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Abstract—This paper introduces a fully automated greedy
algorithm for the construction of parameterized behavioral
models of electromagnetic structures, targeting at the same time
uniform model stability and passivity. The proposed algorithm
is able to determine a small set of parameter configurations
for which an external solver provides on the fly the sampled
scattering parameters of the structure over a predetermined
frequency band. These samples are subjected to a multivariate
rational/polynomial fitting process, which iteratively leads to a
parameterized descriptor realization of the model. The main
novel contribution in this work is the adoption of a model-based
approach for the adaptive augmentation of an initially small
set of frequency responses, each corresponding to a randomly-
selected parameter configuration. In particular, the locations of
the in-band passivity violations of intermediate macromodels
constructed at each iteration are used as a proxy for the model-
data error in those regions where input data are not available.
This physics-based consistency check, which is enabled by recent
developments in multivariate passivity characterization based
on Skew-Hamiltonian-Hamiltonian (SHH) spectra, is combined
with standard space exploration metrics to obtain a small-
size and automatically-determined distribution of points in the
parameter space, leading to the construction of an accurate
macromodel with a very limited number of external field solver
runs. The embedded passivity check and enforcement process
guarantees that either the final model is passive throughout
the parameter space, or the residual violations, if present, are
negligible for practical purposes. Several examples validate the
proposed approach for up to three concurrent parameters.

I. INTRODUCTION

Most Computer-Aided Design (CAD) flows of linear elec-
trical, electronic and electromagnetic structures depend on
the availability of the frequency responses of the device,
structure or system under investigation. These are most often
obtained through full-wave electromagnetic simulations, which
may be very costly in terms of computational resources and
especially runtime. It is thus very desirable to complete the
full design cycle, including optimization, centering and what-
if analyses, while minimizing the required number of such
full-wave simulations.

Using surrogate, reduced-order, or behavioral models is a
well-established practice in this scenario [1]–[3]. Surrogate
models may be available in various forms: here we focus on
linear finite-dimensional state-space or descriptor forms [4]–
[6], which are the standard representation for lumped circuit
equivalents. A surrogate model of a well-defined structure can
be trained or identified from a sampled frequency response

computed from a field solver [7]–[10]. With proper identifi-
cation tools, it can be guaranteed that the model responses
match the original samples to a prescribed accuracy level,
thus enabling usage of the model in any subsequent numerical
simulation in time or frequency domain. This avoids repeat-
ing costly full-wave simulations of the same structure under
different working or termination conditions.

This work focuses on multivariate surrogate models [11]–
[19], whose responses depend on frequency and on a set
of additional parameters, which could represent either design
variables for which an optimization is desired, or uncertain
variables that are not under control. In the latter case, the
design process should guarantee good performance under any
combination of such uncertainties within their prescribed range
of variation. Whatever be the nature of these parameters, a
multivariate surrogate model needs to be identified or trained
from a possibly large number of true scattering response
samples in the frequency and parameter space. The denser is
this grid of raw samples, the higher will be the confidence level
that the model responses represent accurately the underlying
system throughout the parameter space and the frequency band
of interest. This is in contrast to the practical requirement
of limiting the number of full-wave simulations for reducing
computing cost and runtime.

This paper provides an adaptive sampling algorithm for
the automatic selection of parameter combinations, for which
a frequency sweep of an external field solver is performed.
The main objective of the algorithm is the minimization of
such parameter configurations, so that the number of field
solutions is also reduced. As in most standard adaptive sam-
pling schemes [20]–[23], the proposed algorithm starts with an
initially small set of points in the parameter space. An iterative
process is then started, which automatically determines which
are the regions of the parameter space that need to be sampled
more densely by adding points, in order to improve model
quality. The final outcome that is expected is a multivari-
ate macromodel in state-space (descriptor) form, which is
guaranteed to be uniformly stable and passive throughout the
parameter space in addition to being uniformly accurate.

Several previous works addressed the issue of multivariate
macromodeling through adaptive sampling. In particular, there
are two main approaches for driving adaptive sampling: data-
driven approaches and model-driven approaches. In data-
driven approaches [20], no intermediate models are used for
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the selection of the parameter configurations to be computed
by the field solver. Only the distribution of data (design space
exploration) and the variation of the frequency responses (ex-
ploitation) are considered. These approaches work well when
combined with macromodel parameterization schemes that
are based on interpolation of univariate (non-parameterized)
models. One of the main motivations for using a pure data-
driven approach is to avoid the unnecessary costs of building
intermediate models that will be discarded at the end of the
adaptive sampling loop.

We propose in this work a complementary model-driven
approach [22]–[24], based on the fundamental assumption that
the field solver cost is much higher than the cost for extracting
the macromodels. In addition to a space exploration criterion,
which we preserve due to the obvious necessity of spanning
the entire design space and thus avoiding to miss any areas in
which the structure is not properly characterized, we use two
model-based criteria. At any iteration we build a candidate
multivariate model based on the current distribution of points.
First, a standard criterion based on the model-data error at the
available points is used to identify the regions where the model
is less accurate, thus pointing to the locations where new points
should be added in order to improve accuracy. The main novel
contribution of this work is a second model-based criterion
built on the multivariate passivity characterization of [25] and
further developed in [26]–[28]. In fact, the model-data error
can only be computed where data points are available, so that
this metric has very limited predictive capabilities to infer
the model quality in poorly sampled regions. Conversely, a
multivariate passivity check of the model is able to automat-
ically identify the boundaries of the regions where the model
presents passivity violations, irrespective on the distribution
of the available data points. The passivity violations provide
a localization of the areas where the model is physically-
inconsistent, which is exactly where its accuracy should be
improved. New points are therefore added in these areas.

At the end of the proposed model-driven adaptive sampling
loop, both model-data error and passivity violation extents
are small at the available data points. Therefore, a final
passivity enforcement is able to correct any residual passivity
violations and leads to the desired parameterized model, with
the guarantee that any residual passivity violations -if present-
are negligible. We illustrate through various examples that
the proposed scheme is able to construct such models using
a very limited number of data samples, and for some cases
significantly less data points than competing approaches.

