POLITECNICO DI TORINO
Repository ISTITUZIONALE

Backbone reconstruction in temporal networks from epidemic data

Original

Backbone reconstruction in temporal networks from epidemic data / Surano, FRANCESCO VINCENZO; Bongiorno,
Christian; Zino, Lorenzo; Porfiri, Maurizio; Rizzo, Alessandro. - In: PHYSICAL REVIEW. E. - ISSN 2470-0053. -
ELETTRONICO. - (2019). [10.1103/PhysRevE.100.042306]

Availability:
This version is available at: 11583/2760861 since: 2019-10-16T14:05:49Z

Publisher:
American Physical Society

Published
DOI:10.1103/PhysRevE.100.042306

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
default_article_editorial [DA NON USARE]

(Article begins on next page)

18 April 2024



Backbone Reconstruction in Temporal Networks from Epidemic Data

Francesco Vincenzo Surano!?, Christian Bongiorno'3, Lorenzo Zino?,* Maurizio Porfiri2,! and Alessandro Rizzo!'*

! Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
2 Department of Mechanical and Aerospace Engineering,
New York University Tandon School of Engineering, Brooklyn NY, USA
3 Laboratoire de Mathématiques et Informatique pour les Systémes Compleces,
CentraleSupélec, Université Paris Saclay, Gif-sur-Ywvette, France
(Dated: October 15, 2019)

Many complex systems are characterized by time-varying patterns of interactions. These inter-
actions comprise strong ties, driven by dyadic relationships, and weak ties, based on node-specific
attributes. The interplay between strong and weak ties plays an important role on dynamical
processes that could unfold on complex systems. However, seldom do we have access to precise in-
formation about the time-varying topology of interaction patterns. A particularly elusive question is
to distinguish strong from weak ties, on the basis of the sole node dynamics. Building upon rigorous
analytical results, we propose a statistically-principled algorithm to reconstruct the backbone of
strong ties from data of a spreading process, consisting of the time-series of individuals’ states. Our
method is numerically validated over a range of synthetic datasets, encapsulating salient features
of real-world systems. Motivated by compelling evidence, we propose the integration of our algo-
rithm in a targeted immunization strategy that prioritizes influential nodes in the inferred backbone.
Though Monte Carlo simulations on synthetic networks and a real-world case study, we demonstrate

the viability of our approach.

I. INTRODUCTION

In the last few decades, network science has expe-
rienced significant developments, providing researchers
with an array of powerful tools to represent and analyze
complex biological, social, and technological systems [1].
Besides improving our knowledge on the very structure
of complex systems, network science has contributed new
paradigms to study dynamical processes unfolding on a
complex system. These paradigms have shed light on
the intertwining between structure and dynamics in the
spread of epidemic diseases [2], diffusion of innovation [3],
and opinion formation [4].

Empirical studies suggest that patterns of interactions
between nodes in many complex networks evolve cease-
lessly in time [5, 6]. These interactions can be catego-
rized into two main classes [7]. One class corresponds
to interactions that are recurrently formed between node
pairs, following dyadic relationships that are called strong
ties [8]. Interactions in the workplace or family ties be-
long to this class, which forms the backbone of the net-
work [9, 10]. The second class encompasses interactions
that are based on features of the nodes, which are not at-
tributable to dyadic ties with other nodes. For instance,
interactions among people queuing in a line or sitting
on a plane belong to this class, whereby interactions are
triggered by individual attributes such as extroversion in
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talking to strangers. These relationships are called weak
ties [8]. Strong and weak ties concur in shaping the dy-
namic behavior of complex networks [11-13].

Activity driven networks (ADNs) have emerged as a
valuable framework for temporal networks [14], allow-
ing for modeling the co-evolution of the network struc-
ture and the unfolding nodal dynamics at comparable
time-scales. The temporal nature of the network is cap-
tured through a single parameter that measures the node
propensity to generate interactions. The distribution of
this parameter, called activity, can be inferred from real-
world data [14]. The potential of ADNs has been demon-
strated through the study of several network problems,
including epidemics [15-19], diffusion of innovation [20],
opinion formation [21], and percolation [22].

In their fundamental incarnation, ADNs are an ideal
tool to model weak ties, whereby the whole process of
network assembly is driven by a node-specific attribute,
the activity. Routed ADNs (RADNs) have been re-
cently proposed to include strong ties within the ADN
paradigm [23, 24]. In this model, temporal connections
are wired according to a stochastic rule that encapsu-
lates both the topological information of strong ties and
the unstructured connections of weak ties. RADNs share
similarities with other approaches to include strong ties
in ADNs, such as the superimposition of a static net-
work [25, 26], and the inclusion of memory mechanisms
in the link wiring process [27, 28].

The use of RADNSs in real-world scenarios rely on accu-
rate knowledge of the activity distribution and the topol-
ogy of the backbone. While activities can be estimated
following the literature on ADNs [14, 29|, the inference
of the backbone of strong ties remains an open challenge.
Preliminary efforts in this direction can be found in [30].
Therein, the authors have proposed a method to recon-



struct the backbone of a temporal network from the di-
rect observation of the pattern of interactions over an ac-
cessible time-window. Particularly elusive is the problem
of distinguishing strong from weak ties from observations
of node dynamics, which is typically the only knowledge
available in real epidemiological settings [31].

