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DETERMINISTIC AND FUZZY-BASED METHODS TO EVALUATE COMMUNITY 1 
RESILIENCE BASED ON THE PEOPLES FRAMEWORK 2 

 3 

ABSTRACT 4 

Community resilience is becoming a growing concern for authorities and decision makers. This paper 5 
introduces two indicator-based methods to evaluate the resilience of communities based on the PEOPLES 6 
framework. PEOPLES is a multi-layered framework that defines community resilience using seven 7 
dimensions. Each of the dimensions is described through a set of resilience indicators collected from literature 8 
and they are linked to a measure allowing the analytical computation of the indicator’s performance.  The first 9 
method proposed in this paper requires data on previous disasters as an input and returns as output a 10 
performance function for each indicator and a performance function for the whole community. The second 11 
method exploits a knowledge-based fuzzy modeling for its implementation. This method allows a quantitative 12 
evaluation of the PEOPLES indicators using descriptive knowledge rather than deterministic data including the 13 
uncertainty involved in the analysis. The output of the fuzzy-based method is a resilience index for each 14 
indicator as well as a resilience index for the community. The paper also introduces an open source online tool 15 
in which the first method is implemented. A case study illustrating the application of the first method and the 16 
usage of the tool is also provided in the paper. 17 

Keywords: Deterministic approach, resilience indicators, Fuzzy method, , PEOPLES framework, Earthquake 18 
resilience 19 

1. INTRODUCTION 20 

The number of natural disasters and the corresponding number of people affected, with related ec onomic 21 
losses, have shown an upward trend in the last years. This implies that communities are often not sufficiently 22 
resilient to natural catastrophes. Consequently, the concept of resilience has been deepened in the engineering 23 
field to assess the ability of a community to recover after an undesirable event. Indeed, since the adoption of 24 
the Hyogo framework in Manyena (2006), strategies involved in hazard planning and disaster risk reduction 25 
have experienced a paradigm shift from a vulnerability assessment approach to a resilience-based approach 26 
(Mayunga, 2007).  27 

Since the concept of resilience is applicable in several disciplines, different definitions are available in the 28 
literature. Cimellaro et al. (2016a) have conducted a comprehensive review on this topic. In their work, the 29 
resilience definition provided by Bruneau et al. (2003) emerges: resilience is “the ability of social units to 30 
mitigate hazards, contain the effects of disasters when they occur, and carry out recovery activities in w ays  to 31 
minimize social disruption”. This definition has been later improved by Cimellaro et al. (2010) who define 32 
resilience as: “a function indicating the capability to sustain a level of functionality or performance for a given 33 
building, bridge, lifeline network, or community, over a period defined as the control time (TC) that is usually 34 
decided by owners, or society (usually is the life cycle, life span of the system etc.)”. Thus, resilience can be 35 
defined analytically as the area under the serviceability performance curve Q(t) of a system, normalized 36 
accordingly to the considered control time (TC): 37 
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where R is the resilience index, Q(t) is the system functionality at time t, t1 is the moment when the disturbance 39 
occurs and the system functionality drops, tr is the moment when the initial serviceability is completely 40 
recovered; TC is the control time. The serviceability Q(t) ranges between 0% and 100% to indicate the 41 
complete absence of functionality of the service and its complete effectiveness, respectively.  42 



 

Several solutions for measuring resilience are available in the literature (Abeling et al., 2014, Cutter et al., 1 
2008, Cimellaro et al., 2016b, Cimellaro et al., 2015, Cimellaro et al., 2014). Liu et al. (2017) introduced a 2 
method that combines dynamic modeling with resilience analysis. Interdependent critical infrastructures have 3 
been analyzed in terms of design, operation, and control using this method by performing a numerical analysis .  4 
Kammouh et al. (2017b) have introduced a quantitative method to assess the resilience at the state level based 5 
on the Hyogo Framework for Action (UNISDR, 2011). The approach introduced was an evolution of the risk 6 
assessment concept. The resilience of 37 countries has been evaluated and a resilience score between 0 and 7 
100 has been assigned to each of them (Kammouh et al., 2017c). Cutter et al. (2014) clarified that researc h on 8 
measuring community resilience is still in the early stages of development. Although many attempts have been 9 
made to consolidate research on community resilience, no accepted method exists so far and there are still 10 
difficulties in developing concrete assessment approaches and reliable indicators .  11 

Here, community resilience is evaluated exploiting two novel methodologies, which benefit from the 12 
PEOPLES framework (Cimellaro et al., 2016a, Renschler et al., 2010). PEOPLES is a layered framework: 13 
each dimension is divided into components. However, the framework does not identify a clear procedure to 14 
quantitatively compute resilience, but rather a qualitative assessment and description of resilience. The goal of 15 
this paper is to use the structure of PEOPLES framework to come up with a quantitative framework that allows  16 
evaluation of the resilience of communities. To do so, two different new methodologies to analytically quantify 17 
the resilience of communities are proposed. The first method is deterministic and requires data on past 18 
earthquake events in the form of indicators. This method turns a resilience index and a performance function 19 
for the community as an output. However, in specific scenarios, some indicators may be difficult to obtain and 20 
quantify, as well as the interdependency among them. In order to track and represent such uncertainties, 21 
another method based on a fuzzy-logic modeling is proposed. This method does not require deterministic data 22 
but rather expert knowledge to determine the different parameters involved in the resilience evaluation. It also 23 
accounts for the uncertainties involved in the assessment process. This method returns a resilience index for 24 
each indicator and a resilience index for the analyzed community. This paper also introduces a free open 25 
source tool in which the deterministic resilience method is implemented. A case study illustrating the use of 26 
the tool is also presented. 27 

