, and vk is a
multivariate random variable describing the noise affecting the
states. A sequence of noisy measurements is performed by the
receiver at each discrete time instant tk and each measurement
links the current state vector to a specific reference point
(e.g. GNSS satellites, terrestrial anchors, etc.). The relationship
between state and measurements is hence described by the
prior probability p (zk|xk), according to

zk = hk (θk,wk) (3)

where hk is a generic function linking the observation vector
to θ and vk is a multivariate random variable describing
the measurements noise. The analysis presented in this work
will be focused on the quality of the position estimation, x̂k,
by comparing such a subset of (1) to the true experimental
trajectory.

A. Combined observable measurements and exchange of po-
sition estimates

As shown in Figure 2, auxiliary observable measurements
are assumed to be generated by combining the measurements
in zk. They can be used as a joint information about the

estimation of the two states θm and θn, or they can be
exploited by one of the two agents as an auxiliary source
of information, as assessed by means of the analysis of the
Cramer Rao Lower Bound in a previous contribution [18].

Fig. 2. Modified HMM for dual agent state-space estimation with
collaborative and correlated measurement generation.

The computation of inter-agent measurements is based
on a differential GNSS approach named Double Difference
Ranging [13]. In order to combine the raw measurements
related to common satellites in visibility, the users clocks must
be aligned to a common reference time. All the cooperating
agents are assumed to be roughly aligned to the GNSS time
scale but providing asynchronous positioning solutions, thus
inconsistent observables. According to the feasibility of a a
coarse GNSS-time synchronization in vehicular networks [19],
it has to be reminded that PVT solutions are provided inde-
pendently among the receivers, therefore a doppler-based com-
pensation stage has been implemented to mitigate the time-
inconsistency of the measurements [20]. In standalone GNSS
positioning, z consists of a measurement vector composed
by S satellite-to-receiver pseudorange measurements and S
pseudorange rates [21], retrieved by the received GNSS signal.
When collaborative ranges are integrated in the measurement
set, the measurement vector can be extended to incorporate
also inter-agent distances, such that

z̄k =
[
zk rk

]T
(4)

where r = (r1 r2 . . . rC)T , is a vector of collaborative
ranges and C is the number of collaborative agents and
contributions. This point differentiates the approach from Real
Time Kinematic (RTK) and Differential GNSS (a.k.a. DGPS)
in which reference station with precisely known position are
used to provide corrections or relative positioning data. The
benefits introduced by the use of collaborating agents as
anchors of opportunities or dynamic DGPS base stations has
been assessed theoretically and experimentally, as in [18], [22].

III. NAVIGATION FILTERS

The two different Bayesian estimation approaches are
briefly recalled in the following. Both EKF and suboptimal-
PF (s-PF) will be used to compute an estimate of the full



state vector and of its covariance matrix by relying on the
hybridized measurement vector (4).

A. Hybrid Extended Kalman Filter (H-EKF)

The EKF is the most widespread algorithm for navigation
in vehicular mobility. It is capable of an efficient and accurate
position estimation and it allows a straightforward integration
of auxiliary sensors [1].

The linearization required for the processing approximates
(2) through

θk+1 = Φ (θk,vk) (5)

where Φ is usually a time invariant matrix known as state
transition matrix. Similarly, a linearization is applied to (3),
thus considering

z̄k = H̄k (θk,wk) (6)

where H̄k is named Direct Cosine Matrix (DCM) and
describes the linearized relationship among all the measure-
ments collected in z̄k and the state vector θk, at the discrete
time k. Naming Hρ the observation matrix related to the
GNSS pseudorange measurements, the resulting hybrid DCM
is defined as

H̄k =

Hρ,k 0S×4

0S×4 Hρ,k

Hr,k 0C×4

 (7)

where the s-th row of the submatrix Hρ,k can be expressed
as

[Hρ,k]s =
[

(xs − xm)/||xs − xm|| 1
]

