
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

The GH-EXIN neural network for hierarchical clustering / Cirrincione, G.; Ciravegna, G.; Barbiero, P.; Randazzo, V.;
Pasero, E.. - In: NEURAL NETWORKS. - ISSN 0893-6080. - ELETTRONICO. - 121:(2020), pp. 57-73.
[10.1016/j.neunet.2019.07.018]

Original

The GH-EXIN neural network for hierarchical clustering

Publisher:

Published
DOI:10.1016/j.neunet.2019.07.018

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2759782 since: 2020-02-27T19:09:03Z

Elsevier Ltd

The GH-EXIN Neural Network for Hierarchical Clustering

Giansalvo Cirrincionea,b, Gabriele Ciravegnac, Pietro Barbierod, Vincenzo Randazzoe, Eros
Paseroe

aUniversity of South Pacific, Suva, Fiji
bUniversity of Picardie Jules Verne, Amiens, France
cUniversità degli Studi di Siena, DIISM, Siena, Italy

dPolitecnico di Torino, DISMA, Turin, Italy
ePolitecnico di Torino, DET, Turin, Italy

Hierarchical clustering is an important tool for extracting information from data in a multi-
resolution way. It is more meaningful if driven by data, as in the case of divisive algorithms,
which split data until no more division is allowed. However, they have the drawback of
the splitting threshold setting. The neural networks can address this problem, because
they basically depend on data. The growing hierarchical GH-EXIN neural network builds
a hierarchical tree in an incremental (data-driven architecture) and self-organized way. It
is a top-down technique which defines the horizontal growth by means of an anisotropic
region of influence, based on the novel idea of neighborhood convex hull. It also reallocates
data and detects outliers by using a novel approach on all the leaves, simultaneously. Its
complexity is estimated and an analysis of its user-dependent parameters is given. The
advantages of the proposed approach, with regard to the best existing networks, are shown
and analyzed, qualitatively and quantitatively, both in benchmark synthetic problems and
in a real application (image recognition from video), in order to test the performance in
building hierarchical trees. Furthermore, an important and very promising application of
GH-EXIN in two-way hierarchical clustering, for the analysis of gene expression data in the
study of the colorectal cancer is described.

Keywords: Convex Hull, DGSOT, Dynamic Tree, GHNG, Hierarchical Divisive
Clustering, Neural Network, Self-Organization, Two-way Clustering

1. Introduction

The hierarchical cluster analysis (HCA, [1]) is a multi-resolution clustering technique.
It builds a tree of clusters with different levels of data interpretation. In data mining, for
instance, HCA can yield a richer information than plain clustering. It is generally performed
in two ways:

• Hierarchical Agglomerative Clustering (HAC), where each data in the beginning cor-
responds to a singleton cluster, and then pairs of clusters are merged until only one
cluster containing all data is reached (bottom-up approach).

• Hierarchical Divisive Clustering (HDC), in which all data start in one cluster and splits
are performed recursively until all clusters are singletons (top-down approach).

The top-down approach of HDC represents better the dataset because it starts taking
into account all data. Instead, the bottom-up approach of HAC is, in this sense, more
arbitrary in the initial steps, thus influencing the quality of the resulting tree. Also, HAC
is intractable in case of large datasets. However, the way HDC splits the clusters is still
an open problem. A promising approach is represented by the use of neural networks for
clustering.

The neural algorithms for HDC can be classified according to both the way the neural
tree is trained and the kind of basic neural network used for each node (basic neural
unit). As a first taxonomy, there are two approaches: synchronous training (ST), where the
training is performed on the whole tree, and asynchronous training (AT), where the training
is performed node by node. The Dynamic Neural Tree Network (DNTN, [2]) adapts a
dynamic hierarchy to data, as an output layer fed by the input: all growing nodes are fed by
the same input and are trained simultaneously (ST). It requires a tolerance for determining
the new neurons and a threshold for the child growth. It is not able to represent correctly the
outliers. A variant of DNTN, the Competitive Evolutionary Neural Tree (CENT, [3]) claims
it does not require user dependent parameters. Indeed, they become internal parameters
which are dependent on data, but are empirical and not justified. CENT is based on the
neuron activity (which is decreased in time for avoiding the poor initialization) and addresses
the DNTN problem of outlier detection. Another ST approach uses the Self-Organizing Map
(SOM), considered as a tree (TreeSOM, [4]). It is based on the interpretation of SOM as
a tree when a distance threshold is decreased in time [5]. TreeSOM addresses the problem
of the sensitivity of the tree to the SOM topology and initialization by using the idea of
consensus tree, which is a virtual tree averaging the trees resulting from different initial
conditions. The best tree is the closest to the consensus tree.

Most neural approaches fall into the AT category. They can be classified according to the
clustering technique used for each node. In [6], the k-means algorithm is exploited. It divides
data in a fixed number of clusters (HDC), but uses an additional HAC for refinement. The
Hierarchical Clustering Algorithm based on k-means with Constraints (HCAKC, [7]) uses an
improved Silhouette for determining the k parameter. In [8] and [9], a preprocessing based
on Principal Component Analysis and divide-and-conquer, respectively, is used for dealing
with high-dimensional data. In [10], the Growing Hierarchical Tree SOM (GHTSOM) uses
an elementary SOM given by three connected neurons as basic module (triangle). It requires
two kinds of links: the train links for defining the neural triangles and the class links for
clustering at each level of the tree. The use of triangles, which does not yield necessarily a
Delaunay triangulation, limits heavily the performance of the network. If the basic neural
unit is a Growing Cell Structure (GCS, [11]) the hierarchical version is called Hierarchical
GCS (HiGCS, [12]). If, instead, the Growing Grid (GG, [13]), with decreasing learning
rate and neighborhood range, is used, the algorithm is called Growing Hierarchical SOM
(GH-SOM, [14]). The vertical and horizontal tree growths are controlled by using the mean
quantization error, by means of two parameters whose setting is tricky, as discussed in [15].

In [15], a novel algorithm, called Growing Hierarchical Neural Gas (GHNG), is proposed,
which exploits the Growing Neural Gas (GNG, [16]) as basic neural unit. In [15] it is
proved it has a better performance than GHSOM. Another algorithm performing AT is the
Dynamically Growing Self Organizing Tree (DGSOT, [17]) which is an enhanced dynamic
version of the Self Organizing Tree Algorithm (SOTA, [18]), which builds a binary hierarchy.

In the following sections, the last two algorithms (GHNG and DGSOT) are discussed,
along with the proposed AT approach (GH-EXIN), highlighting similarities, differences and
novelties. More specifically, in Sec. 2 the GHNG and DGSOT algorithms are briefly summa-
rized. In Sec. 3 the novel neural network is presented, together with considerations on the
required user-dependent parameters and the analysis of the time complexity. Results and
comparison of the three algorithms on the synthetic experiments are reported and discussed
in Sec. 4. Real-world applications are presented in Secs. 5 and 6, in a typical problem in
video recognition and in two-way clustering, respectively.

2. Benchmark Networks

Considering that GHNG improves over GHSOM and is a hierarchical version of GNG,
and DGSOT builds its hierarchy in a more general way than SOTA, and taking into account
that both have the best results in applications and share some ideas of GH-EXIN, they have
been chosen as benchmark neural networks to assess the performance of GH-EXIN.

2.1. GHNG
The Growing Hierarchical Neural Gas is an AT hierarchical self-organizing neural model,

which learns a tree of Growing Neural Gas (GNG, [16]) networks where each subgraph
(i.e. each GNG) is the child of a processing unit (a.k.a. neuron) of the upper level. At
each hierarchical level a GNG network is created by using the Voronoi set of the father
neuron (see Fig. 1(a)). The vertical growth in a branch of the hierarchy stops when the
deepest GNG enters the convergence phase having only two neurons (|H| == 2) or when the
maximum depth is reached (level > MAX_Level, where MAX_Level is a user-dependent
parameter). In the first case, this neural unit is pruned because is considered too small to
represent any relevant distribution.

2.2. DGSOT
The Dynamically Growing Self-Organizing Tree (DGSOT), see Fig. 1(b), is an enhanced

version of the Self Organizing Tree Algorithm (SOTA) [18]. DGSOT adds a horizontal
growth to each vertical growth performed by SOTA. This kind of growth consists in the
addition of a node to the current group of child nodes. This process allows to better de-
termine the cluster partitioning at each level. It is always followed by a further learning
process in which the correct number of neurons is automatically determined for the required
quantization. As in SOTA, the learning process continues until the relative heterogeneity
of all child nodes compared to the previous epoch is less than a user-dependent parameter
TR. These two steps are repeated until the Cluster Separation index falls below another
user-dependent parameter CSmin (horizontal stopping rule, a.k.a. TE).