2. PEOPLES: A COMPREHENSIVE MULTI-LAYERED RESILIENCE FRAMEWORK  28 

PEOPLES is a framework for identifying the different resilience characteristics of a community (both in time 29 
and space) and for providing new ways through which decision makers can take actions under emergencies 30 
(Cimellaro et al., 2016a). The framework allows modeling possible responses of a community considering the 31 
interdependency between the different community layers. The acronym PEOPLES stands for seven community 32 
dimensions including: 33 

1 Population and demographics: it includes parameters that describe the social-economic composition of the 34 
community. This dimension measures the social vulnerability that could hinder the functionality of the 35 
emergency and recovery systems (e.g. population density, age distribution, presence and integration of 36 
minorities and socio-economic status). 37 

2 Environment and ecosystem: it estimates the capability of the environment and of the ecosystem to get 38 
back to its pre-hazard conditions. It includes water, air and soil assessments as well as a measure of the 39 
biodiversity and the sustainability relations. 40 

3 Organized government services: it covers the services that the government guarantees before and after an 41 
extreme event. A great importance is given to the mitigation and recovery processes, which include the 42 
preparedness to hazards and all disaster risk reduction measures. 43 

4 Physical infrastructure: it considers the buildings and facilities that are the prevalent interests of civil 44 
engineers and traditional resilience analysis. Particularly, two different aspects are analyzed in this 45 
dimension: facilities, which includes housing and services which are not crucial for the emergency 46 
response, and lifelines, which instead consists of the services that are of vital importance for the 47 
management of critical situations. 48 

5 Lifestyle and community competence: this dimension takes into account the capability of a community to 49 
face problems by means of political partnerships. This includes both the abilities of a community (i.e. the 50 



 

skills of their components) and its perceptions (i.e. the judgements and feelings that a community has on 1 
itself). 2 

6 Economic development: it describes the economic situation of the community. It can be easily divided in 3 
two terms, a static component, which measures the present economic condition, and a dynamic one,  w hic h 4 
instead takes into account the development and economic growth of the community.  5 

7 Social-cultural capital: this last dimension contains an evaluation of the community’s attitude to react to 6 
disasters and to return to the pre-event conditions. It includes a lot of subcategories that measure the 7 
people’s commitment in the community and the social-cultural heritage. 8 

3. METHOD 1: INDICATOR-BASED DETERMINISTIC APPROACH 9 

3.1 PEOPLES’ hierarchy: dimension, components, indicators, and measures 10 

PEOPLES is a multi-layered framework containing seven dimensions, each of which is divided into a set of 11 
components. To quantify the PEOPLES framework, a list of 115 resilience indicators describing the different 12 
aspects of a community has been identified and allocated to the PEOPLES’ components. A full list of the 13 
components and indicators is provided in the free tool web page (more details are provided later in the paper). 14 
Each indicator is accompanied with a measure to allow the analytical evaluation of the indicator’s 15 
performance. The measures are presented in the form of continuous functions instead of scalar values (crisp 16 
values). This allows identifying the performance of the indicator during an interval of time (i.e. the period 17 
following the disaster) rather than at a specific instance of time. Each measure is normalized with respect to a 18 
fixed quantity, the standard value (SV). The standard value is an essential quantity that provides the baseline to 19 
measure the resilience of a system. The system’s existing serviceability at any instance of time is compared 20 
with the standard value to know how much serviceability deficiency is experienced by the system. In addition,  21 
measures are classified in two different categories: “static measures (S)”, assigned to the measures that are not 22 
affected by the disastrous event, and “dynamic measure (D)” or event-sensitive measures, assigned to the 23 
measures whose values change after a hazard takes place. 24 

3.2 Interdependency factor 25 

Interdependencies between the different variables of PEOPLES framework can highly affect the resilience 26 
result. Generally, the interdependency depends on several factors such as the disaster event and the type of 27 
analyzed community (rural, urban and industry). To include interdependencies, weighting factors are allocated 28 
to each variable through an interdependency analysis.  In the analysis, the variables of PEOPLES are classified 29 
in three major groups as follows:  30 

1. Indicators that fall within a component are considered as a group (totally 29 groups); 31 
2. Components classified under a dimension are taken as a group (totally 7 groups); 32 
3. PEOPLES seven dimensions fall in one group (totally 1 group).   33 

A square matrix for each group of variables is created (Figure 1), where each cell in the matrix represents the 34 
level of interdependency between two variables. Each cell (aij) can take the values 0 or 1 indicating full 35 
independence and full interdependence, respectively. This value can be identified either using descriptive 36 
knowledge in the form of a questionnaire filled by a group of experts or by relating to past data on previous 37 
events. Figure 2 shows a sample questionnaire to portray, as an example, the interdependencies that exist 38 
among the indicators under the component “lifeline”. This questionnaire form can be filled at least by one 39 
expert who has enough knowledge about the dynamics that exist between the variables. The expert 40 
responsibility is to identify whether two indicators have “low” or “high” correlation. These descriptors  are 41 
translated to 0 and 1 respectively in the matrix cells. 42 

[Figure 1. near here] 43 

[Figure 2. near here] 44 

 45 



 