In the technical literature, the problem of link recon-
struction and prediction has been studied from a va-
riety of angles, mostly relying on the direct observa-
tions of contacts [32-34]. Dealing with observations of
nodal dynamics, several methods have been proposed
to reconstruct patterns of interactions [35], including
the use of similarity [36], information theory [37], be-
lief propagation [38], likelihood maximization [39, 40],
compressed sensing [41, 42], optimization [43], non-
parametric Bayesian methods [44], and data-driven ap-
proaches [45, 46]. However, these strategies are of limited
use when strong and weak ties coexist, thereby presently
challenging the inference of backbone networks from ob-
servations of node dynamics.

Drawing inspiration from [47, 48], here we design a
backbone detection algorithm that identifies strong ties
from node dynamics, in the form of empirical data about
a spreading process. Because of its widespread use in
the study of epidemic outbreaks, we adopt the epidemi-
ological lexicon throughout the paper when referring to
the spreading dynamics. However, the application of our
algorithm should not be considered limited to the epi-
demiological field, since spreading processes in temporal
networks are widely used to model other phenomena, in-
cluding diffusion of innovation in social groups [20] and
information flow in brain networks [49-51].

Our algorithm is based on the intuition that strong
ties should leave a distinguishable footprint on the tem-
poral evolution of an epidemic outbreak. We analytically
characterize such a footprint in terms of the probabil-
ity for a node to contract the disease, given knowledge
about the health state of other nodes. Building upon this
analytical result, we formulate a statistically-principled
algorithm to reconstruct the backbone topology. An ex-
tensive performance analysis is carried out by means of
numerical simulations to demonstrate the effectiveness of
the algorithm and identify potential limitations. Finally,
we demonstrate the possibility of implementing the al-
gorithm to inform immunization strategies that target
influential nodes of the backbone. The effectiveness of
the proposed technique is evaluated through Monte Carlo
simulations both on synthetic networks and real-world
data of face-to-face interactions in a high school [52].

II. MATHEMATICAL BACKGROUND

We provide mathematical details of the models herein
used to study temporal networks with a backbone struc-
ture of strong ties, along with dynamical process.

A. Routed ADNs

We consider a network of n nodes, each belonging to
the node set V = {1,...,n}. Temporal undirected links
are represented through time-varying adjacency matrix
A € {0,1}"*" where t € Z, is the discrete time index.
The adjacency matrix is assembled so that (A;);; = 1 if
and only if node 7 is connected with node j at time . We
denote by N} the neighborhood of node i at time ¢, that
is, the set of other nodes to which ¢ is connected at time
t.

Both strong and weak ties contribute to the evolution
of A;. Strong ties are described by an undirected and
time-invariant adjacency matrix G € {0,1}"*"™. We in-
dicate with d; the degree of node 7 in the backbone net-
work. Degrees are gathered in the degree vector d € N”.
Empirical evidence from real-world observations suggests
that real-world backbones are often sparse [1] and nodes
have bounded degree [53]. Without loss of generality,
we assume that the backbone network does not contain
isolated nodes, that is, d; > 1, for all i € V' [54].

Following [24], each node ¢ € V is characterized by
an activity parameter a; € [0,1]. At each time, node
i activates with probability a; and generates an undi-
rected link with another node. The selection of which
node to connect to is probabilistically dictated by a row-
stochastic [55] matrix P € RZ5"™ such that

1 : _
P=(1-7) EJ + v diag(d)~'G, (1)

where v € [0,1] is a constant parameter and J is the nxn
matrix of all ones, except the diagonal entries, which are
set to 0. The generic entry P;; represents the probability
that i connects with j. The first term on the right hand
side of (1) accounts for the weak ties, while the second
summand models strong ties in the backbone. The pa-
rameter v € [0, 1] weights the role of strong versus weak
ties in the formation of temporal links. When v = 0, the
model reduces to a standard ADN [14] such that strong
ties are uninfluential; when v = 1, the probability of a
connection mirrors the adjacency matrix of the backbone
network. A realization of an RADN is shown in Fig. 1.

To generate a temporal network from ¢ = 0, up to time
T, we implement the following steps:

1. the temporal adjacency matrix is initialized as
(A);j =0, foralli,j € V;

2. each node i € V activates with probability a;, in-
dependent of the others;

3. for each node ¢ that is active, a node j is selected
with probability P;;, and we set (A;)ij = (As)ji =
1; and

4. the time index t is incremented by 1; if ¢ > T, the
algorithm is terminated, otherwise it is resumed to
step 1.
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FIG. 1. Illustration of a backbone network (a) along with
three consecutive realizations of an RADN (b—d) at time ¢t =
0, 1, 2, respectively. Red dashed links are the strong ties in the
backbone, and black solid links are temporal links generated
from nodes’ activity.

B. Susceptible—infected—susceptible model

We focus on a susceptible-infected-susceptible (SIS)
epidemic model [56]. In an SIS model, each node of the
network is characterized by a binary health state. Specif-
ically, at time ¢, node ¢ € V is either susceptible to the
disease (X} = 0) or infected (X = 1). At each time, two
contrasting mechanisms govern the evolution of the epi-
demic process: propagation and recovery. Each suscep-
tible node can contract the disease through interactions
with infected nodes.