(a) GHNG flowchart (b) DGSOT flowchart

Figure 1: Benchmark network flowcharts

3. The GH-EXIN Hierarchical Tree

The proposed approach builds a divisive hierarchical tree in an incremental and self-
organized way. It is data driven (self-organization), in the sense that the final tree is au-
tomatically estimated. Also, it does not require a predefined number of units and levels
(incremental with pruning phase). The resulting tree is neither binary nor balanced, be-
cause of its dependence on data. Both the GH-EXIN (Figs. 6 and 7), GHNG (Fig. 1(a))
and DGSOT (Fig. 1(b)) algorithms follow these criteria.

3.1. Tree Building
The hierarchical divisive clustering algorithms build a tree starting from a root node.

By means of vertical and horizontal growths, successive splits are determined. These splits
correspond to the transformation of the corresponding leaf into a node, called father neuron,
whose sons are its associated leaves. For each father neuron a neural network (i.e. a basic
neural unit) is trained on its corresponding Voronoi set, i.e. the set of data represented by
the father neuron. The sons are then the neurons of the associated basic neural unit and
determine a subdivision of the father Voronoi set. For each leaf the procedure is repeated.

3.1.1. Root Node
Both DGSOT and GH-EXIN associate the whole data set to a fictitious neuron (a.k.a.

root node). The first basic neural unit is then trained on the Voronoi set of this fictitious
unit. Conversely, GHNG does not have any fictitious father, all nodes created at the first
layer are orphans (they do not originate from a father neuron). It could be argued that
GHNG builds a forest other than a single tree.

3.1.2. Vertical Growth
Vertical growth is the process in which a leaf becomes a node and a deeper layer is added.

In these algorithms, it is always required the creation of a seed, i.e. a pair of neurons, which
represents the starting structure of a new basic neural unit. This kind of growth is exploited
as long as a higher resolution is needed. In order to evaluate whether a vertical growth is
necessary, all algorithms check if the quantization error of the basic neural unit is below a
user-defined threshold. DGSOT checks data heterogeneity, defined as the average distance
of the data to the neuron reference vector. GHNG, instead, checks whether the number
of levels in the hierarchy exceeds a user-dependent parameter MAX_Level. GH-EXIN
simultaneously checks both data heterogeneity using a task-dependent index, say Hmax, and
the data cardinality (mincard), i.e. the size of the leaf Voronoi set. The H index is based
on the quantization error and determines the quality of the clustering. Several choices are
possible, in general depending on the application. In this paper the Hcc index [19] has
been chosen. It is designed for biclustering problems, but, here, it is extended to two-way
clustering. Its description is given in Sec. 6. Considering the characteristics of the biclusters
that can be found, it can also be used for normal clustering, as seen in Sec. 4.

3.1.3. Horizontal Growth
Horizontal growth refers to the addition of further neurons to the initial seed, i.e. the

creation of siblings. This method allows to expand a layer of the tree and build more com-
plex hierarchical structures other than binary. This process is performed by all algorithms
through the respective neuron creation mechanism later described (see Sec. 3.2.1).

3.2. sG-EXIN
The basic neural unit is intended as the neural network chosen for the clustering of the

input data. All these methods use a basic neural network for the processing of each leaf.
GH-EXIN is based on the stationary variant of G-EXIN [20], say sG-EXIN. GHNG uses
a variant of GNG, while DGSOT, deriving from SOTA, exploits as basic neural network
an enhanced version of SOM. All these neural units do not employ any fixed topology (the
induced topology is generated in the linking phase). Neural networks are composed of units
called neurons, which are represented by weight (a.k.a. reference) vectors. As an abuse
of language, the terms neuron and weight vector are used with the same meaning. With
regard to training, both sG-EXIN and DGSOT are based on the idea of epoch, which is the
presentation, in a random order, of the complete training set. After each epoch controls are
made for the horizontal growth by means of user-dependent parameters: Hperc (GH-EXIN),
TE (DGSOT). However, this is not the classical batch learning, which requires the weights
to be updated after the presentation of the whole batch. For these two neural networks,
instead, weights are updated or created at each iteration (data presentation). Also, GHNG
learns at each iteration, but it is not clear if it requires epochs. Indeed, its algorithm does
not use epochs; however, in the examples in [15], epochs are mentioned. There are some
pros and cons with the choice of epoch-learning. Despite the fact that it lowers the training
cost (GHNG is the fastest one), the use of epochs before controls implies the exploitation
of the complete batch, which means all information is used for building a tree. It must be

highlighted that the onset of the hierarchical tree is fundamentally a static problem, thus
requiring the processing of the whole database for an accurate tree.

3.2.1. Neuron Creation
The basic neural units use incremental neural networks, i.e. they have a variable number

of neurons (driven by data), achieved by the mechanism of neuron creation and pruning.
Both DGSOT and GHNG decide in advance when to create a new neuron: DGSOT by
considering the batches of the whole set of samples, at the end of an epoch, GHNG every
λ (user-dependent parameter) iterations. On the contrary, for GH-EXIN, the creation of
a neuron, is related to a novelty test: if the existing neurons are not able to describe the
new data, say xi, a new neuron is created. The test approach is less rigid because it is only
driven by data. As discussed in the following, the choice of the test is not trivial.

Semi-Isotropic Region of Influence. The novelty test requires, in general, a model of the
region of influence of a neuron in the input space. All existing algorithms determine, in a
way or another, a threshold value representing the radius of an hypersphere which models
this region. An exhaustive description can be found in [21]. This model is isotropic, in the
sense that it does not take into account the orientation of the vector connecting the new
data to the winner, but only its norm. As a drawback it does not consider the topology of
the data manifold of the winner Voronoi set. The GH-EXIN proposed approach considers,
at the same time, the shape (anisotropic criterion) and the extent (isotropic criterion) of
the neuron neighborhood (determined by the linking phase, see Sec. 3.2.3). The anisotropic
criterion consists of the analysis of the convex hull built on the neighbor neurons of the
winner as explained in Fig. 2 and in more detail in [20]. In case xi lies inside the convex
hull, it is assigned to the winning neuron (wγ), as shown in Fig. 3, and the weight adaptation
is performed (see Sec. 3.2.2). Otherwise, the isotropic criterion is applied to check if the
data is really novel w.r.t the existing units. The neuron isotropic threshold, say Tγ, is
computed as the average of the Euclidean distances between the winning neuron (wγ) and
its N neighbors (wi):

Tγ =
1

N

N∑
i=1

||wγ − wi||2 (1)

In case xi is farther from the winner than Tγ, a new neuron is created on the data. Otherwise,
it is assigned to the winner, and the weights are updated according to the mechanism
described later (see Sec. 3.2.2).

The use of an anisotropic criterion is justified by the need of representing better the data
manifold, which is not guaranteed by using only the isotropic threshold. Fig. 3 shows one
of these cases. It is proved in [20] that this approach better models the border of the data
manifold.
On the contrary, GHNG and DGSOT do not require a region of influence, but keep adding
neurons as far as the quantization error (a.k.a. cluster separation in [17]) does not fall
below a user-dependent threshold. GHNG computes the quantization error from data, by
considering the average distance between the reference vectors and their Voronoi sets, while

DGSOT from network topology, by considering the rate between the minimum and the
maximum distance among neurons. As a consequence, GHNG and DGSOT are prone to
the choice of a predetermined parameter, instead of exploiting the neighborhood topology,
as in the case of GH-EXIN.

w2

w3

w1

w4

V1 = w1 – xj

V1 • a > 0

V4 = w4 – xj

V4 • a > 0

xj

w5

(a) If all the dot products between the vec-
tors vi from the new data xj and the neuron
wi, and the vector a, sum of the vi’s, have
equal sign, then the new data is outside the
convex hull of the winner (w1)

w2

w3

w1

w4

V1 = w1 – xi

V1 • a < 0

V2 = w2 – xi

V2 • a > 0

xj

w5

(b) If all the dot products, between the vec-
tors vi from the new data xj and the neuron
wi, and the vector a, sum of the vi’s, have
not the same sign, then the new data is in-
side the convex hull of the winner (w1)

Figure 2: A new data xj is presented to the sG-EXIN neural network composed of four connected neurons

Figure 3: The anisotropic criterion: if a new data (small red dot) is presented and lies outside the hyper-
shphere centered on the winner (big red dot), but within the convex hull created on its neighbours (blue
connected nodes), it is also assigned to the winner. Furthermore, according to SCL both the winner and its
neighbours move towards it.

Lonely Neuron. A neuron with no edges is named lonely neuron: in Fig. 3 the neuron at
the bottom with no edges is a lonely neuron. Since DGSOT does not make use of edges, all
its neurons are lonely. On the contrary, both GHNG and GH-EXIN exploit the concept of

lonely neurons to determine leaf neuron pruning. In both algorithms, a neuron may become
lonely in case all its edges are pruned. However, in GHNG neurons already have connections
when created. In GH-EXIN, instead, new neurons are created lonely. Connections may be
generated only in the next iterations.