The interdependency matrix is not symmetrical because if a variable i is dependent on a variable j, the reverse 1 
is not necessarily true. The interdependency factor of a variable i is obtained by normalizing the summation of 2 
the cells’ values in column i with respect to maximum value among all the columns’ summations. The 3 
interdependency factor for a variable i is mathematically calculated as follows: 4 
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where 
i  is interdependency factor for variable i, aji is the interdependency level that variable j has on a 6 

variable i, n is the number of variables in the studied group. To better consider the uncertainties and reduce the 7 
subjectivity, the questionnaire can be filled by a group of experts.  In this case, a statistical analysis is carried 8 
out. A probability distribution function (PDF) is considered for each variable based on the data collected from 9 
the experts (Figure 2), and three values are used in the subsequent analysis to address the uncertainties in final 10 
resilience output: (1) the mean ( ), (2) mean + standard deviation, (3) mean – standard deviation (Figure 3). 11 
A total of 37 matrices are needed to perform a complete interdependency analysis at a community level using 12 
the hierarchy of PEOPLES framework. 13 

[Figure 3. near here] 14 

3.3 Importance factor 15 

Variables do not contribute equally to the overall resilience output.  Thus, each of the dimensions, components  16 
and indicators is given an importance factor (I) ranging from 1 to 3, where 1 means low importance and 3 17 
means high importance. This factor represents the extent to which a variable (component, sub-component, or 18 
indicator) contributes towards achieving resilience. This factor can be chosen by experts or decision makers.  19 

3.4 Weighting factor 20 

The final weighting factor for each variable (wi) is calculated considering both interdependency and 21 
importance factors. Equation 3 translates an interdependency factor (

i ) and importance factor (Ii) of variable i 22 

into a final weighting factor (wi). 23 
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where wi is weighting factor of variable i, Ii is importance factor of variable i,
 i  is interdependency factor of 25 

variable i, n is the number of variables in the studied group. 26 

3.5 Deriving the final resilience curve 27 

After obtaining weighting factors for the variables of the PEOPLES framework,  a serviceability function is 28 
built for each variable: uniform function for event-non-sensitive measures “static measures”, and non-uniform 29 
function for event-sensitive measures “dynamic measures”, as shown in Figure 4. The serviceability function 30 
can be defined using a set of parameters that mark the outline of the serviceability function (e.g. initial 31 
serviceability q0, post disaster serviceability q1, restoration time Tr, recovered serviceability qf). These 32 
parameters can be obtained from the past events and/or by performing a hazard analysis specific to each 33 
variable. In addition, the shape of restoration curve (sometimes referred to as slope or rapidity) during the 34 
recovery affects the resilience quantity and therefore it should be taken into account in the resilience 35 
computation. However, the restoration rapidity depends on many variables such as the spatial dimension, the 36 
temporal dimension, the hazard type, the available resources (including financial and human resources), the 37 
restoration plan, etc. Thus, modeling the restoration curve of a single system is complex and it could be 38 
defined graphically in countless shapes (Kammouh et al., 2017b). Different types of restoration curves such as  39 
linear, exponential, step function, trigonometric and random function can be selected based on the available 40 



 

system information. For example, the exponential shape can be selected when the initial speed recovery is high 1 
due to an initial inflow of resources and it decreases as the recovery reaches the end (Kafali and Grigoriu, 2 
2005). HAZUS (FEMA, 2011) adopted the linear trend as a restoration curve that is generally used when there 3 
is not enough available data regarding the system resources and recovery plans (Whitman et al., 1997). In this 4 
study, as not much information about the restoration rapidity is available, the linear shape for restoration curve 5 
is selected to build the serviceability function. All serviceability functions are weighted using the weighting 6 
factors described before. 7 

[Figure 4. near here] 8 

Prior to obtaining the weighted serviceability function for each indicator, the final resilience function is 9 
obtained through a hierarchical aggregation procedure (Figure 5). The average of the weighted serviceability 10 
functions of the variables in the same group is considered to move to an upper layer. That is, to obtain the 11 
serviceability function of component i, the average of the weighted serviceability functions of the indicators 12 
under component i is considered. Similarly, to obtain the serviceability function of dimension j, the average of 13 
the weighted serviceability functions of the components under dimension j is considered. Finally, the 14 
serviceability function of the community is the average of the weighted serviceability functions of the seven 15 
dimensions. The resilience index of the community is then evaluated as the area under the final serviceability 16 
function using Equation 1.  17 

[Figure 5. near here] 18 

3.6 Open source online tool 19 

The use of the open source online tool (http://borispio.ddns.net/PEOPLES/login.php) is illustrated here. A 20 
Login/Register window appears when accessing the tool (Figure 6a). The user must register prior to using the 21 
tool. Once registered, the user can start a new scenario for which the resilience is to be evaluated (Figure 6b). 22 
The scenario is composed of two main parts: (1) the analyzed community (i.e. city, country, etc.), and (2)  the 23 
hazard considered (e.g. earthquake, tsunami, fire, etc.). 24 

[Figure 6. near here] 25 

After defining the scenario, a data-entry page that displays the various variables of the PEOPLES framework 26 
appears (Figure 7). On the left side of the webpage, the seven dimensions of PEOPLES are listed. A separate 27 
page for each dimension can be accessed by clicking on the dimension. For each dimension, a list of 28 
components and indicators is shown with blank spaces to insert the data of the parameters required for the 29 
resilience evaluation. A pop-up description is triggered when hoovering the mouse over a parameter in the 30 
window. This is to get extra information that helps the user identify what kind of information they need to 31 
insert. The parameters involved in the resilience evaluation are: 32 

 Importance factor (I): a value between 1 and 3 representing the weight of the indicator towards the 33 
resilience output (Note: in the current version of the tool only the importance factor procedure is 34 
implemented. The new version will include the interdependency analysis described above) 35 

 Indicator nature (Nat): the indicators are classified according to their nature: “Static (S)”, assigned to 36 
the measures that are not affected by the disastrous event, and “Dynamic (D)” or event-sensitive 37 
measures, assigned to the measures whose values change after a hazard takes place; 38 