This paper provides a complete theoretical framework for
the method introduced in the preliminary work [29] and is
organized as follows. Section II provides some background
information on the adopted model structure and identification
scheme, together with a summary of the main results of [25],
[26] on Skew-Hamiltonian/Hamiltonian (SHH) pencil pertur-
bation for passivity check and enforcement of multivariate
models. Section III introduces the proposed adaptive sampling
strategy, with a quantitative description of relevant metrics
provided in Sec. IV. Numerical examples for up to three
parameters are discussed in Sec. V.

II. BACKGROUND

Throughout this work, vectors are typeset with boldface
lowercase fonts, e.g., x, and matrices with boldface uppercase
fonts, e.g., X. We denote the complex conjugate, the transpose,
and the Hermitian transpose of a generic matrix as X∗, XT,
and XH, respectively.

A. Parameterized macromodeling from sampled responses

The main objective of this paper is the construction of a
parameterized reduced-order P -port macromodel, whose re-
sponse H(s;ϑ) ∈ CP×P depends on frequency s and on a set
of ρ external parameters collected in vector ϑ = [ϑ1, ..., ϑρ]T.
The parameter vector spans a compact domain ϑ ∈ Θ ⊂ Rρ,
which without loss of generality will be assumed to be a
ρ-dimensional normalized hypercube, with each component
ϑν ∈ [0, 1]. Although the adopted notation allows for an
arbitrary value of ρ, in this work we present results for
up to ρ = 3 independent parameters. A discussion on the
main limitations that hinder scalability to higher dimensions
is deferred to Sec. IV-G.

The model is constructed from a set of frequency response
data

H̆k,m = H̆(jωk;ϑm), k = 1, . . . , k̄, m = 1, . . . , m̄ (1)

available, e.g., from a field solver. These data span a prescribed
frequency range Ω and should adequately cover the parameter
space Θ. The main purpose of this paper is to minimize
the number m̄ of parameter samples to be used for model
construction, while guaranteeing a uniformly accurate, stable
and passive model. We will consider in the following both
data and models in scattering representation.

Among the several parameterized macromodeling schemes,
we consider the approach based on the Parameterized
Sanathanan-Koerner (PSK) iteration [11], [30], [31], which
seeks a model with structure

H(s;ϑ) =
N(s,ϑ)

D(s,ϑ)
=

∑n̄
n=0

∑¯̀

`=1 Rn,` ξ`(ϑ)ϕn(s)∑n̄
n=0

∑¯̀

`=1 rn,` ξ`(ϑ)ϕn(s)
(2)

where ϕn(s) denotes the standard partial fraction basis asso-
ciated to a set of initial “basis” poles qn, e.g., ϕ0(s) = 1 and
ϕn(s) = (s− qn)−1 for n > 0, and where ξ`(ϑ) denotes a set
of multivariate basis functions, suitably ordered and indexed
by a single global scalar index `. Various choices for these
basis functions have been successfully demonstrated, including
partial fractions [13], orthogonal polynomials [28], piecewise
linear or polynomial functions [11], [30], and trigonometric
polynomials [12]. In this work we use order-¯̀ν Chebychev
polynomials for each independent parameter direction ϑν ,
although this choice is not restrictive.

The model (2) is fully characterized by its numerator and
denominator coefficients Rn,` and rn,`, which are determined
through the following iterative process

min

∥∥∥∥∥Nµ(j2πfk,ϑm)− Dµ(j2πfk,ϑm) H̆k,m

Dµ−1(j2πfk,ϑm)

∥∥∥∥∥
2

F

(3)

which provides a relaxed linearized formulation of the model-
data error minimization, and where the superscript µ =
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1, 2, . . . denotes iterations. At each iteration µ the estimates
Rµ
n,` and rµn,` of the model coefficients are provided by a

linear least squares solution of (3). Such coefficients stabilize
at convergence.

The model is deemed acceptable if the model-data error
is below a given threshold ε throughout the parameter space.
Here we define the model error as the worst-case among all
port responses of the frequency-domain RMS deviation

E(ϑm) = max
i,j

√√√√1

k̄

k̄∑
k=1

∣∣∣Hij(jωk;ϑm)− (H̆k;m)ij

∣∣∣2 . (4)

The model (2) is easily converted into a parameterized
descriptor form

H(s,ϑ) = C(ϑ) (sE−A(ϑ))
−1

B (5)

with real realization matrices E,A ∈ RN̄×N̄ , B ∈ RN̄×P and
C ∈ RP×N̄ , where

A(ϑ) =

¯̀∑
`=1

A` ξ`(ϑ), C(ϑ) =

¯̀∑
`=1

C` ξ`(ϑ). (6)

Details on the construction of the above descriptor realization
are available in [11].

B. Hamiltonian-based passivity characterization

Most of the developments in this work are enabled by
some recent results [26] on passivity characterization and
enforcement in the present parameterized setting. We recall
that a scattering model H(s,ϑ) is uniformly passive ∀ϑ ∈ Θ if
the following three Uniform Bounded Realness conditions [6],
[32] hold:

a) H(s,ϑ) regular for <{s} > 0 and ∀ϑ ∈ Θ,
b) H∗(s,ϑ) = H(s∗,ϑ) ∀s ∈ C and ∀ϑ ∈ Θ,
c) I−HH(s,ϑ)H(s,ϑ) ≥ 0 for <{s} > 0 and ∀ϑ ∈ Θ.

The theory that is developed in [26], [27] shows that the Skew
Hamiltonian-Hamiltonian (SHH) pencil (MS(ϑ),KS) defined
as

MS(ϑ) =

[
A(ϑ) BBT

−CT(ϑ)C(ϑ) −AT(ϑ)

]
KS =

[
ET 0
0 E

] (7)

plays a fundamental role in checking passivity, in particular
condition c) above. In fact, assuming that the model is real-
valued (condition b) and uniformly (asymptotically) stable
(condition a), it can be shown that uniform (strict) passivity
holds if and only if1 the SHH pencil (MS(ϑ),KS) has no
purely imaginary eigenvalues ∀ϑ ∈ Θ.

The passivity check algorithm presented in [26] proceeds
as follows (we only summarize the main ideas here, see [26]
for a full description).

1) The parameter space Θ is first subdivided into a regular
grid of patches, induced by some initial coarse-level sub-
division of each parameter range into equal subintervals
(see Fig. 1a).