3.2.2. Soft-Competitive Learning
The weight computation (training) is based on the Soft Competitive Learning (SCL)

paradigm [22], which requires a winner-take-most strategy and the network topology, whose
setting is explained in Sec. 3.2.3. The closest neuron to the new data is named (first) winner.
The set of potential winners differs according to the clustering algorithm. In both GHNG
and GH-EXIN, only neurons belonging to the same basic neural unit are competitive in the
learning phase. In DGSOT, instead, all leaf neurons belonging to the sub-tree below the
K-ancestor of the current node are competitive.
At each iteration, both the winner and its neighbors change their weights but in different
ways as shown in Fig. 3. The winner wγ and its direct topological neighbors wi are moved
towards xj by fractions αγ(t) and αi(t) (learning rates), respectively, of the vector connecting
the weight vectors to the data. The update is given by:

∆w = α(t) · (w − xj) (2)

where α(t) = α0/t, and α0 is a user dependent parameter, higher for the winner and smaller
for the neighbours, and t is the number of times a neuron wins (conscience). Regarding the
weight adaptation, the difference among the three algorithms consists on the neighborhood
determination. DGSOT considers as neighbors all neurons belonging to the same basic
neural unit, plus the father neuron. On the contrary, the neighborhood of both GHNG
and GH-EXIN is composed of only those neurons connected to the winner through an edge.
Hence, GHNG and GH-EXIN exploit a more local information.

3.2.3. Edge Creation and Network Topology
Edges are exploited in order the determine the topology (neighborhood) of a network.

Both GH-EXIN and GHNG use the Competitive Hebbian Learning (CHL) rule [22] for
creating the neuron connections: each time a neuron wins (first winner), an edge is created,
linking it to the second nearest neuron (second winner), if it does not exist yet. If there is
already an edge, its age is set to zero. Furthermore, in both GHNG and GH-EXIN the same
aging procedure is applied: the age of all links emanating from the winner is incremented by
one. In case a link age is greater than the agemax scalar parameter, it is eliminated (pruned).

3.3. Neuron Pruning
Neuron pruning is the process through which neurons can be removed if redundant.

DGSOT does not exploit any pruning technique, in the sense that the redundancy is only
checked each time a neuron is added, but old neurons cannot be removed. Vice versa, GHNG
and GH-EXIN remove all lonely neurons. GH-EXIN checks for lonely neurons at the end of
each epoch (see Fig. 7), while GHNG checks at each iteration. Besides, GHNG may prune
an entire set of neurons if its modified GNG enters the convergence phase. However, the
onset of this phase is empirically determined.

(a)
(b) (c)

Figure 4: GH-EXIN data reallocation: small dots represent data while big dots represent neurons. Big red
dots, indicated by arrows (colored as the neurons of the same sG-EXIN), mark pruned neurons, while small
red dots represent data belonging to them. Different colors represent different network units

Data Reallocation. Data reallocation is the mechanism by which orphan data, i.e. associated
to pruned neurons (their Voronoi sets) or lonely neurons (data coincident with the neuron)
are possibly reassigned to other neurons. This mechanism is a novelty introduced in GH-
EXIN (see Fig. 7), and is an improvement of the KLD method used in DGSOT. In fact, in
GHNG, when neurons with no edges are removed, the associated data are not reallocated.
In GH-EXIN, instead, all orphan data are labelled as potential outliers at the end of each
epoch. For each potential outlier, GH-EXIN seeks a new winner among all leaf neurons.
The data is reassigned in case it is inside the hypersphere (or the convex-hull) of another
neuron within the same neural unit (Fig. 4(a)) or in case the nearest neuron belongs to
another neural unit (Fig. 4(b)). If, instead, the winner belongs to the same neural unit of
the pruned neuron, but the data is outside its hypersphere, the data is definitely marked as
outlier and is not reassigned (Fig. 4(c)). This outlier identification can be useful in a lot of
applications.
Resuming, only GH-EXIN and DGSOT may correct possible cluster errors made in the
previous layers. Instead, this is not possible for GHNG: the advantage of the speed of its
algorithm is counterbalanced by the fact that the errors always affect the final tree. As
said before, the building of a tree is basically a static process. So, GHNG is less suited to
hierarchical clustering than the other two techniques.

3.4. Connected Graph Test
Another remarkable novelty introduced by GH-EXIN consists of a possible double verti-

cal growth. As shown in Fig. 6, at the end of the sG-EXIN training process, the resulting
graph of the basic neural unit is analyzed by searching for connected components. If more
than one connected component is detected, the algorithm tries to extract an abstract rep-
resentation of data. Hence, each connected component, representing a cluster of data, is
associated with a novel abstract neuron. The reference vectors of abstract neurons are
placed in the centroids of the respective clusters. The tree structure is therefore modified
by inserting a new layer between the leaf nodes and the father node, resulting in a double
simultaneous vertical growth, as shown in Fig 5.

Figure 5: Connected Graph Test: the Voronoi regions of each neuron are represented with solid red lines;
chains in the father sG-EXIN become sons

The proposed test is justified by the exploitation of the topology graph built by GH-
EXIN. The estimated connected components are directly translated into the hierarchical
tree through this additional vertical growth. In this sense, GH-EXIN does not only par-
tition the data into nested Voronoi sets, but exploits its induced Delaunay triangulation,
created by the CHL rule.

3.5. The GH-EXIN Algorithm
Resuming, for each node, an sG-EXIN neural network is trained on its corresponding

Voronoi set (set of data represented by the father neuron). For each leaf, the vertical growth
is performed until either the H index of the leaf has fallen below Hmax or the cardinality
of the leaf is less the mincard (both are user-dependent parameters). For each epoch, the
basic iteration starts at the presentation of a new data, say xi. All neurons are ranked
according to the Euclidean distances between xi and their weight vectors. In case the data
is considered new, i.e. it is both outside the convex polytope and the hypersphere of radius
Tγ of the winner w1 (novelty test), a new neuron xnew is created (left branch of Fig. 7). The
initial weight vectors and neuron thresholds Tγ are given by heuristics: the novel neuron has
its weight xnew equal to xi, and its threshold is set equal to the w1 threshold. No edge is
created at this time: xnew is labelled as lonely neuron.

Otherwise, in case the data is not new (right branch of Fig. 7), the first winner w1 and
the second winner w2 are linked by an edge (CHL), if it does not exist yet. If there is already
an edge, its age is set to zero. Also, the age of all other links emanating from the winner is
incremented by one; if a link age is greater than the agemax scalar parameter, it is eliminated
(edge pruning). Reference vectors of w1 and its direct neighbors are updated according to
Eq. 2. Thresholds of the winner and of its neighbors are recomputed, as their position has
been modified. This process is repeated for all data of the father Voronoi set. At the end of
each epoch, if a neuron remains unconnected (no neighbors) or is still lonely, it is pruned,
but the associated data are analyzed and possibly reassigned.

The training epochs, i.e. the horizontal growth, are stopped when the estimated H
average value falls below a percentage (Hperc) of the H value of the father neuron.

This technique builds a vertical growth of the tree. The horizontal growth is generated

Figure 6: GH-EXIN flowchart

by the neurons of each network. However, a simultaneous double vertical growth is possible,
as specified in Sec. 3.4.
GH-EXIN has been developed in MATLAB. The code is freely available at [23].

3.6. Analysis of the User-Dependent Parameters
The user dependent parameters can be grouped according to their function in three

classes: learning, hierarchy and design variables. The learning parameters handle the train-
ing of the basic neural unit. GH-EXIN uses sG-EXIN, which requires CHL and SCL. They
are performed by using:

• the two learning rate constants, αγ0 and αi0, used to update reference vectors of the
winner and its neighbours, respectively;

• the scalar agemax used for edge pruning: it has to be lowered if more edges (and
neurons) have to be pruned, indirectly controlling the leaf cardinality.

Instead, GHNG requires three more parameters, λ, α, and D, which are related to the
creation of a new neuron. In particular, deciding in advance when to insert it (it depends

Figure 7: GH-EXIN: horizontal growth flowchart

on λ) is a serious drawback. In the case of DGSOT, there are three learning rates, for the
winner, the parent and the siblings, respectively. Its horizontal growth can be compared to
a neuron creation and is controlled by a threshold, TE. The stop criterion for GH-EXIN
depends on Hperc (other criteria can be used according to the application). GHNG controls
the growth process by the parameter τ . It is then followed by a refinement step, terminated
by a maximum number of epochs, decided in advance. DGSOT stops learning when the
relative error of the entire three is less than the error threshold TE.