 Un-normalized serviceability before the event (q0u): is the un-normalized initial serviceability of the 39 
measure; 40 

 Standard value (SV): represents the optimal quantity for the indicator in order to be considered as fully 41 
resilient; 42 

 Normalized serviceability before the event (q0): is the normalized initial serviceability of the measure. 43 
It is obtained automatically by the tool by dividing the un-normalized serviceability q0u over the 44 
standard value SV; 45 

 Serviceability after the event (q1): The residual serviceability after the disaster. This quantity should be 46 
normalized by the user with respect to SV; 47 

 Serviceability after recovery (qr): it is the recovered serviceability, which can be equal, higher, or lower 48 
than the initial serviceability (q0). In this paper. The recovered serviceability qr is assumed equal to the 49 



 

initial serviceability q0; 1 
 Restoration time (Tr): it is the time needed to finish the recovery process. This value is usually 2 

determined using probabilistic or statistical approaches.  3 

A list of importance factors (I) has been set as default in the tool; however, the user can change the numeric al 4 
values in the list according to their preference. The importance factors can be set all to “1” in case the user 5 
finds no justification to assign weights to the indicators; in this case, the indicators will be equally weighted. 6 
The nature of the indicator “Nat” can also be changed by the user because this parameter depends on the type 7 
of hazard and type of community considered in the analysis. If the indicator is Static ‘S’, it is enough for the 8 
user to insert data about the initial serviceability of the system q0u, and the standard value SV. If otherwise the 9 
indicator is Dynamic ‘D’, the user should proceed and insert data about the post-event damage q1, 10 
serviceability level after restoration qr, and restoration time Tr. The parameter q0u is inserted as un-normalized 11 
value while the other serviceability parameters q1 and qr have to be normalized by the user with respect to SV 12 
(divide over SV). A serviceability curve for each component is shown at the bottom of the page after inserting 13 
the indicators’ data. The serviceability curve of the analyzed dimension, which is the weighted average of all 14 
serviceability functions of the components, is also shown on the same graph.  15 

After inserting the required data for all PEOPLES seven dimensions, the user will be able to see the 16 
serviceability curve of the community by clicking on the ‘The community resilience curve’ on the left side of 17 
the screen. For each of the serviceability curves, the tool automatically evaluates the LOR, which is an 18 
indicator for the serviceability loss incurred during the event. 19 

[Figure 7. near here] 20 

3.7 Case study 21 

The resilience of the city of San Francisco is evaluated using the proposed method. The case study show s the 22 
applicability of the proposed methodology and not the actual evaluation of the resilience of San Francisco. The 23 
1989 Loma Prieta earthquake, which characterized by a moment magnitude of 6.9 Mw, is considered as the 24 
disaster event. The introduced tool has been used to carry out the case study, but only the ‘Physical 25 
Infrastructure’ dimension is considered in the case study. Table 1 shows the list of the components and 26 
indicators that are grouped under the dimension ‘Physical Infrastructure’. Each indicator is linked to a measure 27 
that describes the indicator numerically using a set of parameters. In this study, the parameters have been 28 
obtained using open database sources (see notes under Table 1). The case study can be replicated by inserting 29 
the data in Table1 in their corresponding online fields (see Figure 8).  30 

In Table 1, q0u is the un-normalized initial serviceability of the measure. The normalization of this quantity is 31 
necessary to combine it with the other measures that fall in a same group. This is done by dividing the un-32 
normalized serviceability q0u over the standard value SV described before. Right after the disaster, the 33 
serviceability function of a dynamic measure drops to q1 (see Figure 4b). In this example, the recovered 34 
serviceability qr is assumed equal to the initial serviceability q0. It is worth to note that not all facilities can be 35 
restored immediately after the disaster due to limitation of resources (financial, man power, etc.) and due to the 36 
lack of recovery plans. In addition, restoring some facilities is sometimes done in series with (after the 37 
completion of) other facilities, which poses some delay to the restoration process. The restoration time Tr is 38 
usually determined using probabilistic or statistical approaches. In this case study, the restoration fragility 39 
curves recently developed have been used to determine the restoration time for the different variables  40 
(Kammouh and Cimellaro, 2017a). In their work, they have introduced an empirical probabilistic model to 41 
estimate the downtime of the lifelines following an earthquake. Different restoration functions were derived for 42 
different earthquake magnitudes using a large earthquake database that contains data on the downtime of the 43 
infrastructures. The functions were presented in terms of probability of recovery versus time. The downtime 44 
corresponding to 95% of exceedance probability of recovery has been used as a deterministic downtime for the 45 
considered infrastructure. As for the rate of restoration, in this paper a linear interpolation is assumed for all 46 
the measures. 47 

[Table 1. near here] 48 

[Figure 8. near here] 49 



 

Data collection was the most challenging part of the analysis since data about the serviceability of community 1 
systems is scares and not shareable with the public. However, this  does not imply that data is not available but 2 
rather is not accessible. Interested parties, such as decision makers and authorities, can use the framework with 3 
its full potential since data is usually available to them. 4 