1additional technical conditions are required, which are however straight-
forward to verify and/or enforce, see [37]–[40] for details.

(a) Iteration 1 (b) Iteration 2

1

2

(c) Iteration 3 (d) Iteration 4

Fig. 1. Four successive iterations of the passivity verification algorithm
presented in [26]. Empty green and filled red dots represent parameter
configurations for which the model is passive or non-passive, respectively.

2) For each vertex ϑ̂p of the above initial grid the SHH
pencil (MS(ϑ̂p),KS) is constructed, its eigenvalues are
computed, and the vertex is flagged as “non-passive” or
“passive” (red and green dots in Fig. 1, respectively)
depending on whether imaginary eigenvalues are present
or not.

3) The non-imaginary SHH eigenvalues at each passive
vertex ϑ̂p are subjected to a linear perturbation to predict
their trajectories when ϑ ≈ ϑ̂p + δϑ inside each patch.
If these trajectories become too close to the imaginary
axis (henceforth denoting a possible onset of a localized
violation as ϑ moves in the parameter space), then the
patch is refined, new vertices are added as required by
the refinement process, and their SHH eigenvalues are
extracted.

4) Step 3 is repeated iteratively, until no refinements are
necessary. Figures 1a–d depict the evolution of the adap-
tive grid, showing that the boundaries between passive
(green) and non-passive (red) regions become more and
more resolved through refinement iterations.

5) For each non-passive grid sample ϑ̂p, the corresponding
largest singular value of the model response σ̄p =
maxσ(H(jω, ϑ̂p)) is computed by an adaptive fre-
quency sampling loop within each detected local viola-
tion band and stored. Since associated to a non-passive
point, we have σ̄p > 1. Note that the grid samples in
Fig. 1 represent regions with σ̄p > 1 (red dots) and
σ̄p < 1 (green dots).

Figure 2 depicts the frequency-dependent singular value
trajectories of a model at a non-passive sample point ϑ̂p,
corresponding to one of the red dots in Fig. 1. The yellow dots
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1

0

Fig. 2. Passivity characterization of a scattering macromodel instantiated at
ϑ = ϑ̂p in terms of local singular value maxima (see text).

correspond to the frequencies of the purely imaginary SHH
eigenvalues, used to detect the passivity violation bands, in this
case (ω1, ω2) localized within the modeling bandwidth, and
(ω3, ω4) located out-band. The corresponding local maxima
σ̄(ϑ̂p) and σ̄off(ϑ̂p) correspond to the worst-case in-band and
out-band passivity violations at ϑ̂p.

C. Checking uniform stability

The Hamiltonian check of Sec. II-B can be applied with
minimal modifications also to check uniform stability of the
model (condition a of Sec. II-B), which was assumed a priori
in the above passivity check. It is shown in [28] that when
the denominator D(s,ϑ) of (2) is Uniformly Positive Real,
then its zeros pn(ϑ) (which are the parameter-dependent poles
of the model) are guaranteed to have a negative real part.
Therefore, uniform stability can be inferred from a uniform
passivity (positive realness) check applied to the denominator
only. The same algorithm of Sec. II-B can thus be applied, but
using an appropriate SHH pencil (MD(ϑ),KD) suitable for
Positive Real functions and applied to a state-space realization
of the (scalar) denominator

D(s,ϑ) = CD(ϑ) [sI−AD]
−1

BD +DD(ϑ) (8)

This pencil reads

MD(ϑ) =

 AD 0 BD

0 −AT
D −CT

D(ϑ)
CD(ϑ) BT

D 2DD(ϑ)

 ,
KD =

I 0 0
0 I 0
0 0 0

 (9)

In summary, for a given parameterized macromodel in
form (2), both uniform stability and uniform passivity checks
lead to an adaptively sampled parameter space as in Fig. 1,
where the boundaries between passive/non-passive and sta-
ble/unstable regions become more and more resolved as it-
erations progress. The availability of these checks suggests to
exploit their independent and model-driven sample locations
by embedding them as components of the overall adaptive
sampling process that requests new points to the field solver, in
order to improve model quality towards a uniformly accurate,
stable and passive model, and in a fully automated way.

D. Enforcing uniform stability and passivity

Before introducing the proposed global adaptive sampling
scheme, we recall how uniform model stability and passivity
can be enforced if violations are detected. The following
paragraphs summarize the results of [26]–[28], which the
Reader is referred to for details.

Let us assume that some stability violations are detected
at a set of adaptively-determined parameter samples ϑ̃p from
the stability check of Sec. II-C. These violations are removed
by embedding a set of corresponding Positive Realness con-
straints applied to the the denominator D(s,ϑ) in the PSK
iteration (3). These constraints read

<{D(s, ϑ̃p)} ≥ α, (10)

where α > 0 is a strictly positive constant used to enforce
strict positive realness at each sample ϑ̃p. When expressed
in terms of the model coefficients, (10) results in a simple
linear inequality constraint, which combined with (3) leads
to a linearly constrained linear least squares problem at each
PSK iteration. The latter is easily solved using standard convex
optimization methods [33]. Our implementation of the PSK
iteration embeds the constraints (10) at each iteration. For all
examples reported in the paper we set α = 1. A different
choice of α does not have any practical influence both on
the passivity and the accuracy of the macromodel, resulting
in just a renormalization of all numerator and denominator
coefficients.

In case of passivity violations, the algorithm in [26], [27]
can be used to determine the perturbation that is required for
the model coefficients Rn,` ← Rn,` + ∆Rn,` for removing
the passivity violations and obtain a uniformly passive model.

III. ADAPTIVE ALGORITHM FOR POINT SELECTION

In most applications, the main bottleneck for extracting pa-
rameterized macromodels lies in computing the true responses
of the underlying system required for model identification, due
to the necessity of running costly full-wave electromagnetic
simulations. It is highly desirable to obtain an accurate model
from a minimum number of data samples. This can only be
achieved by means of a suitable adaptive algorithm for point
selection.