The hierarchy parameters control the growth of the tree. GH-EXIN uses the Hmax, which
depends on the task. Instead, more rigidly, GHNG uses a MAX_Level threshold, which
is not guided by the application at end, and can also be considered as a design variable.
DGSOT controls the vertical growing using the threshold TR for controlling the heterogeneity
of any leaf.

The design parameters are not important for the hierarchical clustering but help in
deciding in advance a preferred tree depth. In this sense, they cannot be considered as

relevant for the user dependent setting. GH-EXIN uses mincard, the minimum cardinality
of leaves, used to avoid small clusters. The same holds true for GHNG, which seeks only for
clusters with a cardinality more than three.

Both GH-EXIN and DGSOT have the possibility to reallocate data. However, this
process is completely automatic in GH-EXIN, while DGSOT requires a parameter K.

Resuming the meaningful parameters to be set are 5 for GH-EXIN, 8 for GHNG and 7
for DGSOT. As a consequence, GH-EXIN is easier to be calibrated.

3.7. Analysis of Complexity
Define N as the number of data in the whole training set, d as the dimensionality of the

input, J as the average number of epochs for the basic neural unit training, and k as the
average number of neighbors for each neuron. Let be b as the average branching factor of
the tree. Then, the height of the tree is h = logbM , where M is the number of leaves in the
hierarchy. For a full tree (each leaf node associated with one data), M is O(N) where N is
the number of data.

3.7.1. GH-EXIN Complexity
The computational cost of GH-EXIN can be estimated by considering the algorithm

step-by-step (see Figs. 6 and 7).

sG-EXIN Iteration. At each iteration in an epoch, see Fig. 7, an input xi is fed to the
network and the two closest neurons (weights), w1 and w2, are found according to their
Euclidean distances from the data. Let mi the number of neurons of sG-EXIN at the i-th
iteration. Then, the distance estimation is O(mid). If a simple min algorithm is employed,
the second step (i.e. first and second minimum search) is performed in O(mi). In order
to take into account an average of the cardinality of all the Voronoi sets in an horizontal
growth, mi can be safely replaced by the average branching factor b. Resuming, both steps
have a complexity of O(bd)+O(b) = O(b), because d is constant w.r.t. the evaluation of the
algorithm complexity. Once the winner is determined, the neighborhood convex hull test is
performed. It requires the identification of the convex hull of the winner, i.e. its neighbors.
For considering, in a global way, the vicinity of all neurons in the network, the average of
the neighborhood cardinality, say k, is considered here. As explained in Fig. 2, to check
if the input belongs to the winner convex hull, the vector a, sum of the difference vectors,
vi, between the winner neighborhood and the input xi, needs to be computed; this requires
O(kd) operations. Then, the inner products between a and all the vi’s cost O(kd) in the
worst case (all comparison are needed). Resuming, the test costs O(kd) = O(k), according
to the previous considerations. After the novelty check, two scenarios can occur: either a
new neuron is created or w1 and its neighbors adapt their weights according to the SCL. It
is easy to prove that the former costs O(1) because it is just a sequence of atomic operations
whose cost is, by definition, O(1). The latter case, i.e. the SCL weight adaptation, is slightly
more complex: the CHL linking is O(1); the aging and pruning phase exactly needs O(k)
operations; the SCL adaptation requires O(kd) because it performs a vector adjustment, k
times (i.e. the size of the neighborhood), by means of adding a scaled difference vector to the

weight, whose computational cost is, of course, O(d); the threshold re-estimation implies to
evaluate, for each of the k neurons moved by the SCL, the distances from its neighbors (i.e.
O(k2d)), assuming as negligible the search for the maximum neighbor distance. Resuming,
it can cost either O(1) in case of neuron creation or O(k2) in case of SCL weight adaptation.
In conclusion, a single sG-EXIN training iteration employs O(b) + O(k2) operations. How-
ever, it must be taken into account that the branching factor represents the number of
neurons of a neural unit, and that GH-EXIN builds, by construction, a tree and not a fully
connected graph. Hence, b >> k and the overall cost becomes O(b).

GH-EXIN Horizontal Growth. The horizontal growth of GH-EXIN corresponds to the train-
ing of an sG-EXIN neural network (see Fig. 7), which means presenting all the father node
Voronoi set to the sG-EXIN neural unit for several epochs. In other words, it implies to
repeat the sG-EXIN iteration for an number of times equal to one epoch (i.e. the cardinality
of the Voronoi set) and then, repeat this procedure for the necessary number of epochs. For
considering, in a global way, all the horizontal growths (i.e. sG-EXIN training) of a single
level of the hierarchy, the average number of epochs, J, is considered here. Furthermore, in
the worst case all leaves become father nodes; then, the sG-EXIN networks are trained on
input sets whose cardinality sums exactly to N. As a consequence, a GH-EXIN horizontal
growth costs O(JNb) (neuron pruning and outlier reallocation have a negligible cost).

GH-EXIN Cost. The overall complexity of GH-EXIN can be estimated by considering the
cost of repeating a full horizontal growth (i.e. expansion of all the leaves) for all the levels
of the hierarchy, that is, the height h of the tree. According to the previous considerations,
h = logbM , and M = O(N) then the overall training is O(b∗J ∗N ∗ logbN). Note that both
J and b are usually smaller compared to N ; it implies that J and b can be considered as
constants. The overall GH-EXIN complexity is then O(N ∗ logbN).

3.7.2. Complexity Comparison
As pointed out in [24], DGSOT has the same cost as GH-EXIN. However, the DGSOT

analysis of the cost in [24] does not take into account the complexity of the horizontal growth.
Indeed, both the approach in [24] based on the Minimum Spanning Tree and the approach
in [17] based on the CS index, are very time consuming. Hence, the DGSOT complexity is
probably underestimated.
On the contrary, GHNG is cheaper. Indeed, its cost is O(N), according to our personal anal-
ysis, because there is no complexity estimation of this algorithm in the literature. However,
a so simple technique prevents from building a really adaptive tree: the neuron creation does
not depend on the data at hand, the tree height is predetermined (the number of levels is
a hyperparameter) and the horizontal growth is only controlled by the leaf minimum cardi-
nality. The latter is probably the worst problem, because it tends to flatten the hierarchical
tree, in the sense that all the detected subgroups in a cluster are represented in the same
level, even if they still contain nested levels.

4. Synthetic Experiments

(a) GH-EXIN 1st layer (b) DGSOT 1st layer (c) GHNG 1st layer

(d) GH-EXIN 2nd layer (e) DGSOT 2nd layer (f) GHNG 2nd layer

Figure 8: First (up) and second (down) layers of GH-EXIN, GHNG and DGSOT on the X-shape distri-
bution

GH-EXIN, GHNG and DGSOT are here tested on artificial datasets, for comparing their
performances. At first, the same two planar datasets used in [15] have been chosen both for
the analysis of their partitioning properties and for direct visual inspection. With regard to
their ability in building a hierarchical tree, a third database has been expressly created.

The first two databases are randomly drawn from i) a planar uniform X-shape manifold
and ii) a planar square-shaped manifold having a Beta distribution (higher density in the
borders). The parameters of each network, used in these experiments and in the next ones,
are reported in Tabs. 1, 2 and 3.

For evaluating the quality of clustering, some internal indexes are used: the peak-signal
to noise ratio (PSNR) index [15], the Davies–Bouldin index (DB) [25] and the global
Silhouette value (S) [26].

The PSNR index is defined as follows (in decibel, higher is better):

PSNR = 10 log10

(
MAX2

l

MSE

)
(3)

where MAX2
l is the squared Euclidean norm of the vector which joins the two most

distant points in the input distribution support and MSE is the Mean Squared Error com-
puted as the sum of the Euclidean distances between the reference vector of each leaf neuron
and its associated data. PSNR takes into consideration only the intra-cluster compactness,

(a) GH-EXIN 1st layer (b) DGSOT 1st layer (c) GHNG 1st layer

(d) GH-EXIN 2nd layer (e) DGSOT 2nd layer (f) GHNG 2nd layer

Figure 9: First (up) and second (down) layers of GH-EXIN, GHNG and DGSOT on the square distribution

while ignoring the inter-cluster separation. For this reason, it is not a very accurate index
of the clustering quality. However, it is here introduced because of its use in [15].

The DB index, instead, takes into consideration both aspects, and is defined as follows:

DB =
1

N

N∑
i=0

max
j 6=i

RMSEi +RMSEj
Di,j

(4)

where RMSEi is the Root Mean Squared Error for the ith cluster, Di,j is the Euclidean
distance between the centroids of the ith and jth clusters and N is the number of clusters.
The lower the value, the better is DB.