The propagation of the disease may occur with prob-
ability A € [0,1] along each link of the RADN indepen-
dently of the others, such that

P(Xi, =1]Xi=0)=1—(1—NZexi™ (2
Following the recovery mechanism, instead, each node ¢
that is infected at time ¢, recovers at time ¢ + 1 with
probability u € [0, 1], becoming again susceptible to the
epidemics. The generality of our theoretical approach
suggests that our algorithm could be extended to more
complex epidemic models on ADNs [29, 57].

III. BACKBONE DETECTION ALGORITHM

We present here the main technical contribution of this
work, which consists of an algorithm to detect the back-
bone of strong ties in a temporal network from epidemic
data. Our method is based on the exact computation of

the probability of a node to contract the disease given the
health states of other nodes. Building on the knowledge
about neighbors, we are able to pinpoint the effect of the
presence of strong ties through a statistical test.

A. Conditional probabilities for RADNSs

Given two nodes, i and j, observed from the initial
time 0 over a time-window of duration 7T, we define the
following quantity:

T-1
1 i i j
Pisi = > [IP(Xt+1 =1|Xi=0,X] =1)
=0 (3)
P = 11X = 0)]

The quantity P;_.; summarizes the extent by which the
infection of node i over the time-window 0,...,T is ex-
plained by the disease propagation from node j [58]. In-
tuition suggests that such a quantity is larger when ¢ and
j are connected by a strong tie, such that the infection of
nodes connected by the backbone network will increase
the chance of contracting the infection. For the consid-
ered RADN and a SIS process, mathematical analysis
of this quantity, detailed in the Appendix, confirms this
intuition.

Specifically, we demonstrate that, in the asymptotic
limit of large time-windows, if there exists a strong tie
between ¢ and j, that is, if G;; = 1, then

wa [(1-xg) (1-xg)] ™

Mai+ (1 =~y(1=f=)am) +p (4a)
1 a; Qj i@
x eA(1=v)(ait+an) <dz + @ B fy)\didj) >0,

almost surely, for any network size, where a; and d,,, are
the maximum activity and the minimum backbone degree
over the node set, respectively. On the other hand, if the
two nodes are disconnected in the backbone, that is, if
G;; = 0, we find that in the asymptotic limit of large
networks,

lim ,Pj*}i >

nl;rréo Pj_>i =0. (4b)

As a consequence, if the size of the network is suf-
ficiently large, the probability that a node becomes in-
fected is not influenced by the health state of another,
unless they share a strong tie. Based on this analytical
result, we construct our identification algorithm, which
starts from empirical observations of the disease dynam-
ics to detect strong ties.

Figure 2 compares the empirical estimation of P;_,; for
pairs of nodes that share (orange) or not (blue) a strong
tie. These simulations validate our analytical results and
suggest that P;_,; is close to its asymptotic expressions
in (4), also for a reasonably small population size (that is,
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FIG. 2. Empirical estimation of P;_; in a realization of an
RADN with n = 200 nodes, v = 0.95, A = 0.9, x = 0.1, and
a; = 0.3 for all nodes, over all the pairs of nodes (i,j) € VxV.
The orange distribution relates to nodes that share a strong
tie and the blue one to the opposite case. The backbone net-
work is a 4-regular random graph. The network is simulated
for 35,000 time-steps. The figure suggests that conditioning
on the state of node j affects the infection probability for
nodes that share a strong tie with j, confirming our analyti-
cal results. The red dotted line is the lower bound on P;_;
in the presence of the strong tie {i,j}, computed using (4a).

starting from 200 — 300 nodes, according to our numer-
ical simulations) and an observation window of limited
duration. In fact, while the empirical distribution of the
entries of P;_,; that correspond to strong ties (in orange)
is shifted and bounded away from 0, the empirical dis-
tribution of the entries that do not correspond to strong
ties is centered at 0.

By comparing our analytical bound from (4a) (dot-
ted red line) with the empirical observation, we propose
that our estimation, albeit conservative, yields an accu-
rate estimate of the order of magnitude of P;_;. The
two empirical distributions are well separated and both
of them can be accurately fitted by a Gaussian distri-
bution (dashed blue and orange, respectively) with mean
equal to 0.000 and 0.026, respectively, and variances both
equal to 0.003. This evidence suggests that a central
limit theorem should hold for P;_,;, which is defined as
an average over T'. As a consequence, we may conjecture
that the length of the time-window T plays a key role in
shaping the two distributions and, consequently, in de-
termining whether strong and weak ties are statistically
distinguishable. More details to support our conjecture
can be found in Section IV and in the Appendix.

B. Statistical test

Building on our analytical results, we put forward a
statistically-principled analysis to determine the presence
of a strong tie between the two nodes for a network of
conveniently large size. To perform such an analysis, for
any pair of nodes ¢ and j, we measure the following four

quantities over the observation time-window of duration
T:

e the number of time-steps in which node 7 is suscep-
tible, denoted as s;;

e the number of transitions of node i from susceptible
to infected, denoted as i;;

e the number of time-steps in which node 7 is suscep-
tible and node j is infected, denoted as n;;; and

e the number of transitions of node ¢ from suscepti-
ble to infected with node j being infected at the
previous time, denoted as g;;.