A generic adaptive sampling algorithm works in an iterative
way. A starting set of q̄0 system responses corresponding to
Q0 = {ϑ1, . . . ,ϑq̄0} are initially scattered on the parameter
space, with each simulation point ϑq = [ϑ1

q, ..., ϑ
ρ
q ] being

associated to a specific combination of scalar values for the
system parameters. At any subsequent iteration i > 0, a new
set of points Pi is added to the already existing set, so the
total set of data points, composed of q̄i elements, becomes
Qi = Qi−1 ∪ Pi. The algorithm stops when the number of
points is detected to be sufficient.

The new points Pi can be selected based on various
strategies. For instance, the algorithm in [20] is based on the
following two criteria:
• exploration, aimed at ensuring that data points are spread

over the space uniformly, avoiding the presence of under-
sampled regions;
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• exploitation, aimed at detecting the regions where the
raw data samples undergo fast variations, based on the
assumption that large gradients in the data responses
require a denser sampling rate.

These two criteria are the basis for corresponding normalized
metrics, defined in [20], which are used to identify regions
which need a further refinement. The main advantage of these
two metrics, as advocated in [20], is their pure data-driven
nature, which does not require the availability of a tentative
model at any iteration.

With respect to [20], this work proposes a completely differ-
ent strategy. Based on the assumption that the computational
time required to generate a surrogate model is much less
than the time required to compute new data samples (as
typical in electromagnetic applications), we adopt here a mixed
data- and model-driven approach. On one hand, we retain
the data-driven exploration criterion, since it is important
to scan the entire parameter space to avoid undersampling.
On the other hand, and since the final objective is here to
obtain an accurate surrogate model, we construct a tentative
parameterized macromodel at each iteration, on which we
define two additional criteria based on:
• model vs data error, based on the obvious consideration

that more points need to be added in the regions where
the model is not sufficiently accurate with respect to data,
assuming that the lack of accuracy is due to some missing
intersample information;

• extent of passivity violations, based on the assumption
that the regions where an intermediate model is not pas-
sive correspond to regions where the model is physically-
inconsistent. More points are then added in these regions
to help reducing the extent of such violations at the next
iteration.

Differently from [20], we drop the data-driven exploitation
criterion. Indeed, an extensive campaign of numerical ex-
periments demonstrated that the corresponding metric is in-
effective towards improving model quality when the above
model-driven criteria are adopted. The above criteria and
the corresponding metrics that define our proposed adaptive
sampling scheme are introduced in more detail in Sec. IV.

IV. METRICS AND NEW POINTS SELECTION

Let us consider the situation at the i-th iteration of the
adaptive sampling loop, with q̄i available points ϑq ∈ Qi
obtained from the preceding iterations. As proposed in [20],
we first subdivide the parameter space into a set of disjoint
cells Ci;q , with each cell including only one sample ϑq ,
henceforth denoted as center. This is achieved through a
Voronoi tessellation [34] based on the available seed points
ϑq , see e.g. Fig. 5. We recall that, given a set of seed points
ϑq , a Voronoi tessellation is a subdivision of space into regions
based on distance from seeds. In particular, each region is
associated to a seed, and it contains the portion of space closer
to that seed than to any other. These regions are identified as
Voronoi cells Ci;q .

Following [20] we rank the cells Ci;q (equivalently, the seed
points ϑq) through a global metric Λi;q , with higher values of

Λi;q denoting cells that require refinement through addition
of samples. As discussed above, the proposed global metric
includes three components, itemized below.

A. Exploration

The exploration metric, as originally proposed in [20], aims
at placing new points in those regions of space which have not
been explored yet, hence more likely to be undersampled. This
metric is based on a pure geometric criterion, determined by
the fraction of the parameter space occupied by the volume
|Ci;q| of each cell Ci;q . We define the exploration metric
coherently with [20] as

Λ′i;q =
|Ci;q|
|Θ|

. (11)

B. Model-data Error

At each iteration, we use the available data points ϑq ∈ Qi
to generate an intermediate macromodel Hi(s;ϑ) using the
PSK iteration reviewed in Sec. II-A. This model is obtained
through an additional inner loop that estimates the model order
by iteratively increasing the polynomial order `ν along each
parameter direction, starting from the corresponding order at
the previous adaptive sampling iteration, and up to a maximum
order imposed by the constraint

∏
ν `ν < κq̄i, with κ < 1/2 so

that overfitting is avoided. Order estimation is stopped when
the desired accuracy is attained at all data points, or when the
maximum order is reached.

The parameter-dependent accuracy of this model is then
used to define a second metric as

Λ′′i;q =
Ei(ϑq)∑q̄i
q=1 Ei(ϑq)

. (12)

where Ei(ϑq) is the model-data error as defined in (4) for
the model Hi(s;ϑ) at current iteration. If needed, the relative
error or some more advanced frequency-weighted error metric
can be used, depending on the application requirements. Note
that Λ′′i;q evaluates the model-data error at all the available
sample points ϑq ∈ Qi, which are all used for model training.

The above model-based error metric is likely to reveal
regions where model fitting is poor. Given the automated
order estimation process that is implemented and applied at
each iteration, which should guarantee that a nearly-optimal
intermediate model Hi(s;ϑ) is attained as allowed by the
current set of samples, we argue that the main reason for a
poor fitting in some parameter space areas is an insufficient
characterization of the true system response in those areas.
Therefore, cells Ci;q associated with the largest values of Λ′′i;q
are good candidates for refinement.

C. Localization and extent of passivity violations

The above-described model-data error metric is not suffi-
cient for the determination of the optimal set of new points
to be added to the existing samples Qi at each iteration. In
fact, the model accuracy can only be assessed at the location
of the existing data points ϑq ∈ Qi, without any predictive
capability on the model quality in areas that are not yet
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adequately sampled. This is why we introduce in this paper a
new and completely independent passivity-based metric, which
is able to detect the regions where the model is physically
inconsistent. These regions are those characterized by local
passivity violations.

Assuming that the underlying structure is passive, and that
all raw data samples fulfill the passivity requirements, then
a model passivity violation at a given point ϑ̂p is a clear
indirect indication of model inaccuracy at ϑ̂p. Moreover, the
amount of such passivity violation can be effectively used as
a proxy to quantify the lack of model accuracy at ϑ̂p. The
key enabling factor that motivates using this metric is the
predictive capability of the Hamiltonian-based passivity check
(see Sec. II-B), which will detect the locations of passivity
violations in the parameter space irrespective of the set of
data samples used to construct the model, therefore providing
an additional independent criterion for placement of new data
samples.