=
[

hs,m 1
]
(8)

where xs and xm are the satellite and user coordinates,
respectively. hs,m is the unitary steering vector pointing
towards the s-th satellite and the unitary term is referred to the
bias clock term common to all the measurements. Similarly,
the set of equivalent steering vectors points at the collaborating
agents so that the r-th row of Hr,k is defined as

[Hr,k]r =
[

(x̂c − xm)/||x̂c − xm|| 0
]

=
[

hc,m 0
]
(9)

While the GNSS satellite position is known with a high
accuracy from the ephemeris data, the measurement equations
of the hybridized system (3) have to be referred to a rough
estimate, x̂c, of the agent position. This estimation must
be provided along with raw measurements by collaborating
agents. For the sake of brevity the implementation of the EKF
for the estimation of the state vector is left to the exhaustive
literature on the topic [23].

B. Suboptimal implementation of a Particle Filter (s-PF)

The strategy of implementing a s-PF aims at providing a fair
comparison among the filters. The proposed implementation
does not exploit on purpose the capability of PF of dealing
with non-Gaussian density function but it is worthy to consider
that even restricting this condition, the accuracy of the esti-
mation is higher than EKF. Furthermore, it is remarkable that

an accurate modelling of the statistics of the measurements
is not suitable in practice for an optimal implementation of
the PF and the Gaussian approximation is hence applicable
for a large variety of situations. The PF approximates the a
posteriori distribution of (1)

p (θk|zk) ≈
N∑
i=1

w
(i)
k δ

(
θk − θ̂

(i)
k

)
(10)

where δ is the Dirac delta function and θ̂
(i)
k is a propagated

particle. The approximation is performed by generating and
propagating a set of particles θ̂

(i)
k and associated weights w(i)

k

according to the following steps:

1) Initialization: Generation of a set of N particles θ̂
(i)
k

according to θ̂k ∼ p(θ̂k−1, Pθ,k−1)
2) Prediction: All the generated particles are propagated

according to the dynamic system model (5)
3) Weights computation: The weights are obtained by re-

lying on a pre-defined likelihood p
(
zk|θ̂(i)

k

)
w.r.t. the

expected measurements computed for each particle, the
weights are hence defined as

w
(i)
k =

∏
n p
(
zn,k − z(i)n,k

)
∑N
i=1

∏
n p
(
zn,k − z(i)n,k

) . (11)

4) Resampling: This step is of prominent importance since
it guarantees the algorithm effectiveness avoiding parti-
cle collapse and overoptimistic covariance estimation. A
number of resampling methods can be used to optimize
the filter behaviour [24].

5) Estimation: The bayesian estimation is eventually given
by the weighted average of the generated particles, as

θ̂k ≈
N∑
i=1

w
(i)
k θ

(i)
k . (12)

In this study, the state transition in (5) was used for the
prediction stage of the PF and a Gaussian likelihood was
chosen for the weights computation (12), thus turning the
current implementation in a suboptimal estimation algorithm.
Differently from the integration proposed in [25], we take
advantage on this sequential Bayesian method to improve
the position estimation by merging such a different class of
correlated range measurements.

C. Computational Complexity

Let nθ the dimension of the state vector, the computational
complexity can be approximated to O(2n3θ) and to O(Nn2θ)
for EKF and PF, respectively [10]. According to the number
of elements of the state vector (1), it is worthy to consider
that the execution time is comparable for the two navigation
filters when N ' 16 [11]. These aspects is imperative for
the implementation of the algorithms in low-power hardware
architectures.



IV. TEST SCENARIO

The Bernoullian trajectory shown in Figure 3 was consid-
ered for the generation of the vehicular scenario. The trajectory
was chosen among a set of geometrical paths centred at the
point C1. The four agents indicated by the black dots Cc where

Fig. 3. Bernoullian Lemniscate test trajectory. The results are referred
to the S-shaped portion starting from ts to te and crossing the location
of agent C1.