From the first two quantities, we compute the ratio r; =
1;/8;, which measures the sampling probability that a
susceptible node i at time ¢ becomes infected at ¢ + 1.

According to (4b), if ¢ and j do not share a strong tie,
then the probability that ¢ contracts the infection should
not be influenced by 7, that is, ¢;; should be a realization
of a Bernoulli trial with expected value equal to r;n;;.
We set this as the null hypothesis of our statistical test,
which is rejected if g;; is significantly larger than r;n;;.
We associate with the node pair a p-value, coming from
the binomial cumulative distribution, equal to

qij—1
i N —
7Tij:]_—z<hj>7’ih(l—’l"i) h. (5)

h=0

This procedure generates a set of n — 1 statistical tests
for each node, that is, n(n — 1) tests, overall. Hence, a
multiple comparison correction should be implemented
to assess whether each one of the null hypotheses can
be rejected. We adopt the Benjamini—-Hochberg proce-
dure to control the false discovery rate, which offers a
less conservative criterion with respect to the standard
Bonferroni criterion [59]. This method is implemented
as follows.

First, we set the level of significance a € [0,1]. The
quantity o measures the largest admissible probability
that at least one of the null hypotheses is erroneously
rejected and it is typically a small quantity, to ensure
the test significance. Then, the n(n — 1) p-values are
sorted in ascending order and denoted as 71 < 7(2) <
coo < wl=Dn)  Tet I be the largest integer for which
it holds 7(*) < La/(n — 1)n. Then, the null hypothesis
is rejected for all the pairs of nodes associated with a p-
value smaller than 7(%). If the null hypothesis is rejected
for ¢ and j, then we estimate that there is a link in the
backbone network between nodes ¢ and j. Hence, we
set the corresponding element of the estimated backbone
adjacency matrix G as G;; = Gj; = 1. We note that
this is the step that requires the highest computational
effort, since the n(n — 1) p-values should be computed
and sorted in ascending order. The algorithm can be



implemented according to the pseudo code below.

Algorithm 1: Backbone detection algorithm
Data: empirical observations 7;, ni;, qi;, Vi,j € V
Result: estimation of the adjacency matrix G
G+ 0;
forieV,jeV, jA2ido

| compute mi; using (5);

sort m;; in ascending order 7 < 7@ < ey
L +— max{k € N: 7(5) < La/(n — 1)n};
forieV,jeV, j#ido
if Tij S 7T(L) then
Gij — 1;
éji — 1;

Examining more in depth the analytical results in (4a),
we foresee some issues that might hinder the applicability
of our algorithm, yielding a small value of P;_,;, even
though a strong tie connecting i to j exists. In particular,
this can occur in two cases. First, if both degrees d;
and d; are large, such that the two nodes have a large
degree centrality in the backbone network. Second, if
both activities a; and a; are small. In the following,
we present detailed numerical simulations with different
parameter choices to demonstrate the accuracy of the
algorithm.

IV. NUMERICAL VALIDATION

We validate our backbone detection algorithm on sev-
eral synthetic datasets, to illustrate its applicability in
real-world scenarios and identify potential limitations.
These synthetic datasets consist of benchmark networks
with n = 200 nodes, generated according to the RADN
paradigm described in Section IIA. We consider differ-
ent distributions for the nodes’ activities and backbone
degrees. Specifically, the latter follows a configuration
model [1]. The epidemic process is simulated using the
SIS model illustrated in Section IIB with A = 0.9 and
u = 0.1. Unless otherwise specified, we set the signif-
icance level of the statistical test to @ = 0.05 and the
parameter v = 0.95.

A. Homogeneous activity distribution and
homogeneous backbone

We first examine the possibility of identifying regular
networks of strong ties against weak ties generated us-
ing a common activity value for the all nodes. In this
scenario, the backbone is chosen to be a 4-regular ran-
dom network and the activity is equal to a; = 0.3, for all
1€ V.

In Fig. 3, we plot the true positive rate (TPR), which
is the fraction of links that the algorithm is able to
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FIG. 3. Fraction of strong ties identified by our algorithm
in the scenario with both homogeneous activity distribution
and backbone degrees, for different values of the parameter
v. The backbone is a 4-regular network with 200 nodes. The
other parameters are A = 0.9, 4 = 0.1, and a; = 0.3, for all
the nodes.

correctly predict (green); and the false discovery rate
(FDR), which is the ratio between the number of times
it fails to properly identify a link and the number of links
in the backbone (red). Perfect reconstruction is attained
when the number of true positives is equal to the total
number of positives (TPR= 1) and the number of false
positives is equal to zero (FDR= 0). The computations
are carried out for different values of T', such that larger
values of T imply access to a longer time-window for the
estimation of the probabilities of transitions in the algo-
rithm.