Let us recall from Sec. II-B that a local passivity violation
at frequency ω and parameter ϑ̂p is revealed by the condition

σmax(H(jω, ϑ̂p)) > 1, (13)

where σmax denotes the maximum singular value of its matrix
argument. Such violation can be located at a frequency ω that
may be within the modeling bandwidth Ω or outside the mod-
eling bandwidth. It is well-known that out-of-band passivity
violations are almost inevitable in macromodels derived from
a frequency-domain fitting process. However, such violations
can be easily removed by appropriate passivity enforcement
schemes, usually applied in a postprocessing phase. Here, we
concentrate only on in-band violations, located at frequencies
where the model accuracy is important. We have verified that
position and extent of out-of-band violations are practically
unrelated to in-band model accuracy and are therefore useless
for driving an adaptive sampling process for in-band accuracy
improvement. Moreover, the model accuracy cannot be con-
trolled anyway outside the fitting band.

We characterize the (in-band) passivity of the parameterized
macromodel at the i-th iteration, instantiated at ϑ̂p, as

σ̄(ϑ̂p) = max
ω∈Ω

σmax(Hi(jω, ϑ̂p)). (14)

The SHH adaptive sampling scheme of Sec. II-B is here used
to determine the points ϑ̂p in the parameter space for which the
model has in-band local passivity violations, with σ̄(ϑ̂p) > 1.
This requires a small modification of the scheme as presented
in [26], with the SHH purely imaginary eigenvalue search here
restricted to ω ∈ Ω instead of ω ∈ [0,+∞). See also Fig. 2
for a graphical illustration.

As discussed in Sec. II-B, the SHH scheme returns a grid
of adaptively-determined samples ϑ̂p ∈ Ai where the SHH
eigenvalues are tested (see Fig. 1). This set of points is returned
as two disjoint subsets

Ai = Bi ∪Mi (15)

Fig. 3. Top plane: the points ϑ̂p ∈ Θ for which the model H(s, ϑ̂p) is not
passive are colored according to the value of ∆i(ϑ̂p) from 0 (red) to ∆i,max

(black). Bottom plane: subdivision of the parameter space Θ into cells Ci;q

and associated centers ϑq ∈ Qi at iteration i of the adaptive sampling loop.

where Bi and Mi include respectively all points ϑ̂p at which
the model is locally in-band passive and non-passive (green
and red dots in Fig. 1, respectively). Denoting with

∆i,max = max
ϑ̂p∈Ai

σ̄(ϑ̂p)− 1 (16)

the largest detected violation amount, we define the local in-
band passivity violation as{

∆i(ϑ̂p) = σ̄(ϑ̂p)− 1, ϑ̂p ∈Mi

∆i(ϑ̂p) = 0, ϑ̂p ∈ Pi
(17)

in case at least one passivity violation is detected, so that
∆i,max > 0. If the model is in-band passive, we have

∆i(ϑ̂p) = 0 ∀ϑ̂p ∈ Ai. (18)

The top plane in Fig. 3 provides a perspective view of the
grid points Mi, depicted with shades of color according to
the value of ∆i(ϑ̂p) from 0 (red) to ∆i,max (black). Points in
Bi are not drawn since not useful for our proposed passivity
metric, to be defined next.

The passivity-based grid points Mi and the data-based
cells Ci;q at current iteration are superimposed, as depicted in
Fig. 3. Each cell Ci;q is thus enriched by the information pro-
vided by the local model passivity violations that it includes, if
any. We define the proposed passivity metric for each cell Ci;q
as the worst-case passivity violation extent, computed among
all points ϑ̂p ∈Mi that belong also to Ci;q ,

Λ′′′i;q = max
ϑ̂p∈Ci;q∩Mi

∆i(ϑ̂p). (19)

D. Global Metric

The three presented criteria are finally combined into an
overall metric

Λi;q = w′Λ′i;q + w′′Λ′′i;q + w′′′Λ′′′i;q (20)

where the weights w′, w′′, w′′′ ≥ 0 can be used to tune the
overall algorithm by giving more importance to the individual
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(a) exploration (b) model error

(c) passivity (d) global

Fig. 4. The various panels depict the metrics used for cell ranking and
refinement at each adaptive sampling iteration: (a) exploration metric Λ′i;q
with range [0.0134, 0.0385]; (b) model-data error metric Λ′′i;q with range
[0.0159, 0.0355]; (c) passivity violation metric Λ′′′i;q with range [0, 0.07]; and
(d) global metric Λi;q . The four metrics are represented through independently
normalized and linearly interpolated color shades ranging from the smallest
(blue) to the largest (red) values. See text for additional details.

refinement criteria. This metric Λi;q is used to rank the cells
Ci;q , and only a fraction β of the cells with highest ranking
will be subjected to refinement for the next pass of the adaptive
sampling loop. Here we set β = 1/3, which we found as a
good compromise between number of required iterations and
computational cost at each iteration due to the evaluation of
new data points.

Figure 4 provides a snapshot of the parameter space tessel-
lation for one test case, where panels (a)-(c) report the three
independent metric components Λ′i;q , Λ′′i;q , Λ′′′i;q , respectively,
and panel (d) depicts the global metric Λi;q . The figure shows
that the three metrics provide independent ranking criteria,
so that different choices of weighting coefficients result in
significantly different cell rankings, hence different adaptive
sampling patterns. The particular weighting scheme w′ = 1,
w′′ = 1, w′′′ = 10 adopted in this example (and in all other
examples in this paper) emphasizes the passivity-based metric,
so that Λi;q is dominated by Λ′′′i;q in case passivity violations
are present. If violations are not detected, the other two metrics
become predominant.

E. Grid refinement

The adaptive sampling algorithm starts with an initial set
of q̄0 points: ρ2ρ−1 samples are placed at the corners of the
ρ-dimensional parameter space, while the remaining samples
are randomly scattered in the space. At each refinement pass,
the exact location of the new point inside each cell Ci;q is
here determined trying to maximize its distance both from the
cell center ϑq and from its closest neighbours Ni(ϑq). This
choice is similar to [20], where however the cell center ϑq
was not considered. We found this difference to be important,
since maximizing the distance only from neighboring points

will tend to place the new point close to the center ϑq of the
considered cell, where a simulation point is in fact already
present. Placing a new sample too close to an existing point
is not useful in providing significantly new information to the
already existing data set. We place the new point for each cell
Ci;q at the centroid of the largest triangle (simplex) obtained
by connecting ϑq to all cell vertices.