Also the S index takes into account both the intercluster and the intracluster distances
and is computed as follows:

S =
1

C

C∑
i=1

b(i)− a(i)

max(a(i), b(i))
(5)

where a(i) is the average distance of the ith point from the points in the same cluster,
while b(i) is the minimum among the average distances of the ith point from the points in
the other clusters and C is the cardinality of the current dataset. The Silhouette index,
in general, is defined for each point in the dataset. Hence, the average value is considered.
While DB aims at identifying sets of clusters that are compact and well separated, the S

index is more suitable for estimating if, on average, samples are correctly assigned to the
nearest neighbouring cluster.

On the X-shape distribution (Fig. 8), at the first layer, the three algorithms have learnt
approximately well the manifold. With regard to the second level of the hierarchy, GH-
EXIN uses less neurons than GHNG for covering the manifold. Furthermore, the proposed
approach represents the symmetry of the manifold using symmetric branches composed of
the same number of neurons. On the contrary, GHNG neurons and edges do not respect
the symmetry (branches have not the same number of neurons). Also there are some higher
neuron densities in branches. More specifically, DGSOT yields the worst results in terms of
symmetry (e.g. the overlap of three neurons in the SW branch of the manifold), because of
the absence of connections. For instance, the SW branch and the NE branch have eight and
three neurons, respectively. Bar plots in Fig.16 report some statistics about the algorithms
and the quality of the clustering. Results have been validated by running all the algorithms
10 times for each data distribution and the bar plots report the mean value and the standard
error mean. With regard to the X-letter experiment, GH-EXIN uses less neurons on average
and takes a few more seconds to end. In this experiment, the quality of GH-EXIN and
GHNG clusterings is similar for all indexes, except for DB, which is slightly worse for GH-
EXIN. They both overcome DGSOT results (S and DB). Nonetheless, GHNG and DGSOT
are less stable than GH-EXIN in terms of number of neurons created. While this does not
seem to affect GHNG performance on average, DGSOT DB index, instead, changes too
much at each run.

On the square dataset (Fig. 9), with regard to the first layer, GH-EXIN and DGSOT
distribute the four neurons in a more symmetrical way with respect to GHNG. However,
the GH-EXIN distribution represents better the rectangle manifold (isosceles trapezoid).
Concerning the second layer, GH-EXIN uses less neurons than GHNG and DGSOT for
covering the manifold. Further, the proposed approach represents the symmetry of the
manifold, correctly placing nodes along the sides of the squares, according to the point
distribution, while mostly ignoring the emptier central part. On the contrary, GHNG and
above all DGSOT place many neurons also in the central part and do not respect the
symmetry of the dataset. From a quantitative point of view, GH-EXIN is the best algorithm
for all indexes but PSNR, while using far fewer neurons. Nevertheless, also in this case it
takes longer to terminate than DGSOT and, above all, GHNG. On this dataset, algorithms
seems to be quite stable on average.

With regard to the GH-EXIN novelty test, Figs. 10(a) and 10(b) show the importance of
the convex-hull mechanisms with regard to the isotropic threshold for explaining the X-shape
and the square distribution, respectively. The convex-hull criterion is extensively exploited
for the square distribution because of the importance of the border.

Resuming, in both experiments GH-EXIN yields the best clustering, as confirmed by the
visualization, and in terms of the S and DB indexes. It requires fewer neurons, but is more
time consuming.

(a) X-shape distribution (b) Square distribution

Figure 10: Number of times the two novelty test approaches are called during the training phase (see
Paragraph 3.2.1 and Fig. 3). The blue line represents the number of calls to the convex-hull technique (see
Fig. 2), while the red line refers to the isotropic threshold criterion (see Equation 2). Each node training
lasts ten epochs. The first ten epochs refer to the root node, while the following ones to the second layer
nodes

4.1. Hierarchical Synthetic Experiment
The previous experiments highlight the performance in quantization of the three algo-

rithms for each level. However, these techniques have been conceived not for partitional, but
for hierarchical clustering. The proposed experiment checks for the quality of the estimated
tree, by using, as a ground truth, a predefined hierarchical clustering. At this aim, a dataset
composed of two Gaussian mixture models has been devised: the first model is made of
three Gaussians, the second one of four Gaussians, as shown in Fig. 11.

The results, visualized in Fig.12 whose trees are shown in Fig. 13, clearly show that
only GH-EXIN and DGSOT build the correct hierarchy: two nodes in the first layer (level),
which represent the two clusters, and as many leaves as Gaussians in the second layer,
which represent the mixtures. Neurons are also positioned correctly w.r.t. the centers of
the Gaussians. On the contrary, GHNG spreads all the information in the first level. In
this sense, it only partitions, but does not reveal the hierarchy. The quality indexes, as
illustrated in Fig. 16, only refer to the final partition. They show a slightly better PSNR
and S for GH-EXIN, but a similar DB. This assessment is supported also by the analysis
of the Silhouette plots reported on Fig. 14, which shows the S values for each neuron: the
S values for GH-EXIN are mostly positive and the other values are only slightly negative,
unlike the other two methods. All the algorithms require a similar number of neurons, but
GHNG is much faster.

Resuming, GHNG is a faster algorithm, but is better for partitional clustering, even
if it has been conceived for finding hierarchies in the data. It opens the question if its
performance simply results from its modified GNG module.

Figure 11: Two mixtures of Gaussians: data and contours

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) GH-EXIN 1st layer -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) DGSOT 1st layer -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(c) GHNG 1st layer

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(d) GH-EXIN 2nd layer -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(e) DGSOT 2nd layer

Figure 12: First (up) layers of GH-EXIN, DGSOT and GHNG and second (down) layers of GH-EXIN and
DGSOT on the Gaussian distribution; GHNG second layer is not reported as it already covers all Gaussian
distribution at the first level

5. Hierarchical Clustering for Video Sequences

The first real experiment is the same proposed in [15], where GHNG is compared to
GHSOM, GNG and SOM (GHNG is comparable to GNG and better than GHSOM and
SOM). It has been devised for checking the quality of the hierarchical clustering. A database

3500

1500 2000

512 476 505 307 512 424 351 389

(a) GH-EXIN tree

3500

1500 2000

506 511 483 519 487 459 535

(b) DGSOT tree

3500

509 473 514 502 475 504 523

(c) GHNG tree

Figure 13: Tree structures (labelled by the cluster cardinality) of the three algorithms for the Mixture of
Gaussians dataset

(a) GH-EXIN Silhouette (b) DGSOT Silhouette (c) GHNG Silhouette

Figure 14: Silhouette scores for the three algorithms on the Mixture of Gaussian Dataset

[27] composed of five video sequences, each representing exclusively either one of four people
(two men, classes 2 and 4, and two women, classes 1 and 5) or one container (class 3), is
used, with the goal of grouping frames of the same class. There are 1432 input frames of
dimensionality 25344 (176×144 pixels), each with 3 channels (RGB). At first the color images
are converted to grayscale images by eliminating the hue and saturation information while
retaining the luminance. Because of the high dimensionality of data, the inputs are linearly
projected to dimension 8 by using the Principal Component Analysis (PCA), performed by
the eigenface method [28]. The projection retains 83% of the original data variance.

Fig.15 shows the hierarchical trees (labeled by the numbers of the nodes and leaves) and
the associated best leaf efficiencies. The efficiency of a class in a cluster is defined as the
percentage (w.r.t. the whole database) of elements of the class in the cluster. The best
efficiency reported for each leaf in Fig.15 is the maximum of these values (the number on
the top of the bar corresponds to the class) and represents an external qualitative index of
the clustering. It has been observed that all leaves of the GH-EXIN and DGSOT trees have
a 100% purity, while a few GHNG leaves do not share this property, where the purity is
defined as the percentage of elements in a cluster belonging to the most common class. The
following conclusions about the experiment can be drawn.

Efficiency of GHEXIN leaves

5 1

3

3

4

2

2

2
4

4

4 4

6 7 10 11 12 13 14 15 16 17 18 19
Row Clusters

0

0.2

0.4

0.6

0.8

1

E
ffi

ci
en

cy

(a) GH-EXIN leaves efficiency

1

2 3

4 5

6 7

8 9

10 11 1213 14 15 16 17 18 19

(b) GH-EXIN tree
Efficiency of DGSOT leaves

1

1

1

4

4 4

4 4

4

3
3

3 3

4 4

5

5 5 2 2

2 2 2
2

10 15 20 25 30 35
Row Clusters

0

0.2

0.4

0.6

0.8

1

E
ffi

ci
en

cy

(c) DGSOT leaves efficiency

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

(d) DGSOT tree
Efficiency of GHNG leaves

4

4

4

2

2

1

1

3

4

5 2

2

8 10 11 12 13 14 15 16 17 18 19 20

Leaves

0

0.2

0.4

0.6

0.8

1

E
ff
ic

ie
n
c
y

(e) GHNG leaves efficiency
(f) GHNG tree

Figure 15: Leaf efficiency (left) and tree structure (right) of the three algorithms for the videos dataset.
Regarding the efficiency bar plot, the row represents the number of the corresponding leaf on which the
efficiency has been computed. Each bar is labelled on top by the class of the group of data with the highest
efficiency within the leaf.