For sufficiently large values of T', our algorithm is suc-
cessful in exactly reconstructing the topology of the back-
bone, for any choice of the parameter 7. As suggested
by the analytical expression in (4a) where y appears as a
multiplicative coeflicient, the smaller 7, the larger values
of T are required by our algorithm. Choosing small val-
ues of T' may hamper the correct identification of links,
but it rarely results into the identification of false pos-
itives (for instance, only four false positives are overall
identified for v = 0.95). Thus, increasing T', we progres-
sively improve the detection of strong ties, attributing a
very small quantity of wrong links to the backbone. This
is an important feature of the algorithm, whereby all the
links it discovers can be relied upon with an extremely
high confidence. When few data is available, that is, for
small T, the output of our algorithm could be poor. A
possible strategy to circumvent the issue of limited data
could be to not perform the multiple comparison cor-
rection, which, however, could beget a larger number of
erroneous identifications.
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FIG. 4. Fraction of strong ties correctly identified by our
algorithm for both heterogeneous and homogeneous activity
distributions, and for homogeneous degree in the backbone.
The backbone is a 4-regular network with n = 200 nodes. The
other parameters are v = 0.95, A = 0.9, and p = 0.1. Three
cases for the activity distribution are examined: all the nodes
have the same activity a; = 0.2 (ho-low, dashed), a; = 0.8
(ho-high, dotted), and half the nodes have a; = 0.2 and half
have a; = 0.8 (he, colored). For the last case of heterogeneous
activities, the TPR curve is plotted with respect to links be-
tween nodes with low activity (blue), links between nodes of
different activity (orange), and links between nodes with high
activity (green). Only one FDR curve is plotted for all the
cases, since they are practically indistinguishable (he, red).

B. Heterogeneous activity distribution and
homogeneous backbone

To better proxy a real-world setting, we release the as-
sumption that all the nodes have the same activity. As a
stepping stone, we consider the case in which nodes are
randomly divided into two activity classes with 100 nodes
each: low-activity nodes (a; = 0.2) and high-activity
nodes (a; = 0.8). Similar to the previous analysis, the
backbone is a 4-regular random network. To help teas-
ing out the role of heterogeneity, we also simulate the
scenarios in which all the nodes are either in the low- or
high-activity classes.

Again, we examine the effect of T" on true and false pos-
itives, with respect to the number of positives. Results
in Fig. 4 confirm those from Fig. 3, whereby the fraction
of correctly identified links increases with 1" and the frac-
tion of misclassified links is always negligible. Comparing
the three scenarios, we observe that large values of the
activity have a negative effect on the performance of the
algorithm. In fact, an increased observation window is
required to detect strong ties in the homogeneous case
with high activity, with respect to the scenario with low
activity.

Heterogeneity further reduces performance, hampering
the detection of strong ties between low-activity nodes.
Even though networks with a heterogeneous activity dis-
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FIG. 5. Fraction of strong ties correctly identified by our al-
gorithm for both heterogeneous and homogeneous backbones,
and homogeneous activities a; = 0.3, for all the nodes. The
other parameters are n = 200, v = 0.95, A = 0.9, and p = 0.1.
Three cases for the backbone are examined: all the nodes have
the same low-degree d; = 2 (ho-low, dashed); all the nodes
have the same high-degree d; = 8 (ho-high, dotted); and half
the nodes have d; = 2 and half have d; = 8 (he, colored).
For the last case of heterogeneous degrees, the TPR curve is
plotted with respect to links between nodes with low degree
(blue), links between nodes of different degree (orange), and
links between nodes with high degree (green). Only one FDR
curve is plotted for all the cases, since they are practically
indistinguishable (he, red).

tribution require a longer window to correctly detect all
the strong ties, we observe that, for sufficiently large T,
our algorithm is able to correctly reconstruct the back-
bone, with a negligible fraction of erroneous identifica-
tions. Overall, these results are in agreement with the
theoretical analysis in the Appendix, whereby decreas-
ing the activities causes a reduction in the probability
difference in (4a).

C. Homogeneous activity distribution and
heterogeneous backbone

Next, we examine a backbone where the degree of
the nodes is not held constant throughout the network.
Specifically, we consider a network in which nodes are
partitioned into two classes of 100 nodes each with low-
(d; = 2) or high-degree (d; = 8). To avoid confounding,
we maintain the activity at a common value of a; = 0.3,
similar to results in Fig. 3. Once again, to facilitate the
assessment of the effect of a heterogeneous degree dis-
tribution on the algorithm performance, we analyze two
control cases in which all the nodes have the same low-
or high-degree.

Figure 5 illustrates the fraction of links predicted as a
function of T for three considered settings. Consistently
with our previous results, we observe that increasing the
length of the observation steadily benefits the algorithm



precision in inferring strong ties, as shown in Fig. 5. The
number of false positives is always negligible, even for
small values of T, confirming that the algorithm can be
reliably utilized for backbone inference.

Comparing the two homogeneous cases of low- and
high-degree distributions, we register an expected de-
crease in performance when dealing with higher degrees.
In this case, the value of added knowledge regarding the
state of health of one node is diluted by the presence
of many other neighbors that could have triggered the
infection. Analytical results in the Appendix provide a
theoretical basis for this explanation, whereby increasing
the values of the degree causes a reduction in the proba-
bility difference in (4a).