F. Stopping adaptive sampling iterations

The objective of presented algorithm is a uniformly accurate
and passive macromodel throughout the parameter space.
Therefore, we stop the adaptive sampling loop only when
the model-data error (4) is below a prescribed acceptance
threshold ε for all cells Ci;q . Additionally, and irrespective
of the model accuracy, we continue iterations until all local
in-band passivity violations are smaller than a prescribed
threshold as ∆i,max < εp, which we set for all examples to
εp = ε. This additional constraint ensures that there are no
points in the parameter space where the model is physically
inconsistent, at least by an amount that cannot be reliably
corrected in a postprocessing step.

The final model H(s,ϑ) after stopping iterations is thus
guaranteed to be uniformly accurate, but it is still not guaran-
teed to be uniformly passive. Some residual passivity viola-
tions may be present, either very small or out-band. Therefore,
we launch one final passivity enforcement loop, which aims
at removing all residual passivity violations while perturbing
the macromodel coefficients. To this end, we use without
modification the algorithm presented in [26].

A high level description of the proposed method is provided
in Algorithm 1.

G. Limitations of the method

The proposed method does not provide a favorable scaling
with the number of parameters, which at present can be only
up to ρ = 3. The main reason for this limitation is the
adopted passivity characterization algorithm, which is based
on a Cartesian adaptive sampling in a ρ-dimensional hyper-
cube, and which requires a full SHH eigensolution at each
computed parameter sample. The computing cost thus grows
exponentially with ρ. All other components of the algorithm
are less critical. For instance, high-dimensional Voronoi tes-
sellation algorithms with reduced computational requirements
are available [35]. Also the cost of model fitting through (3)
with embedded constraints (10) scales only quadratically with
the number of model coefficients rather than the dimension ρ
of the embedding space. If scalability to a higher dimension is
required, a new approach for passivity characterization would
be required.

V. EXAMPLES

We present four numerical examples. The first two
(Sec. V-A and V-B) are academic benchmarks intended for
algorithm validation. The other two examples (an antenna in
Sec. V-C and microwave filter in V-D) provide instead real
application scenarios.



8

Algorithm 1 Algorithm for adaptive point selection
Require: Metric weights w′, w′′, w′′′

1: Set number q̄0 of initial parameter points
2: Select q̄0 random parameter points
3: Evaluate system responses at Q0 = {ϑ1, ...,ϑq̄0}
4: Build model H0(s,ϑ) as in (2), see Sec. II-A
5: Initialize refinement index i = 1
6: repeat
7: Build Voronoi cells Ci;q , q = 1, . . . , q̄i−1

8: for each cell Ci;q do
9: Evaluate exploration metric Λ′i,q as in (11)

10: Evaluate model error metric Λ′′i,q as in (12)
11: Evaluate passivity metric Λ′′′i,q as in (19)
12: Evaluate global metric Λi,q as in (20)
13: end for
14: Select β q̄i−1 cells with highest Λi,q
15: Add new points Pi in the selected cells
16: Evaluate system responses at Pi
17: Build model Hi(s,ϑ) on Qi = Qi−1 ∪ Pi
18: Evaluate worst-case model error Ei = maxq∈Qi

E(ϑq)
19: Check passivity (Sec. II-B) and find ∆i,max in (16)
20: i← i+ 1
21: until Ei < ε and ∆i,max < εp
22: if model is not passive then
23: Enforce model passivity, see Sec. II-D
24: end if
25: return Passive model Ĥ(s,ϑ)

A. A transmission-line network

We start by illustrating the behavior of proposed scheme
using a transmission-line network. This example was initially
used in [26] to illustrate the performance of the SHH passivity
characterization and enforcement scheme, which is an impor-
tant part of the adaptive sampling algorithm. The structure is
composed of four cascaded segments of a lossy transmission
line, with three internal loaded stubs. The choice of the free
parameters is here different from [26]. We parameterize the
internal line lengths, here denoted as L ∈ [9, 10] mm, and the
load terminating the central stub by means of its reflection
coefficient Γ ∈ [0.5, 0.9]. The remaining line lengths are
set to a fixed value of 7 mm, the stubs to 1 mm, while the
reflection coefficients of the non-parameterized loads are set
to 0.5. We seek for a macromodel reproducing frequency and
parameter dependence of the scattering responses at the two
terminal ports, from DC up to 20 GHz. The raw data (k̄ = 500
frequency samples for each parameter configuration) are ob-
tained through an in-house Matlab script embedding both a
quasi-static 2D field solver to determine the transmission-
line parameters, and the frequency-domain solution of the
distributed network.

The adaptive sampling loop is initialized with q̄0 = 14
points. After 5 iterations and a total of q̄5 = 56 available
data points the algorithm stops, since model accuracy E(ϑ)
is uniformly below the prescribed threshold, here set to
ε = 10−3. This final model has n̄ = 26 poles, with a pa-
rameterization based on Chebychev polynomial bases of order
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Fig. 5. TL-network example. The Voronoi tessellation of the parameter space
at various adaptive sampling iterations is depicted, with the corresponding
data points ϑq (yellow circles). Each cell is colored according to the model-
data error log10(E(ϑq)) at the corresponding data point, confirming that the
addition of new points at each new iteration lowers the error until all cells
are characterized by a local error below the target threshold ε = 10−3.
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Fig. 6. TL network example. Evolution of points ϑ̂p ∈ Mi used to define
the passivity-based metric. Dots are colored from red to black according
to the passivity violation extent ∆i(ϑ̂p) ∈ [0,∆max], where ∆max =
maxi ∆i,max = 0.15 is the worst-case passivity violation extent among all
iterations (this normalization makes all panels comparable due to the common
color scale).
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Fig. 7. TL network example. The plot reports ten frequency responses of
the passive parameterized macromodel, evaluated over a linear sweep of both
parameters L and Γ, i.e., along a diagonal of the rectangular parameter space.
The model responses are compared to a set of validation responses evaluated
for the true structure (not used for model identification).