The tool combines the serviceability functions as described, while it evaluates the loss of resilience of the 5 
physical infrastructure using Equation 1. The time interval for the calculation of resilience is considered from 6 
the time that the event occurs (t0=0) until full recovery is achieved (i.e. the time corresponding to the instance 7 
where the curve reaches its pre-disaster level, which coincides with the maximum restoration time among all 8 
indicators; tr=700 days). The control time Tc is determined based on the user’s period of interest and so it can 9 
take any value. In the tool, Tc is set equal to tr automatically. Figure 9 shows the resilience curve of the case 10 
study obtained using the tool. The obtained LOR value (25.6%) corresponds only to the physical infrastructure 11 
dimension of the community. In order to have a resilience index for the whole community, the serviceability 12 
functions of other dimensions have to be similarly evaluated and combined in the same way. It is also 13 
interesting to compare the resilience of the two components facilities and lifelines shown in Figure 9. It is clear  14 
that the city of San Francisco has more problems in facilities (LOR=31.29%) than lifelines (LOR=21.85%); 15 
therefore, it is suggested that the authority focuses more on enhancing their facilities.  16 

[Figure 9. near here] 17 

4. METHOD 2: SIMPLIFIED FUZZY LOGIC RESILIENCE FRAMEWORK  18 

The methodology previously described can serve as a tool in preliminary decision-making processes related to 19 
natural catastrophic events. Nevertheless, this method is operable only if indicators can be numerically 20 
quantified, which may not be the case in some scenarios. In this section, a method that does not require 21 
deterministic data to compute the resilience of a community is proposed. The method exploits a fuzzy logic-22 
based modeling of PEOPLES indicators to deal with uncertainties and missing know ledge. In the following 23 
sections, the fuzzy modeling of PEOPLES indicators and the evaluation of community resilience using 24 
information gathered through the fuzzy inference system are discussed. Different approaches are proposed to 25 
match different levels of complexity, starting from a two- and four-parameter approaches and ending with a 26 
full translation of the PEOPLES framework. The proposed methodologies are not fully interchangeable and so 27 
only one of them should be selected in accordance with the level of details needed. 28 

4.1 Fuzzy logic 29 

Zadeh (1965) introduced the concept of fuzzy set and the theory behind it. This theory comes with the absenc e 30 
of any mathematical framework that is able to describe the complexity and vagueness included in processes 31 
where human intervention is significant. While in the crisp logic the variables belong only to one class, in the 32 
fuzzy logic a variable x can be a member of several classes (fuzzy sets) with different membership grades  ( µ) .  33 
Thus, each fuzzy set is characterized by a membership function that associates to any input x a real number (µ)  34 
ranging between 0 (x does not belong to the fuzzy set) and 1 (x completely belongs to the fuzzy set) (Zadeh, 35 
1965). The strength of inference systems based on fuzzy logic relies on the following two main aspects: 36 

 fuzzy inference systems can handle both descriptive (linguistic) knowledge and numerical data; 37 
 fuzzy inference systems exploit approximate reasoning algorithm to formulate relationships between 38 

inputs by which uncertainties can be propagated throughout the whole process (Tesfamariam and 39 
Saatcioglu, 2008a)  40 

Designing a fuzzy logic-based system follows two fundamental steps: 1) defining the membership functions 41 
and the fuzzification process; 2) designing the fuzzy inference system. Fuzzy methods have been widely 42 
developed and applied in several fields (Ross, 2009). In the context of earthquake engineering, fuzzy methods 43 
have been exploited in different applications (e.g. Tesfamariam and Saatcioglu, 2008b, Tesfamariam and 44 
Saatcioglu, 2010, Tesfamariam and Wang, 2011). Fuzzy methods have been widely used also for developing 45 
structural control systems. A clear procedure for the application of fuzzy logic can be found in Tesfamariam 46 
and Saatcioglu (2008a, b).  47 



 

A fuzzy logic system (FLS) can be defined as the nonlinear mapping of an input data set to a scalar output 1 
data. A FLS consists of four main parts: fuzzifier, rules, inference engine, and defuzzifier (Figure 10). The 2 
process of fuzzy logic is: a crisp set of input data are gathered and converted to a fuzzy set using fuzzy 3 
linguistic variables, fuzzy linguistic terms and membership functions. This step is known as fuzzification. 4 
Afterwards, an inference is made based on a set of rules. Lastly, the resulting fuzzy output is mapped to a crisp 5 
output using the membership functions, in the defuzzification step. 6 

[Figure 10. near here] 7 

4.1.1 Fuzzification 8 

The basic input parameters have a range of values that can be clustered into linguistic quantifiers, for instanc e,  9 
very low (VL), medium low (ML), medium (M), medium high (MH) and very high (VH). The process of 10 
assigning linguistic values is a form of data compression and it is called granulation. The fuzzification step 11 
converts the input values into a homogeneous scale by assigning corresponding membership functions with 12 
respect to their specified granularities (Tesfamariam and Saatcioglu, 2008b). 13 

Membership functions are used in the fuzzification and defuzzification steps of a FLS, to map the non-fuzzy 14 
input values to fuzzy linguistic terms and vice versa. A membership function is used to quantify a linguistic 15 
term. Note that, an important characteristic of fuzzy logic is that a numerical value does not have to be 16 
fuzzified using only one membership function. In other words, a value can belong to multiple sets at the same 17 
time. There are different forms of membership functions such as triangular, trapezoidal, piecewise linear, 18 
Gaussian, or singleton. The most common types of membership functions are triangular, trapezoidal, and 19 
Gaussian shapes. The type of the membership function can be context dependent and it is generally chosen 20 
arbitrarily according to the user experience (Mendel, 1995). 21 

4.1.2 Fuzzy rules 22 

The fuzzy rule base (FRB) is derived from heuristic knowledge of experts or historical data to define the 23 
relationships between inputs and outputs. The most common type is the Mandami type, which is a simple if-24 
then rule with a condition and a conclusion. For instance, considering two inputs, the ith rule has the follow ing 25 
formulation: 26 