As one might expect, the performance of the algorithm
toward the inference of the heterogeneous network is in
between the two cases of homogeneous networks. To gain
further insight into the relationship between topological
features and successful reconstruction, we can isolate the
specific links that are first detected by the algorithm for
small values of T'. In agreement with our analytical re-
sult in (4a), the links that require shorter observations
are incident to low-degree nodes. These links encompass
both strong ties between low-degree nodes and strong ties
between nodes with high and low degrees that might ex-
emplify dissortative structures of real networks [60, 61].
Longer time-windows are required for detecting links that

J

From Fig. 6, we recognize a marked effect of the pa-
rameters on the performance of our algorithm. For lower
values of both parameters, 3, and B4, our algorithm fails
to identify the backbone, under-predicting the number
of strong ties. This is in agreement with Figs. 4 and 5,
which indicate that longer observation windows are re-
quired to infer the backbone when the RADN is domi-
nated by high-degree and high-activity nodes. The best
performance is attained for higher values of the two pa-
rameters. In this case, the algorithm correctly detects
all the strong ties, with a very small quantity of false
positives.

Comparing the results for 7' = 10,000 and 7' = 30, 000,
interestingly, B, seems to have a stronger effect on per-
formance than 4, whereby at T' = 30, 000, the algorithm
is able to detect most of the strong ties for small values of
B4 but its performance is strained when examining small
values of 3,. This confirms our preliminary observation
from Fig. 4 that heterogeneity in the activity distribution
hampers the detection of strong ties.

V. APPLICATION TO TARGETED
IMMUNIZATION

In epidemiology, knowledge about the backbone net-
work might offer valuable information about how diseases

connect pairs of high-degree nodes.

D. Highly-heterogeneous activity distribution and
backbone

To offer insight on the performance of our algorithm
over a wider class of RADNSs, we systematically examine
a two-dimensional grid of salient parameters. We assume
that both the activity and the degree distributions follow
a power-law with exponents 3, and (4, respectively. We
vary each parameter from —5 to —2, which are represen-
tative of real-world scenarios [62]. Parameters are varied
in 11 steps with cutoffs at 0.1 and 1 for the activity, and
at 1 and n — 1 for the degree.

We observe that smaller values of the exponent of a
power-law yield distributions with a larger dispersion, in
which most of the nodes have small activity (degree) and
few have an extremely high activity (degree). Two differ-
ent realizations are examined, one with 7' = 10,000 and
T = 30,000, respectively. The weight ~ is reduced to 0.5
to guarantee the spread of the epidemic diseases for all
the choices of parameters investigated and the network
size is increased to n = 300 to ensure the presence of
high-degree (activity) nodes in the power-law distribu-
tions. The epidemic parameters are set as A = 0.9 and
@ = 0.1, similar to the simulations in Section IV.

(

spread and which is the role played by individuals [63].
In this vein, we conclude this paper by presenting an
application of our algorithm to design a targeted immu-
nization protocol. Our control strategy observes the dis-
ease spreading for a finite time-window to identify the
backbone network, and then utilizes such an inference to
prioritize immunization of nodes in the network accord-
ing to a centrality criterion. Specifically, we immunize
nodes according to decreasing values of their PageRank
centrality [64]. By means of Monte Carlo numerical sim-
ulations, we evaluate the performance of the approach
against a randomized immunization, where no informa-
tion regarding the backbone is utilized.

Similar to the analysis in Section IV D, we examine a
benchmark network with n = 300 nodes. The backbone
is generated using a configuration model with power-law

degree distribution of power 8; = —3 and cutoffs at 1
and n — 1. Activities are also drawn from a power-law
distribution with exponent 8, = —3 and lower cutoff

at 0.1. We consider an SIS epidemic with A = 0.9 and
= 0.1. We run the model over a window of 50,000
time-steps implementing our algorithm to identify the
backbone. At this time, we execute two control strate-
gies (targeted and randomized), with a number of inter-
ventions limited to 5% of the total number of nodes. We
perform Monte Carlo simulations by averaging over 100
independent runs of the two control strategies.
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FIG. 6. TPR (a,b) and FDR (c,d) of our algorithm implemented on a network of n = 300 nodes with heterogeneity in both
activity distribution and backbone degree, for an observation window of T'= 10,000 time-steps (a,c) or 7' = 30,000 time-steps
(a,c). Both activities and backbone degrees follow power-law distributions with exponents 8, and B4, respectively. Other
parameters are set to A = 0.9, 4 = 0.1, and v = 0.5. Each point is an average of ten independent simulations.

The results of these simulations are summarized in
Fig. 7. In Fig. 7(a), we compare the performance of the
two immunization strategies for v = 0.95, as in the nu-
merical analysis in Section IV. While randomized immu-
nization decreases the portion of infected nodes by 13%,
targeted intervention decreases it by 55%, on average.
The difference between these two strategies is statisti-
cally significant (p-value < 0.0001, according to a two-
sample z-test) comparing the average fraction of infected
individuals after the implementation of the immunization
strategy, for 100 independent runs. In Fig. 7(b), instead,
the comparison between the two techniques is conducted
for different values of the parameter 7, spanning from 0.5
to 0.95 in steps of 0.05. Therein, we report the average
fraction of infected nodes in the 500 time-steps that fol-
low the application of the control strategy. Predictably,
the larger the parameter v, the stronger the improve-
ment of the targeted immunization with respect to the
randomized one. In fact, for small values of 7, the back-
bone has a marginal role on the link formation process,

reducing the effect of targeted immunization exploiting
the centrality measures in the backbone. However, the
difference between the two strategies is statistically sig-
nificant in all the performed simulations.