Fig. 8. Passivity characterization on final TL-network model before (left) and
after (right) passivity enforcement. Empty green and filled red dots represent
parameter configurations for which the model is passive or non-passive, re-
spectively, within the ranges ϑ1 = L ∈ [0.9, 1] cm and ϑ2 = Γ ∈ [0.5, 0.9].

3 and 2, respectively, for the numerator and the denominator
of (2). The evolution of the Voronoi cell distribution and the
corresponding data points through iterations is depicted in
Fig. 5, where the cells are colored using a color scale that is
proportional to the error metric (4), so that visually the model
is acceptable when all cells are colored in dark blue. Figure 6
depicts the location of the points ϑ̂p ∈ Mi corresponding to
local (in-band) passivity violations at various iterations. The
four panels confirm that the extent of the passivity violation
is reduced through iterations, as the model becomes more and
more accurate.

After the last iteration, the model presents some residual
out-of-band passivity violations. Four iterations of the SHH
passivity enforcement scheme are necessary to remove all
passivity violations, obtaining a final uniformly passive model.
A comparison between the frequency responses of the final
passive model and the corresponding true responses generated
just for validation (and not used for model identification)
is reported in Fig. 7, confirming model accuracy. Figure 8
reports the location of the passivity violations in the parameter
space before the final passivity enforcement, confirming that
all violations are effectively removed.

A different parameterization is then considered for the same
example, this time involving three parameters: the length of
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Fig. 9. Comparison between model responses and validation data of the TL-
network for the 3D case. The three panels report eight frequency responses
of the final passive model by sweeping only one parameter while freezing
the other two (see legends). Top: ϑ1 ∈ [5, 7] mm, ϑ2 = 9 mm, ϑ3 = 0.3;
Middle: ϑ1 = 5 mm, ϑ2 ∈ [9, 10] mm, ϑ3 = 0.3; Bottom: ϑ1 = 5 mm,
ϑ2 = 9mm, ϑ3 ∈ [0.3, 0.9].

the central stub ϑ1 ∈ [5, 7] mm, the internal line lengths ϑ2 ∈
[9, 10] mm, and the reflection coefficient of the central load
ϑ3 ∈ [0.3, 0.9]. An accurate and passive model (28 poles
with Chebychev polynomial orders 2, 3, 2 for both numerator
and denominator) is obtained after 5 iterations, for a total of
q̄5 = 56 data points. The responses of the final model are
reported in Fig. 9, whereas Fig. 10 confirms that the final
model is passive throughout the parameter space.
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Fig. 10. Passivity characterization of the TL network model with three
parameters, showing that no passivity violations are detected (see also Fig. 8).
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Fig. 11. PCB interconnect example. The plot reports ten frequency responses
of the passive parameterized macromodel, evaluated over a linear sweep of
both parameters along a diagonal of the rectangular parameter space. The
model responses are compared to a set of validation responses evaluated for
the true structure (not used for model identification).

B. A PCB interconnect with internal discontinuities

The second example we consider is a PCB interconnect
with internal discontinuities composed by various coupled
transmission line segments and lumped components, as de-
picted in Fig. 8 of [36]. With respect to [36], we modified the
original circuit by changing each resistive termination with an
electrical port with characteristic impedance R0 = 50 Ω. The
design parameters for this example are here defined to be the
trace spacing (θ1 ∈ [20, 40]µm) and the length of the coupled
lines sections (θ2 ∈ [2.4, 3.0]cm). We build a parameterized
model for the reflection coefficient S11 at the input port of
the interconnect from DC to 10 GHz. The raw frequency
responses used to construct the model are obtained by linking
the adaptive sampling loop to SPICE, which solves on-demand
the transmission-line network for the new points to be added at
each iteration. Each frequency sweep uses k̄ = 201 samples.

The proposed adaptive sampling loop is initialized also
in this case with q̄0 = 14 starting samples and stops after
4 iterations with q̄4 = 42 points, obtaining a model with
n̄ = 20 poles and Chebychev polynomial bases of order
¯̀
1 = ¯̀

2 = 2 for both numerator and denominator in (2).
Figure 11 compares the frequency responses of the final

Iteration 1 Iteration 1

1

2

Iteration 2 Iteration 2

1

2

Iteration 3 Iteration 3

1

2

Fig. 12. PCB interconnect model. Left panels depict the parameter space
subdivision into cells Ci;q at iterations i = 1, 2, 3, together with the
corresponding centers ϑq . The shades of color depict the global metric Λi;q

used for cell ranking and new sample selection (largest values are colored
with red shades, smaller values with blue shades). Right panels show where
the new samples are added for the next iteration (red dots).

passive macromodel obtained as a result of proposed adaptive
sampling loop to the true responses of the structure. As for
the TL network example, the validation responses of Fig. 11
are computed ad hoc just for validation and do not belong to
the automatically-determined set of responses used for model
identification. The plot confirms the uniform good accuracy of
the model throughout the sweep, demonstrating the excellent
interpolation/approximation capability of the proposed model-
ing framework.

Figure 12 provides some insight on the adaptive sampling
process. The left panels show through an interpolated color
shade the values of the global metric used to rank the cells and
flag those that need refinement. Red (blue) shades correspond
to the largest (smallest) values of the metric. The right panels
show where new points are added at each iteration (red dots).
We see that, as iterations progress, the global metric values
become smaller and more uniform. This is expected, since
when the overall set of grid points is adequate for model
generation, the criteria for mesh refinement are supposed to
be not compelling as in the first iterations, where refinement
is needed.
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C. H-shaped antenna

The third example we consider is a microwave H-antenna
presented and described in full detail in [20]. The frequency
band of interest varies between fmin = 4.5 GHz and fmax
= 5.5 GHz. Both the length L of the antenna and width
W of the aperture are parameterized, respectively, within the
ranges L ∈ [6, 7.1] mm and W ∈ [1.01, 1.1] mm. The
proposed adaptive sampling scheme has been linked with the
EM simulator ADS-Momentum, which is used to extract the
frequency response (a total of k̄ = 100 frequency samples for
each parameter configuration) of the antenna at the feeding
port.