1 1 2 2: if is and is then isR x A x A y B                             (4) 27 

where R is the rule number, x1 and x2 are the inputs variable, A1 and A2 are input sets, y is the output and B is 28 
the output set. The completeness of a fuzzy model is determined by the description of the behaviour for all 29 
possible input values and requires a large number of rules. The rule base is the union of all the rules: 30 
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                             (5) 31 

In some cases it is possible to regulate the degree of influence of each rule on the final output. This can be 32 
done by adding weightings based on priority or consistency, in a static or in a dynamic way.  33 

4.1.3 Fuzzy inference system (FIS) 34 

After evaluating the result of each rule, the results are combined to obtain a final output. This process is c alled 35 
inference. Several accumulation methods can be used to combine the results of the individual rules. The 36 
maximum algorithm is generally used for accumulation. The evaluations of the fuzzy rules and the 37 
combination of the results of the individual rules are performed using fuzzy set operations. The operations on 38 
fuzzy sets are different with respect to the operations on non-fuzzy sets. 39 



 

4.1.4 Defuzzification 1 

After the inference step, the overall result is a fuzzy value. This result should be defuzzified to obtain a final 2 
crisp output. This is the purpose of the defuzzifier component of an FLS. The defuzzification represents the 3 
inverse of the fuzzification process. It is performed according to the membership function of the output 4 
variable. There are several techniques to perform the defuzzification such as centre of gravity, centre of area, 5 
and mean of maximum methods. 6 

4.2 Two- parameter approach 7 

This approach adopts only two of the four serviceability parameters described before, namely serviceability 8 
initial drop q* (previously referred to as q0) and recovery time T* (previously referred to as t0). Fuzzy 9 
parameters have been chosen based on the research by Bruneau et al. (2003) who describes the resilience of a 10 
system using the following three indicators: reduced failure probability; reduced consequences from failure; 11 
reduced time to recovery. The reduced failure probability has not been taken into account as it is not easily 12 
related to the herein adopted mathematical definition of resilience, which considers only the failure 13 
consequence q* and the repair time T*. Figure 11 presents a hierarchy of the two-parameter approach where 14 
both time and initial drop variables are used as inputs for the fuzzy system. The inputs are combined using a 15 
set of rules to obtain the output variable fuzzy resilience. The fuzzy output is defuzzified to get a crisp value 16 
that serves as a resilience index for the corresponding indicator. 17 

[Figure 11. near here] 18 

4.2.1 Evaluating initial serviceability drop (q*) 19 

Two trapezoidal membership functions can be reasonably adopted in the present case. They are termed as 20 
“High” and “Low”. The fuzzification used for q* is [High; Low] → [(0, 0, 0.3, 0.7); (0.3, 0.7, 1, 1)]. The 21 
membership functions are graphically shown in Figure 12. 22 

[Figure 12. near here] 23 

4.2.2 Evaluating recovery time (T*) 24 

When speaking of recovery, the intention is full recovery. Outperforming, or non-complete recovery, as 25 
indicated by Cimellaro et al. (2010), are not generally predictable and therefore they are not included here. For 26 
the time variable T*, three membership functions are suggested by the authors, namely: “short”; “long”; and 27 
“very long”. The time variable is normalized based on a 3-year time span, which is normally the time reference 28 
for civil applications (i.e., 3 years corresponds to 1 on the horizontal axis). Figure 13 shows the membership 29 
functions chosen by the authors. The membership functions are not symmetrical as they have been constructed 30 
to the favor of the “Long” and “Very Long” memberships. That is, high range of values of the restoration time 31 
T* variable corresponds to the membership functions “Long” and “Very Long”. 32 

[Figure 13. near here] 33 

The aim is to translate the given input variables (q*and T*) into one resilience measure R. This measure is itself  34 
fuzzy and so it is defined by a membership function. The chosen membership functions are depicted in Figure 35 
14. Following the fuzzy approach, it is possible to define an output value calculated from the provided inputs 36 
on basis of a set of rules. The rules adopted in this study to relate the inputs and the output are shown in Table 37 
2. 38 

[Figure 14. near here] 39 

[Table 2. near here] 40 



 

4.2.3 Defuzzification 1 

The fuzzy output variable is translated (defuzzified) into a numerical value that serves as a measure for 2 
resilience. Different methods for defuzzification can be used (Manyena, 2006) such as center of gravity, 3 
weighted average, mean-max, center of largest area etc. The use of one method rather than another is 4 
dependent on the application. Here, the center of gravity method given in Equation 6 is used. 5 
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                            (6) 6 

where f(x) is the function that shapes the output fuzzy set after the aggregation process and x stands for the real 7 
values inside the fuzzy set support ([0, 1]). Practical examples on the application of the fuzzy method to 8 
several case studies can be found in Tesfamariam and Saatcioglu (2008a,b). 9 

4.2.4 Importance factor 10 

The fuzzy logic introduced above applies to each indicator apart. It is often the case to aggregate different 11 
indicators into a single measure (i.e. community resilience) through a hierarchical structure. Usually, indicators  12 
are not equally important because they contribute differently towards resilience and this necessitates weighting 13 
them according to their contribution. The weighting scheme used in Kammouh et al. (2017d) is here adopted. 14 
It can be performed by simply allocating an importance factor (I) ranging between 1 and 3 to each indicator 15 
then applying the weighted average rule, as follows: 16 
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                            (7) 17 

where R is the community resilience measure, Ri is the resilience measure of the ith indicator, Ii is the 18 
corresponding importance factor (which can be scaled to preference), and wi is the weighting factor of the ith 19 
indicator. The difference with what has been proposed previously in the paper or in Kammouh et al. (2017d) is  20 
that in this methodology the serviceability functions are translated into resilience values before applying the 21 
weighting method (Figure 15). This simplifies the fuzzy system as it reduces the number of variables that need 22 
to be handled. 23 