Encouraged by these promising results, we apply our
targeted immunization technique to real-world face-to-
face interactions measured through proximity sensors in
a high school [52], available at [65]. The dataset com-
prises 188,508 temporal links, generated over T' = 7,375
time-steps among n = 327 nodes. We run an SIS epi-
demic model for half of the available dataset, starting
from a fraction of one third of infected nodes, selected
uniformly at random. Then, 5% of the nodes is im-
munized following either the randomized or the targeted
strategy. By performing an extensive Monte Carlo sim-
ulation with 1,000 runs, we compare the two strategies
for different values of the epidemic parameters A and p.
Figure 8 demonstrates that our immunization technique
should always be preferred to randomized immunization,
whereby, for most parameter choices, it outperforms ran-
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A=0.9, and g =0.1.

domized immunization.

VI. CONCLUSIONS

In this work, we have proposed an algorithm to un-
veil the backbone of strong ties in a temporal network
from empirical data of a spreading process unfolding on
the network nodes. Building on analytical insight re-
garding the role of strong ties on the process, we have
put forward a statistically-principled approach to dis-
cover strong ties from empirical data. Extensive simu-
lations have been performed to assess the effectiveness
of the proposed technique, which has proved to be reli-
able in a variety of scenarios. Finally, we have examined
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FIG. 8. Difference in the fraction of infected nodes after the
immunization phase, between the randomized and the tar-
geted strategy (color coded) in the high-school case study [65].
The dashed line represents the epidemic threshold [56], below
which none of the nodes is infected at the onset of the im-
munization strategy. Darker blue areas identify parameter
regions where targeted immunization has superior outcome.
Each point is an average of 1,000 independent simulations.

the integration of the proposed algorithm in the solution
of an important challenge in epidemiology, namely, tar-
geted immunization during an outbreak. The main con-
tributions of this work are: ) the analytical computation
of the effect of strong ties on the infection probability
for a susceptible—infected—susceptible epidemic model on
routed activity driven networks; ii) the design of a back-
bone detection algorithm and its numerical validation;
and 47i) the implementation of a targeted immunization
technique.

The promising preliminary results of our numerical
analysis pave the way for several avenues of future re-
search. We aim to rigorously assess the performance of
our algorithm, as a function of the network size and the
duration of the window of observation. Future efforts
should focus on the development of accurate methods to
deal with limited data, without increasing the number of
erroneous identifications. In the analytical derivation of
our bounds, we specialize the computations to the SIS
epidemic model. However, the generality of our proving
argument suggests that similar bounds could be estab-
lished for other models, as well, provided that they do
not admit permanently attractive states. These achieve-
ments would be key to provide a theoretical basis for the
generalization of our algorithm to deal with other dy-
namics, including richer epidemic processes or opinion
diffusion. Such an extension will be part of our future
research. In most real-world scenarios, it is not tenable
to have access to the entire node set, thereby calling for
methods to discover missing nodes, beyond links.

The ability to reconstruct the structure of the back-
bone of a complex system from the observation of an un-
folding spreading process finds application in disparate



fields of investigation. Besides implementations to un-
veil the structure of social networks, one should mention
the field of connectomics [66]. The goal of this area of
research is to reconstruct connection patterns in animal
and human brains, toward an improved understanding of
the relationship between network structure and cognitive
functionalities. We believe that our algorithm may be of
help to connectomics by offering a pathway for the iden-
tification of recurrent interactions among the hubs of the
brain network. Finally, our study on targeted immuniza-
tion has demonstrated how information about the back-
bone can be leveraged to design effective control tech-
niques that could steer the behavior of dynamical sys-
tems. Extending the framework to other disease models
and mathematically proving performance bounds is the
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Appendix A: Computation of the conditional
probabilities

We compute the infection probability for node i at time
instant ¢, for either the case in which we include or ex-

objective of future research. clude knowledge about node j. Let z1,...,x, be the

state of the system at time ¢, then the RADN model
indicates that

P(X{, =11X;=0=1- J[ 1 =Xa;Pyax) (1 — XagPrizx). (A1)
keV~{i}
Upon conditioning on th =1, we factor the term associated with j out of the multiplication to obtain

keV~{ij}

First, we consider the case in which nodes ¢ and j do not share a strong tie, that is G;; = Gj; = 0. In this case,
from (1) we derive P;; = Pj; = (1 —v)/(n — 1). We substitute P;; and Pj; in (Al) and (A2), and we compute the
limit for n — oo of their difference as

limy, o0 P(Xi g = 1| X} = 0,X] =1) = P(X},; = 1| X{ = 0)

S (o2 () (20 ()
< I (= XaiPiar) (1 — Aag Prixy)

kEV~{i,j} , , (A3)
A0S @t a) (- (= a1 — )
= lim ( J Il J J (1 = Aa;Piag) (1 — Aag Prizy)
n—o0 n—1 (n — 1)2 kevl:[{i,j}
< 1im M =W@itae)
n—o00 n—1

We note that (A3) is the generic summand of P;_,; in (3), from which the claim in (4b) follows. We further observe
that each of the summands of P;_;; is a nonnegative random variable, which is bounded from above by the estimation
in (A3). Even though these random variables are not independent and not identically distributed (since they depend
on the time-series of the nodes’ health state that are self-correlated) they are bounded and their correlation tends to
0 in the long-time. Hence, a central limit theorem applies to P,_,;, according to [67]. Such an observation guarantees
that P;_,; converges to a Gaussian distribution, as supported by the numerics in Fig. 2. However, an explicit statement
of the central limit theorem cannot be readily formulated, since it requires the computation of the variance.