• GH-EXIN nodes 2 and 3 have been built by the double simultaneous vertical growth
(red edges in Fig.15(b)) and reflect the fact two chains have been found in the global
dataset. The node 2 Voronoi set only contains data from classes 1, 2 and 5. The node
3 Voronoi set is only composed of data from classes 3 and 4. Hence, the first level of
the GH EXIN tree perfectly divides in two clusters.

• DGSOT, which has not this double vertical mechanism, has a first level which is
comparable with the second level of GH-EXIN. DGSOT finds exactly all data of class
1 in node 2, all data of class 3 and 65% data of class 4 in node 3, all data of class 2
and 5 in node 4 and 35% data of class 4 in node 5. Resuming, node 2 is 100% pure
and efficient, but node 5 is 100% pure and only 35% efficient.

• The GH-EXIN second level finds exactly all data of class 2 in node 5, all data of class
3 and 25% data of class 4 in node 8, all data of class 1 and 5 in node 4 and 75% data
of class 4 in node 9. W.r.t. DGSOT, node 9 is 100% pure but 75% efficient for the
same class of DGSOT node 5. Also, node 4 perfectly identifies the two women classes.

• The GH-EXIN third level and the DGSOT second level neurons have Voronoi sets
composed of a unique class. However, 65% class 4 data for DGSOT and 25% class 4
data for GH-EXIN are nested in another cluster (together with class 3).

• The GHNG tree first level does not compute a correct clustering. Instead, node 2
retains a portion of class 2 and 4 data, with the consequence that these classes will
be grouped in the next levels by clusters in different branches. The absence of a
reallocation tool in the algorithm prevents from correcting this problem.

• The GHNG tree second level has more nodes than the same level for the other two
algorithms. Class 2 is shared, nearly fifty-fifty, by node 9 and node 5, belonging to
different branches. The same can be repeated for node 4 and 7 w.r.t. class 4. Class
1 is perfectly retrieved in node 6, while class 3 is only retrieved at the third level.
The worst result is yielded in the third level by node 8, which only retains less than
0.1% class 5 data, thus preventing a correct clustering of class 5 in the tree. Indeed,
the node 8 Voronoi set is empty (this is allowed by the GNG algorithm1). However,
this value of efficiency derives from the recall phase, in which it is possible that an
empty neuron wins because it has moved in the Voronoi set of another neuron. The
same considerations can be repeated for the empty neuron 12. On the contrary, this
problem is avoided in GH-EXIN because of the reallocation technique.

With regard to the results in Fig.16, GH-EXIN requires fewer neurons, before being
automatically stopped. GHNG, as usual, is by far the fastest. The quality indexes, which

1GNG creates a neuron in the middle between the father and the mother neurons. Its position does not
depend on the presence of a data. It is linked to its parent neurons. If it never wins, but one of its two
neighbors wins, it is possible that it changes position (SCL) and approaches data of another cluster, which
will not be presented anymore to the network. Hence, it remains empty, but may win in the recall phase.

do not take into account the hierarchy, but only the quality of the final partitioning, show
comparable PSNR and a far better S index for GH-EXIN, despite the better DB for DGSOT.
Notice the very high value of DB for GHNG. It has been found experimentally that it is
related to the presence of empty neurons.

Summing up the previous observations, GH-EXIN and DGSOT find an optimal hierar-
chical clustering. GH-EXIN is also able to detect the difference between male and female
faces. On the contrary, GHNG yields a very poor hierarchy. Probably, this explains why, in
[15], the authors of GHNG do not show the entire tree, but only the results of some nodes,
with the associated leaves.

Table 1: GH-EXIN hyperparameters

Hmax Hperc αγ0 αi0 agemax mincard
X-shape 0.00002 0.9 0.1 0.01 5 10
Square 0.00002 0.9 0.35 0.001 10 30
Gaussians 0.001 0.9 0.5 0.05 5 300
Videos 0.8 0.9 0.8 0.1 20 10

Table 2: DGSOT hyperparameters

α σ0 TR TE εAD εET K
X-shape 0.2 1 0.3 10 0.046 0.03 1
Square 0.1 1 0.001 10 0.09 0.03 0
Gaussians 0.2 1 200 2 0.2 0.05 1
Videos 0.2 1 250 2 0.2 0.05 1

Table 3: GHNG hyperparameters

MAXLEV EL τ λ εB εN α Amax D
X-shape 2 0.25 100 0.1 0.01 0.5 50 0.995
Square 2 0.3 100 0.35 0.01 0.5 50 0.995
Gaussians 2 0.1 100 0.4 0.01 0.5 14 0.995
Videos 3 0.2 100 0.001 0.001 0.5 50 0.995

6. Application to Two-Way Clustering

The second real experiment deals with an application in a high-dimensional space, where
data manifolds are embedded in subspaces. This is a more challenging problem with re-
gard to normal clustering, because also the more meaningful features have to be identified.
While this approach is called subspace clustering, there is no universal consensus about the
definition of the corresponding techniques. In a way, it depends on how it is implemented:
two-way clustering, if a clustering technique is alternatively applied both in the row and in

X letter square Gaussians videos
0

10

20

30

40

nu
m

be
r

of
 n

eu
ro

ns

gh-exin dgsot ghng

(a) Number of neurons

X letter square Gaussians videos
0

2

4

6

8

10

12

tr
ai

ni
ng

 ti
m

e

gh-exin dgsot ghng

(b) Training time

X letter square Gaussians videos
0

5

10

15

20

25

30

P
S

N
R

 in
de

x

gh-exin dgsot ghng

(c) PSNR index

X letter square Gaussians videos
0

0.1

0.2

0.3

0.4

0.5

0.6
si

lh
ou

et
te

 in
de

x

gh-exin dgsot ghng

(d) Silhouette index

gh-exin dgsot ghng
X letter square Gaussians videos

D
av

ie
s-

B
ou

ld
in

 in
de

x

0

1

2

3

97

98

99

(e) Davies-Bouldin index. Notice that the
s.e.m. error bar of GHNG on the videos
dataset is not reported as it would have im-
paired the visualization of the other bars

Figure 16: Bar plots with the standard error of the mean (s.e.m.) bars showing the mean of some relevant
statistics for each dataset and for each neural network

the column space of the matrix representing the dataset [29]; biclustering, if these operations
are carried out at the same time [19].

Two-way clustering searches for biclusters with constant values, with constant values on
rows or columns and with coherent values, respectively. It can be proved that the rank of
the corresponding submatrices is less than or equal to three in the noiseless case. Hence,
the numerical rank can be used as a figure of merit of the quality of the bicluster. The Hcc

index has been chosen for controlling the quality of the bicluster as it also takes into account
the noise in data. It is expressed as:

Hcc =

∑Nr

i

∑Nc

j r2ij

NrNc

(6)

where Nc represents the total number of columns of the matrix, Nr represents the total
number of rows and ri,j is the residue, which is calculated as:

rij = aij −
∑C

k aik
C

−
∑R

h ahj
R

+

∑R
i

∑C
j aik

C

R
(7)

The components aij are the elements of the matrix representing the dataset. C and R are
the number of columns and of rows of the bicluster at hand, respectively. The second term
is the average value of the ith row, the third term is the average value of the jth column,
while the last one is the average value of the whole bicluster. This index decreases as the
values in the bicluster tend to be constant, differing for a constant on the rows or a constant
on the columns. It goes to zero for the trivial 1x1 bicluster. This fact implies an additional
control on the cardinality of the biclusters in order to avoid this drawback.

GH-EXIN, driven by Hcc, is applied alternatively to the rows and columns, as shown
in Algorithm 1. It is not necessary to require the same minimum cardinality for both rows
and columns. The column clustering can be considered as a feature selection step, which
corresponds to an orthogonal projection in the column space. In this sense, this approach
can be also named as projected clustering, because it does not allow overlapped biclusters.