[Figure 15. near here] 24 

4.2.5 Interdependency factor 25 

While the next step of the research is to inject an interdependency methodology within the fuzzy system (with 26 
its own membership functions); currently, interdependencies are accounted for as weighting factors that 27 
increase or decrease the contribution of each variable according to the level of interdependency of the variable 28 
with other variables. Since the introduced fuzzy-based method deals with indicators, the interdependency 29 
methodology presented previously in this paper can be applied in full potential. The interdependency 30 
coefficient can be combined with the importance factor to obtain one single weighting factor for each 31 
indicator. This can be done using Equation 3 or by simply taking the average of the two coefficients. 32 

 33 



 

4.3  Four-parameter approach 1 

Considering only two parameters to represent a resilience indicator may in some cases be insufficient, thus 2 
affecting the mentioned benefits of using the Fuzzy approach. Moreover, this may oversimplify the problem 3 
especially when specific information about the structure itself is available and to be added. For this reason, in 4 
certain cases it may be beneficial to build up the resilience curve from fuzzy parameters other than the 5 
recovery time and the initial drop. In fact, it has been pointed out by Comerio (2006) that further distinction in 6 
the repair time is possible. According to his work, the following parameters should be taken into account: 7 

 Construction repair time; 8 
 Mobilization time; 9 
 Economic conditions of the interested region; 10 

The mobilization time in particular, labeled as “irrational” in Comerio (2006) (e.g. financing, workforce 11 
availability, relocation of functions or regulatory changes), is often not properly accounted for and therefore it 12 
should be given a special attention when evaluating downtime. These three indicators may be fuzzyfied with a 13 
structure similar to the one adopted for the recovery time T*. The result is similar to what shown previously 14 
with the only difference that new rules and membership functions are to be assigned to the new variables. 15 
When resilience measures are calculated, weighting is performed to obtain the system (community) resilience.  16 

4.4 Full PEOPLES 17 

Most of the concepts described previously remain valid here. The only difference is that the approach 18 
introduced in this section includes the weighting of the variables within the fuzzy system. Normally, choosing 19 
adequate weighting factors is subjective and includes uncertainty. Although the inclusion of the weighting 20 
factors within the fuzzy system may add additional complexity as more variables are considered, it is certainly 21 
beneficial as it solves the uncertainty problem related to the weighting factors. To do that, two alternatives are 22 
proposed: 23 

 Include the importance factor in the definition of the rules governing the fuzzy logic. In other words, 24 
assign rules such that the output is strongly related to the indicators with highest importance; 25 

 Translate the importance factor into a fuzzy variable itself and include rules for it.  26 

In both cases, rules have to be adapted to account for the importance factors. In the former case, rules are 27 
firmly tight to the particular application (i.e. hard to modify and not flexible); the latter case is, in this respect, 28 
more flexible but at the cost of additional complexity since additional rules have to be added to include the 29 
effect of the importance factor. This approach will be further developed and case studies will be added in 30 
future work. Figure 16 shows the logic flow where the weighting process is included as a separate variable in 31 
the first step before fuzzification.  32 

[Figure 16. near here] 33 

5. DISCUSSION 34 

The two methodologies, although applied in the same context, are used under two different conditions. The 35 
first “deterministic” method is used only when data on a previous disaster is available. Applying the 36 
methodology to a real disaster allows the user to assess the loss of resilience following that particular disaster, 37 
which may help to prepare for future disasters by focusing on the weak aspects. This method also has the 38 
potential of being probabilistic when data on many previous events are available. However, this goes beyond 39 
the scope of the paper since the methodology will be the same regardless if the data are deterministic or 40 
probabilistic. The second methodology is used for both assessment and planning when data does not actually 41 
exist (which is often the case). Of course, this method would yield less accurate results since it relies on expert 42 
judgments instead of actual data. 43 

Choosing between the two methods depends on what we really need. If it is an actual assessment for a previous 44 
disaster then the first method should be used (given that data is available). If the goal is to plan for future 45 



 

events without having data on previous events then the fuzzy-based method should be used. The results of the 1 
first method are more accurate but it can be rather challenging to obtain data. 2 

6. CONCLUDING REMARKS 3 

This paper introduces two methods to compute the resilience of communities based on the PEOPLES 4 
framework. An indicator-based approach has been implemented as the core engine of both methodologies. The 5 
significance of the first resilience method lies in its graphical representation, which helps decision makers take 6 
proper actions to improve their resilience. While all previous works generally provide a single index to 7 
measure community resilience, the proposed method indicates in detail whether the resilience deficiency is 8 
caused by the system’s lack of robustness or by the slow restoration process. It identifies where exactly 9 
resources should be spent to efficiently improve resilience. This method has been implemented in a user-10 
friendly tool that allows the user to insert data of the different community indicators and get a resilience curve 11 
as output. On the other hand, the second method does not need deterministic data for its implementation but 12 
rather descriptive knowledge, which can come in the form of a questionnaire. This method makes use of the 13 
fuzzy logic modeling to account for the uncertainty involved in the resilience parameters assessment. Choosing 14 
between the two methods depends on the availability of data and on the level of complexity sought. The 15 
interdependency among the resilience variables in both methods has been considered by performing an 16 
interdependency analysis, which resulted in an importance factor allocated to each variable. 17 
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FIGURES 9 