The adaptive algorithm for the selection of new simulation
points performs 5 iterations before reaching an overall model
accuracy of 10−3. The result of each iteration of the algorithm
is reported in Fig. 13, where the Voronoi tessellation of
the design space is depicted, together with a color metric
indicating the error, in logarithmic scale, of the intermediate
macromodels built with the current set of points. The four
panels of Fig. 13 show that the model accuracy over the
parameter space increases progressively after each iteration,
until a final model with n̄ = 12 poles and polynomial orders
3 and 1 for numerator and denominator of (2), respectively, is
obtained.

It is worth noticing that the same example required 225
simulation points over the parameter space using the algorithm
of [20], whereas proposed scheme terminates with only q̄5 =
56 points. Figure 14 compares the model responses to a set
of validation data samples computed by sweeping 10 points
along the diagonal of the parameter space (these points not
used for model construction). As for the other examples, no
visual difference can be noted between parameterized model
responses and validation data.

We now provide some details on runtime (measured using a
Core-i7-based laptop running at 2.8 GHz with 16 GB RAM).
For this test case the field simulation of a single parameter
configuration requires about 148 s for a frequency sweep over
the band of interest. At the end of the adaptive sampling loop,
the cumulative time required by the field solver amounts to
2.3 hours (excluding the validation data samples, which are not
used for model construction). The cumulative runtime required
by point selection, construction of intermediate macromodels
(five, one for each iteration), SHH passivity characterization,
construction and evaluation of the global metric, is about
216 s. Therefore, only 2.5% of the overall runtime is spent
by the various components of proposed algorithm, while the
remaining 97.5% is due to the field solver. These results
confirm the suitability of a model-driven approach for model
construction, since the computational requirements of the
macromodeling part are negligible.

D. Coupled line bandpass filter

The last example is a coupled line microstrip bandpass
filter. Figure 15 shows a top view of the structure, which
consists of a PEC cover, an Alumina layer with 0.635 mm
thickness (εr = 9.9, tanδ = 0.0009) and a Gold layer
with 0.178 mm thickness. The frequency band of interest
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Fig. 13. As in Fig. 5, but for the H-antenna example. The color scale used for
each cell represents the corresponding local model-data error log10(E(ϑq)).
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Fig. 14. Comparison between passive model responses and validation data
of the H-antenna.
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Fig. 15. A top-view of the coupled line microstrip bandpass filter.
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Fig. 16. As in Fig. 5, but for the coupled line filter example. The color
scale used for each cell represents the corresponding local model-data error
log10(E(ϑq)).

ranges from fmin = 1 GHz to fmax = 7 GHz. The
parameters are the width W ∈ [0.635, 0.889] mm and the
spacing S ∈ [0.635, 0.889] mm, as reported in Figure 15. The
system responses are retrieved from the EM simulator ADS-
Momentum (k̄ = 300 frequency samples for each parameter
configuration). For this example 4 iterations of the algorithm
are necessary to obtain an overall accuracy below the threshold
of 10−3, for a total of 42 points in the parameter space. The
final model has n̄ = 20 poles and Chebychev polynomial bases
of order ¯̀

1 = ¯̀
2 = 5 for the numerator and ¯̀

1 = ¯̀
2 = 4

for the denominator. The Voronoi diagrams of the parameter
space for successive iterations of the algorithm are reported
in Figure 16, and they clearly show the gradual improvement
in model accuracy over successive iterations of the algorithm.
Finally, Fig. 17 compares ten model responses to ten validation
responses evaluated from the real structure over a linear sweep
across the diagonal of the parameter space (not used for model
identification). For what concerns the runtime, the algorithm
devoted to the adaptive selection of new points by means of
the three metrics and intermediate model identification (four,
one for each iteration) takes a cumulative time of 417 s. The
total runtime required by EM solver for simulation of the 42
fitting responses used for model construction amounts to 1.2
hours. This means that less than 9% of the total time required
for model construction in spent by the proposed algorithm,
while the rest is employed by the EM solver.
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Fig. 17. Model responses for coupled line filter example.

VI. CONCLUSIONS

This paper presented a novel adaptive sampling scheme for
the automated determination of a minimal set of data samples
to be used for the construction of a parameterized macromodel.
The proposed method belongs to the class of model-based
approaches, which drive the adaptive sampling process using
the information provided by intermediate surrogate models
constructed at each pass of the adaptive sampling loop. The
main novel contribution of this work is a passivity-based met-
ric, which identifies the regions of the parameter space where
the intermediate models are not passive hence not physically-
consistent. The extent of the local passivity violations is used
as a quantitative criterion to increase sampling density in their
neighborhood, thus helping the overall macromodeling scheme
in improving accuracy uniformly in the parameter space.

The proposed scheme provides good results for the cases
that were tested. It should be emphasized that this approach,
as all closed-form parameterization schemes available in the
literature, is appropriate only for a limited number of free
parameters, in this work up to ρ = 3. A higher dimension
in the parameter space will be difficult to handle in case all
parameters are uncorrelated and exhibit significant variations
to be captured by a proper model parameterization. Work is
under way to extend the maximum dimension of the parameter
space, and especially to investigate the limits within which the
present approach can be meaningfully applied.
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studi Roma Tre, Rome, Italy, in 2015 and the master
degree in Mechatronic Engineering at Politecnico
di Torino, Turin, Italy, in 2018. He is currently a
first-year Ph.D. student in Electrical, Electronics and
Communications Engineering within the Politecnico
di Torino. His current research is focused on data-
driven parameterized macromodeling and its appli-
cations to system level power integrity assessments
which include active devices.

He is co-recipient of the 2018 Best Paper Award of the IEEE INTERNA-
TIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY.

Marco De Stefano received the M.Sc. degree in
mechatronic engineering from Politecnico di Torino,
Turin, Italy, in 2018. He is currently pursuing his
Ph.D. in Electrical, Electronics and Communications
Engineering at the Politecnico di Torino. His current
research interests include model-order reduction,
with emphasis on parameterized macromodeling,
compressed macromodeling via data compression
techniques, topological modeling and fast simulation
methods for signal and power integrity. He is co-
recipient of the 2018 Best Paper Award of the IEEE

INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY.