6.1. Application to Gene Expression Analysis
The cancer phenomenon seems to be the result of a different sequence of genetic alter-

ations. In this difficult setting, clinical treatments add an external complexity to the tumor
behavior. In recent years, Patient-Derived Xenografts (PDXs) have emerged as powerful
tools for biomarker discovery and drug development in oncology [30][31][32]. The PDX
technology has been leveraged to conduct large-scale preclinical analyses to identify reliable
correlations between genetic or functional traits and sensitivity to anti-cancer drugs. In
this context, during the last decade, the Cancer Institute of Candiolo (IRCC, Italy) has as-
sembled the largest collection of PDXs from metastatic colorectal cancer (mCRC) available
worldwide in an academic environment. Such resource has been widely characterized at the
molecular level through the Illumina bead array technology [33] and has been annotated for
response to therapies, including cetuximab, an anti-EGFR antibody approved for clinical use
[34], [35], [36]. The data consists of a DNA microarray, with the expression of 20.023 genes

Algorithm 1 two-way (projected) clustering pseudo-code
1: two-way clustering :
2: clustering on rows
3: for all leaves do
4: if leaf.cardinality ≤ mincard1 then
5: skip leaf
6: else
7: clustering on the columns of the leaf (projection)
8: for all leaves do
9: if projectedLeaf.cardinality ≤ mincard2 then
10: skip leaf
11: else
12: save projected leaf
13: goto two-way clustering
14: end if
15: end for
16: end if
17: end for
18: return

in 403 CRC murine tissues. Each cancerous tissue is associated with a Boolean variable
describing the tumor response to cetuximab (responsive or not responsive to treatments),
as described in previous works [37], [38], [39].

6.1.1. Neural Framework
The two-way clustering approach works on a matrix whose rows are given by the genes

and the columns by the murine tissues, while the entries are the gene expressions. Consid-
ering the very large number of genes, the first hierarchical clustering is in the row space. In
order to better analyze genetic expressions common for different patients, the dataset has
been divided into three parts (classes). This division follows the murine tissues response to
anti-cancer drugs. At the end, three datasets have been derived, one for the mice which
started recovering after three weeks of treatments, a second one for the mice which had a
stable situation and at last one also for the case in which drugs had no effect and the can-
cer kept growing. After a second hierarchical clustering on the column space, the resulting
biclusters are analyzed.

6.1.2. Analysis of the Results
In order to validate the two-way clustering of GH-EXIN (first clustering: Hmax = 0.1,

Hperc = 0.9, αγ0 = 0.8, αi0 = 0.08, agemax = 20, mincard = 20; second clustering: Hmax =
0.001, Hperc = 0.5, αγ0 = 0.5, αi0 = 0.05, agemax = 3, mincard = 20), the parallel coordinate
technique [40] is used. Fig. 17(a) shows this kind of plot by visualizing genes as samples
(colored polylines) and murine tissues as features (parallel vertical axes) on a leaf of GH-
EXIN in the gene space, whose characteristics are shown in the top line of the figure.
Blue polylines represent all genes available in the dataset, while red polylines stand for

genes collected in the gene cluster. The red grouping of polylines shows coherency, thus
confirming the quality of gene clustering. A similar validation analysis is used after the
GH-EXIN clustering in the tissue space which is run after projecting the Voronoi set of the
19th gene leaf (cluster), as shown in Figs. 17(b) and 17(c).

(a) Parallel coordinates of a cluster of genes

(b) Parallel coordinates of a bicluster (c) Parallel coordinates of a smaller bicluster

Figure 17: Parallel coordinates

6.1.3. Biological Analysis
As a biological feedback, the scientific relevance of the selected genes has been taken into

account. Among all the biclusters found, the one that grouped the most interesting genes
in the cancer field has also the lowest Hcc index value. Indeed, the 7 genes found in the
bicluster are the following:

• "CSAG1", "CSAG3", "CSAG3A", which belong to the same CSAG family. These
genes are well known in medical literature as associated with chondrosarcomas, but
they are also found in normal tissues. Furthermore, CSAG3 and CSAG3A are genes

coding the "Chondrosarcoma-associated gene 2/3 protein", which is a "drug-resistance
related protein, its expression is associated with the chemotherapy resistant and neo-
plastic phenotype. May also be linked to the malignant phenotype" [41].

• "MAGEA2", "MAGEA3", "MAGEA12", "MAGEA6", which belong to the same
MAGEA family. These genes are melanoma antigens which “Reduce p53/TP53 trans-
activation function” and also "Repress p73/TP73 activity" [42]. Both p53 and p73 are
tumor suppressor proteins which regulate cell cycle and induce apoptosis.

This analysis suggests that, at least in the observed conditions, these gene families are
not only important by themselves, but may also co-regulate each other. It is also important
to notice that this bicluster phenomenon has been observed within the tissues belonging to
the third class, to which tissues unresponsive to drugs belong.

7. Conclusion

Complex data, especially in high dimensional spaces, are better analyzed by the hierar-
chical (multiresolution) clustering. Divisive algorithms are better suited for this task, but
have drawbacks that can be overcome by unsupervised neural networks. The GH-EXIN
neural network is a novel algorithm for building a hierarchical tree. It is based on a growing
self-organizing neural unit (s-GEXIN) and is based on new ideas:

• semi-isotropic novelty detection, by employing the neighborhood convex hull, for a
better representation of the data manifold;

• original data reallocation, for self-correcting tree building and for outlier detection;

• double vertical growth, for exploiting the neuron topology.

This network requires only a few user-dependent parameters and so it is easy to be calibrated.
Unlike most algorithms of the same kind, a complete analysis of its complexity is here
reported.

For assessing the validity of GH-EXIN, two important hierarchical clustering algorithms
have been chosen for comparison. The first, GHNG, is based on an algorithm which has
some points in common with GH-EXIN (e.g., SCL, HCL), but, above all, is better than
other neural networks for clustering, like SOM, GH-SOM and GNG. The second, DGSOT,
is well suited for applications in medicine, and is an improvement of the important algorithm
SOTA. These three algorithms have been tested on more and more difficult synthetic and
real problems, in order to check their hierarchical properties. GH-EXIN has shown to be
better than DGSOT and far better than GHNG. In the end, GH-EXIN has also been used for
an important application of two-way clustering, and the achieved results are very promising.
Future work will deal with the analysis of nonstationary data and with the "simultaneous"
biclustering by using a variable distance metric.

Bibliography

[1] B. Everitt, S. Landau, M. Leese, D. Stahl, Cluster Analysis, Wiley Series in Probability and Statistics,
Wiley, 2011.
URL https://books.google.it/books?id=w3bE1kqd-48C

[2] T. Li, Y. Tang, S. Suen, L. Fang, A. Jennings, A Structurally Adaptive Neural Tree for Recognition
of Large Character Set, Proceedings of the 11th IAPR International Joint Conference on Pattern
Recognition 2 (1992) 187 – 190. doi:10.1109/ICPR.1992.201751.

[3] R. Adams, K. Butchart, N. Davey, Hierarchical Classification with a Competitive Evolutionary Neural
Tree, Neural Networks 12 (3) (1999) 541 – 551. doi:https://doi.org/10.1016/S0893-6080(99)00010-6.
URL http://www.sciencedirect.com/science/article/pii/S0893608099000106

[4] E. Samsonova, J. Kok, A. Ijzerman, TreeSOM: Cluster Analysis in the Self-Organizing Map, Neu-
ral networks : the official journal of the International Neural Network Society 19 (2006) 935–49.
doi:10.1016/j.neunet.2006.05.003.

[5] J. Himberg, A SOM Based Cluster Visualization and its Application for False Coloring, IEEE Int. Joint
Conf. on Neural Networks 3 (2000) 587 – 592 vol.3. doi:10.1109/IJCNN.2000.861379.

[6] M. Venkat Reddy, M. Vivekananda, R. U. V. N. Satish, Divisive Hierarchical Clustering with K-means
and Agglomerative Hierarchical Clustering, International Journal of Computer Science Trends and
Technology (IJCST) 5.

[7] G. Hang, D. Zhang, J. Ren, C. Hu, A Hierarchical Clustering Algorithm Based on K-Means with
Constraints, Innovative Computing ,Information and Control, International Conference on 0 (2009)
1479–1482. doi:10.1109/ICICIC.2009.18.

[8] G. Aloysius, Efficient High Dimension Data Clustering using Constraint-Partitioning K-Means Algo-
rithm, International Arab Journal of Information Technology 10.

[9] M. Khalilian, N. Mustapha, N. Suliman, A. Mamat, A Novel K-Means Based Clustering Algorithm for
High Dimensional Data Sets, in: International MultiConference of Engineers and Computer Scientists,
2010, pp. 17–19.

[10] A. Forti, G. L. Foresti, Growing Hierarchical Tree SOM: An Unsupervised Neural Network with Dy-
namic Topology, Neural networks 19 (10) (2006) 1568–1580.

[11] B. Fritzke, Growing cell structures–a self-organizing network for unsupervised and supervised learning,
Neural Networks 7 (1994) 1441–1460.

[12] V. Burzevski, C. K. Mohan, Hierarchical Growing Cell Structures, in: IEEE int. conference on neural
networks, 1996, pp. 207–218.