We now consider the case in which nodes ¢ and j share a strong tie, that is, G;; = G = 1. Similar to the
previous analysis, from (1) we derive P;; = (1 —v)/(n — 1) + v/d; and Pj; = (1 —v)/(n — 1) + v/d;. Defining the
neighborhood of node 7 in the backbone Né = {j € V: G;; = 1}, we proceed specializing to the present case the
difference between (A1) and (A2) at time ¢. Considering that (1 —k/2)*~ > 1/e¥, for any > 1 and k > 0, and that
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d; <n—1, for any i € V, we compute
P(Xjy = 1]X] = 0,X7 =1) ~ B(Xjs; = 1| X{ = 0) =

(e (G ) (e (5 +0m3)) - (2 52)) 0o (G +073)))

X H (1 — /\aiPika:k) (1 — /\akPkixk)

kEV\{i,j}
> My(1 — ;) <Zi + % - MEZZ) H | (1= Aa;Pigar) (1 — Aag Priz) H | (1= AaiPinwn) (1 — Aan Prizn)
RENE{7) R (1-1) 1-7)
a; Qi a;a; Aa; Aay Al —v)a; AL —v)ay,
S (1 —a) (&4 %\ %% 1- 22 ) (1-52 e B G
> M( xj)(di+dj ’Ydidj) H ‘ < di)( dk) H A < n—1 >< n—1
keNE~{j} hgNgU{i}

a; a; a;a; Aa; Aan \ 147! A1 —=79)a; A1 =ax "
S S (YA, %Y _ A _ _Ad=ya; _ Al = yam
22l xj)<di+dj Md,»dj) [(1 d; ) (1 din ﬂ Kl n—1 ! n—1
> Ay Las Ty T (e (1 - a;) = F(z;)
= expIM1 — ) (a; + an)} d; o 4 d; i, )= B
(A4)

where aps is the maximum node activity and d,, is the minimum degree in the backbone. The bounding function
F(x;) is such that F'(1) =0, and F(0) > 0, for any v > 0.
We now focus on the variable th . According to the SIS dynamics described in II B, th changes from 1 to 0 with

probability equal to u, while the probability of switching from 0 to 1 depends on the health state of the other nodes,
according to (Al). However, it can be bounded from above as follows:

P(Xj, =1|X/=0)=P( |J {iisinfectedbyk}| < > P({iis infected by k})
keV~{i} keV~{i}
= Z Aa; Piay + Ay Py — Nazar P Pz, < A Z (@i P + ane Pi) = A |:ai + [1 - (1 - C?)” an.
keV~{i} keV~{i} m
(A5)
Hence, the frequency of X7 = 0 converges almost surely to at least pu/(A(a; + (1 —v(1 — d; /dm))ans) + ) for T — oo.
Hence, using (A4) and the definition of P;_,; in (3), the latter quantity can be bounded from below as follows:

T-1 T—1
1 , ) : . . 1 )
i o= 1 _ 2 — | — J _ [ — i : = %
Th_r)I;OP]%Z = Th—I};o T tg_o [JP’(XH_1 =11X;/=0,X]/=1)-P(X;, =1|X; = O)} > Th—I}?)o 7 ;_0 F(X3})
. 1 a 1 B
= — >
g X0 S

te{0,...,T—1}:X{=0 Alai + (1 —~(1 - d,,L))aM] +u

,U,)\"}/ a; i1 anr di—1 a; Q; a;Qj
2 @ e (Mg + (1=~ (1= d/dm))ant) + ) (1 Adi> <1 Adm) (di i ”Adid) -0
(A6)
As shown in Fig. 2, our bound is accurate, albeit conservative. The main bottlenecks for improving the bound are in
the substitution of the random variables X] with 1 in (A4) and in the estimation of the time elapsed with X] = 0 in
the derivation of (A6). To obtain a tighter bound, one should rigorously compute the endemic state of an SIS model
over an RADN, which is a nontrivial open problem [17].

Similar to our observations following (A3), we should note that a central limit theorem could in principle be
established here as well, since P;_,; is a temporal average of the transition probabilities. However, the derivation of
its explicit statement is not possible, since it requires the exact computation of mean and variance of the summands.

We conclude the Appendix by commenting that our derivation is performed by using specific properties of the SIS
epidemic model. We believe that a similar argument could be pursued to establish rigorous bounds on the transition
probabilities for other dynamics, including more complex and realistic epidemics processes, or opinion dynamics,
such as the voter model. In fact, the key properties of our argument is that the state transitions (from susceptible
to infected) are triggered by the interactions and that they occur multiple times, due to the spontaneous recovery
process. The former leaves the footprint of strong ties on the nodal dynamics, the latter affords the use of statistical
tests to ensure significance to our results.
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