 10 
Figure 1. Interdependency matrix for the variables in a same group. 11 
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 1 
Figure 2. Sample questionnaire to build the interdependency matrix for indicator under component “lifeline”. 2 
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 5 
Figure 3. Statistical analysis for the expert responses about the interdependency factor of each variable. 6 
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 1 
Figure 4. Serviceability functions (a) static, (b) dynamic. 2 
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 5 
Figure 5. Hierarchical scheme of the adopted indicator-based resilience methodology. 6 
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 9 
Figure 6. (a) Registration/login page, (b) new scenario definition/load scenario. 10 
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 1 
Figure 7. User interface and data entry environment. 2 

 3 
Figure 8. Case study input data for Physical Infrastructure component. 4 

 5 

 6 
Figure 9. Serviceability curves of the components “Facilities” and “Lifelines” of the dimension “Physical 7 
Infrastructure”. 8 
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 1 
Figure 10. Fuzzy inference system. 2 
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 5 
Figure 11. Schematic representation of the two-parameter approach. 6 
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 9 
Figure 12. Membership functions for the serviceability variable q*. 10 
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 1 
Figure 13. Membership functions for the downtime variable T*. 2 
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 5 
Figure 14. Membership functions for the resilience variable R. 6 
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 9 
Figure 15. Hierarchical scheme of the fuzzy system with the weighting process. 10 
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 1 
Figure 16. Full PEOPLES approach general hierarchical scheme with the weighting process included in the 2 
fuzzy system as a separate variable. 3 
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TABLES 30 

Table 1. Serviceability parameters of the indicators within the Physical Infrastructure dimension for the city of 31 
San Francisco after the Loma Prieta earthquake. 32 
4- Physical infrastructure 

Component /indicator Measure  w Nat q0u SV q0 q1 qr 
Tr 

(days) 

4.1 Facilities - 
 

- 
      

4.1.1 Sturdy (robust) 
housing types 

% housing units that are not 
manufactured homes 

3 D 1 1 1 0.599 0.998 120 

4.1.2 Temporary 

housing availability 
% vacant units that are for rent 3 D 2.68 5 0.536 0.050 0.536 620 

4.1.3 Housing stock 
construction quality 

100-% housing units built  pr ior  
to 1970 

3 D 0.241 1 0.241 0.145 0.241 700 



 

4.1.4 Community 
services 

%Area of community services 
(recreational facilit ies, parks, 
historic sites, libraries, 
museums) total area ÷ SV 

2 D 0.16 0.2 0.800 0.480 0.800 430 

4.1.5 Economic 
infrastructure exposure 

% commercial establishments 

outside of high hazard zones ÷ 
total commercial establishment 

2 S 0.85 1 0.850 - -  - 

4.1.6 Distribution 
commercial facilities 

%Commercial infrastructure 
area per area ÷ SV 

3 D 0.13 0.15 0.867 0.520 0.867 160 

4.1.7 Hotels and 
accommodations 

Number of hotels per total ar ea 
÷ SV 

3 D 102 128 0.797 0.478 0.797 130 

4.1.8 Schools 

Schools area (primary and 

secondary education) per 
population ÷ SV 

3 D 134 140 0.957 0.574 0.957 90 

4.2 Lifelines   
 

  
      

4.2.1 
Telecommunication 

Average number of Internet, 
television, radio, telephone, an d 
telecommunications 
broadcasters per household ÷ SV 

3 D 5 6 0.833 0.500 0.833 90 

4.2.2 Mental health 
support 

number of beds per 100 000 
population ÷ SV 

2 D 69 75 0.920 0.644 0.920 35 

4.2.3 Physician access 
Number of physicians per 

population ÷ SV 
2 S 2.5 3 0.833 - -  - 

4.2.4 Medical care 
capacity 

Number of available hospital 
beds per 100000 population ÷ 
SV 

3 D 544 600 0.907 0.635 0.907 35 

4.2.5 Evacuation routes 
Major road egress points per 
building ÷ SV 

2 S 0.67 1 0.670 - -  - 

4.2.6 Industrial re-
supply potential 

Rail miles per total area ÷ SV 3 D 5412 6000 0.902 0.631 0.902 45 

4.2.7 High-speed 

internet infrastructure 

% population with access to 

broadband internet service 
3 D 0.9 1 0.900 0.450 0.900 300 

4.2.8 Efficient energy 
use 

Ratio of Megawatt power 
production to demand 

3 D 0.8 1 0.800 0.160 0.800 25 

4.2.9 Efficient Water 
Use 

Ratio of water available to water 
demand 

3 D 1 1 1.000 0.240 1.000 60 

4.2.10 Gas 
Ratio of gas production to gas 
demand 

3 D 0.1 1 0.100 0.050 0.100 70 

4.2.11 Access and 
evacuation 

Principal arterial miles per total 
area ÷ SV 

3 D 172138 200000 0.861 0.602 0.861 45 

4.2.12 Transportation 
Number of rail miles per area ÷ 

SV 
3 D 5412 6000 0.902 0.631 0.902 72 

4.2.13 Waste water 
treatment 

Number of WWT units per 
population ÷ SV 

3 D 3 4 0.750 0.300 0.750 65 

- Note: q0u = initial serviceability; SV = standard value; q0 = initial normalized serviceability; q1 = post disaster serviceability; 1 
qr= recovered serviceability; Tr = restoration time. 2 

- Source: City Data, Census Data, This Study, City Assessor’s Data, Dept of Numbers, SF Indicator Project, Data World Bank, 3 
Dot Ca, SF Bos, Arcadis, SF Wáter, Energy Ca. 4 
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 7 
Table 2. Fuzzy rule base for resilience. 8 

T* q* R 
short high resilient 
Long  high resilient 
Very long high intermediate 
Short low intermediate 
long low not resilient 
Very long low not resilient 
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