[13] B. Fritzke, Growing Grid - A Self-Organizing Network with Constant Neighborhood Range and Adap-
tation Strength, Neural Processing Letters 2 (5) (1995) 9–13. doi:10.1007/BF02332159.
URL https://doi.org/10.1007/BF02332159

[14] A. Rauber, D. Merkl, M. Dittenbach, The Growing Hierarchical Self-Organizing Map: Exploratory
Analysis of High-Dimensional Data, IEEE Transactions on Neural Networks 13 (6) (2002) 1331–1341.
doi:10.1109/TNN.2002.804221.

[15] E. J. Palomo, E. López-rubio, The Growing Hierarchical Neural Gas Self-Organizing Neural Network,
IEEE Transactions on Neural Networks and Learning Systems (2016) 1–10.

[16] B. Fritzke, A Growing Neural Gas Network Learns Topologies, in: Advances in neural information
processing systems, 1995, pp. 625–632. arXiv:arXiv:1011.1669v3, doi:doi=10.1.1.31.4273.

[17] L. Khan, F. Luo, Hierarchical Clustering for Complex Data, International Journal on Artificial Intelli-
gence Tools 14 (2005) 791–810.

[18] J. Dopazo, J. M. Carazo, Phylogenetic Reconstruction Using an Unsupervised Growing Neural Network
that Adopts the Topology of a Phylogenetic Tree, Journal of Molecular Evolution 44 (2) (1997) 226–233.

[19] Y. Cheng, G. M. Church, Biclustering of Expression Data, Proceedings. International Conference on
Intelligent Systems for Molecular Biology 8 (2000) 93–103.

[20] V. Randazzo, G. Cirrincione, G. Ciravegna, E. Pasero, Nonstationary Topological Learning with Bridges
and Convex Polytopes: the G-EXIN Neural Network, in: 2018 International Joint Conference on Neural

Networks (IJCNN), IEEE, 2018, pp. 1–6. doi:10.1109/IJCNN.2018.8489186.
URL https://ieeexplore.ieee.org/document/8489186/

[21] M.-R. Bouguelia, Y. Belaid, A. Belaid, Online Unsupervised Neural-Gas Learning Method for Infinite
Data Streams, in: Pattern Recognition Applications and Methods, Springer, 2015, pp. 57–70.

[22] G. Cirrincione, V. Randazzo, E. Pasero, The Growing Curvilinear Component Analysis (GCCA) neural
network, Neural Networks 103 (2018) 108–117.

[23] G. Ciravegna, P. Barbiero, Gh-exin (version 1.0.1)., https://bitbucket.org/machine_learning_research/
ghexin/src/master/ (2018).

[24] F. B. I.-L. Y. Feng Luo, Latifur Khan, J. Zhou, A dynamically growing self-organizing tree (DGSOT)
for hierarchical clustering gene expression profiles, Bioinformatics 20 (2004) 2605–2617.

[25] D. L. Davies, D. W. Bouldin, A Cluster Separation Measure, IEEE Transactions on Pattern Analysis
and Machine Intelligencedoi:10.1109/TPAMI.1979.4766909.

[26] P. J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis,
Journal of Computational and Applied Mathematicsdoi:10.1016/0377-0427(87)90125-7.

[27] M. Reisslein, L. J. Karam, P. Seeling, F. H. Fitzek, and T. K. Madsen , YUV Video Sequences ,
http://trace.eas.asu.edu/yuv/index.html , Accessed on 2019-06-07 (December 2010).

[28] M. A. Turk, A. P. Pentland, Face recognition using eigenfaces, in: Proceedings. 1991 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, IEEE, 1991, pp. 586–591.

[29] G. Getz, E. Levine, E. Domany, Coupled Two-Way Clustering Analysis of Gene Microar-
ray Data, Proceedings of the National Academy of Sciences 97 (22) (2000) 12079–12084.
arXiv:https://www.pnas.org/content/97/22/12079.full.pdf, doi:10.1073/pnas.210134797.
URL https://www.pnas.org/content/97/22/12079

[30] M. Hidalgo, F. Amant, A. Biankin, E. Budinská, A. Byrne Phd, C. Caldas, R. Clarke, S. Jong,
J. Jonkers, G. Mælandsmo, S. Roman-Roman, J. Seoane, L. Trusolino, A. Villanueva, Patient-Derived
Xenograft Models: An Emerging Platform for Translational Cancer Research, Cancer discovery 4 (2014)
998–1013. doi:10.1158/2159-8290.CD-14-0001.

[31] J. Tentler, A. C. Tan, C. D Weekes, A. Jimeno, S. Leong, T. Pitts, J. J Arcaroli, W. A Messersmith,
S. Eckhardt, Patient-Derived Tumour Xenografts as Models for Oncology Drug Development, Nature
reviews. Clinical oncology 9 (2012) 338–50. doi:10.1038/nrclinonc.2012.61.

[32] A. Byrne Phd, D. Alferez, F. Amant, D. Annibali, J. Arribas, A. Biankin, A. Bruna, E. Budinská,
C. Caldas, D. K Chang, R. Clarke, H. Clevers, G. Coukos, V. Dangles-Marie, S. Eckhardt, E. Gonzalez-
Suarez, E. Hermans, M. Hidalgo, M. Jarzabek, L. Trusolino, Interrogating Open Issues in Cancer
Medicine with Patient-Derived Xenografts, Nature reviews. Cancer 17. doi:10.1038/nrc.2017.85.

[33] Illumina. Array-based Gene Expression Analysis. Data Sheet Gene Expr. (2011).
URL http://res.illumina.com/documents/products/datasheets/datasheet_gene_exp_analysis.pdf

[34] C. Boccaccio, P. Luraghi, V. Bigatto, E. Cipriano, G. Reato, F. Orzan, F. Sassi, F. Bacco, C. Isella,
S. Erika Bellomo, E. Medico, P. Comoglio, A. Bertotti, L. Trusolino, A Molecularly Annotated
Model of Patient-Derived Colon Cancer Stem-Like Cells to Assess Genetic and Nongenetic Mecha-
nisms of Resistance to Anti-EGFR Therapy, Clinical Cancer Research 24 (2017) clincanres.2151.2017.
doi:10.1158/1078-0432.CCR-17-2151.

[35] E. R Zanella, F. Galimi, F. Sassi, G. Migliardi, F. Cottino, S. Leto, B. Lupo, J. Erriquez, C. Isella, P. Co-
moglio, E. Medico, S. Tejpar, E. BudinskĂˇ, L. Trusolino, A. Bertotti, IGF2 Is an Actionable Target
that Identifies a Distinct Subpopulation of Colorectal Cancer Patients with Marginal Response to Anti-
EGFR Therapies, Science translational medicine 7 (2015) 272ra12. doi:10.1126/scitranslmed.3010445.

[36] A. Bertotti, E. Papp, S. Jones, V. Adleff, V. Anagnostou, B. Lupo, M. Sausen, J. Phallen, C. A Hruban,
C. Tokheim, N. Niknafs, M. Nesselbush, K. Lytle, F. Sassi, F. Cottino, G. Migliardi, E. R Zanella,
D. Ribero, N. Russolillo, V. Velculescu, The Genomic Landscape of Response to EGFR Blockade in
Colorectal Cancer, Nature 526 (2015) 263–267. doi:10.1038/nature14969.

[37] C. Isella, F. Brundu, S. E. Bellomo, F. Galimi, E. Zanella, R. Porporato, C. Petti, A. Fiori, F. Orzan,
R. Senetta, C. Boccaccio, E. Ficarra, L. Marchionni, L. Trusolino, E. Medico, A. Bertotti, Selective
Analysis of Cancer-Cell Intrinsic Transcriptional Traits Defines Novel Clinically Relevant Subtypes of

Colorectal Cancer, Nature Communications 8. doi:10.1038/ncomms15107.
[38] P. Barbiero, A. Bertotti, G. Ciravegna, G. Cirrincione, E. Pasero, E. Piccolo, Unsupervised Gene

Identification in Colorectal Cancer, in: Quantifying and Processing Biomedical and Behavioral Signals,
Springer International Publishing, 2018, pp. 219–227.

[39] B. Pietro, C. Gabriele, E. Piccolo, C. Giansalvo, C. Maurizio, B. Andrea, Neural biclustering in gene
expression analysis, in: 2017 International Conference on Computational Science and Computational
Intelligence (CSCI), 2017, pp. 1238–1243. doi:10.1109/CSCI.2017.361.

[40] E. J. Wegman, Hyperdimensional data analysis using parallel coordinates, Journal of the American
Statistical Associationdoi:10.1080/01621459.1990.10474926.

[41] http://www.genecards.org/cgi-bin/carddisp.pl?gene=CSAG3, accessed: 2017-11-20.
[42] http://www.genecards.org/cgi-bin/carddisp.pl?gene=MAGEA2, accessed: 2017-11-20.