c ∈ (1, 4), are kept fixed while the target moves along the path
according to a predefined uniformly accelerated dynamics,
represented in Figure 3 by the small grey dots. The tangent
speed of the target agent spans from 5 m/s to 10 m/s in a
timespan of 60 s. The true state vector (1) of each agent
was generated with an update rate of 10 Hz trough a Matlab®

simulation environment. The true trajectories were stored as
.trj2 file to feed the IFEN NavX for the generation of
GPS constellation and of the realistic satellite signals. Two
different visibility conditions were considered in which the
available satellite set has been randomly changed to observe
the estimation performance of the two navigation filters in
different conditions, as reported in Table IV. A set of 4
satellites were considered to satisfy the minimum conditions
to initialize the positioning algorithm [21], while a set of
10 satellites simulates the open sky visibility of the GPS
constellation. These alternatives also affected the quality of
the inter-agent ranging and the overall estimation refinement
obtained from the integration.

Visibility No. of Satellites Satellite IDs (PRN)

Good (Open Sky) 10 3,4,7,8,11,12,16,17,27,18
Poor (Urban Canyon) 4 4,7,8,27

V. RESULTS

A first set of results, shown in Figure 4, describes the
improved average accuracy of the s-PF estimation w.r.t. to
the EKF. The fact that the same accuracy is not affordable
for an EKF, clearly remarks the benefits of using such a
computational expensive algorithm for the PVT solution. In
fact, while PF estimation can be asymptotically improved
by increasing the number of particles, EKF already provides
the best achievable solution which can be only improved by
better environmental conditions experienced by the receiver.
Although the considered implementation of the PF is subop-
timal, an average accuracy improvement of 23.02% for the
50th percentile of the error distribution has been achieved in

Fig. 4. CDFs of the estimated trajectory with plain s-PF (N = 1000)
and EKF navigation filters.

good visibility. A reduced improvement of 12.36% at the 50th
percentile is instead observable in poor visibility conditions,
as depicted in the right Cumulative Density Function (CDF) in
Figure 4. According to the approximation of the computational
complexity discussed in III, the usage of 1000 particles re-
quires a considerable computational effort, thus making the PF
filter 62.5 times slower in the estimation routine. By focusing

Fig. 5. CDFs of the estimated trajectory with Hybrid s-PF using
different numbers of particles and varying the number of collaborative
contributions.

on PF implementation, the results in Figure 5 show that a
considerable advantage is provided by integrating auxiliary
measurements when a lower number of particle is used for
the PF-based estimation (N = 200). On the left plot, it
can be noticed that the hybridization cannot provide a strong
improvement, thus discouraging the cooperative effort when a
high number of particle is used. On the other hand, the CDFs
provided in Figures 6 and 7 confirm that the integration of
collaborative range measurements can dramatically improve
the EKF performance avoiding the increase of complexity
required by the PF. The results show that EKF can be enhanced
by integrating auxiliary correlated information more efficiently
than what can be done by PF implementation. This suggests
a trade-off in preferring collaborative solutions w.r.t. high-
complexity navigation filters.

VI. CONCLUSIONS

This paper compares the benefits of the integration of
GNSS-only auxiliary measurements to positioning and nav-
igation by proposing the inclusion of such observables in



Fig. 6. CDF of EKF and PF trajectory estimation varying the number
of particles and the number of collaborative contributions in good
satellite visibility.

Fig. 7. CDF of EKF and PF trajectory estimation varying the number
of particles and the number of collaborative contributions in poor
satellite visibility.

the HHM model. The analysis were performed along a low-
dynamics portion of a Bernoullian trajectory to properly
compare the performance of an EKF and a suboptimal PF in
different satellites visibility conditions. The s-PF reaches better
accuracy and precision performance at a high computational
cost while EKF offers practicable computational complexity
although it leads to lower accuracy. The accuracy improvement
provided by multi-agents collaborative range measurements
is less significant when a high number of particles is used
for PF position estimation. On the other hand, the EKF-
based integration considerably increase the accuracy of the
estimation reaching values close to highly-complex s-PF and
by also maintaining a lower computational complexity. Further
investigations are expected to explore the integration of sensors
and cooperative strategies with specific optimizations for both
the navigation filters.
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