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A finite-time local observer in the original
coordinates for nonlinear control systems

Corrado Possieri, Simone Vidano and Carlo Novara

Abstract—In this note, by coupling sliding mode differentiators
with a tool capable of inverting in finite time the suspension of
the observability map, a local finite-time observer for nonlinear
control systems is proposed. Differently from other approaches,
this observer does not rely on a change of coordinates and
provides the state estimates in the original coordinates.

Index Terms—Nonlinear control systems, observers, sliding
mode, observability.

I. INTRODUCTION

In several practical applications, the state of a system has
to be determined from the available measurements, either to
design a controller or to simply obtain real-time information
about the state of a plant [1]. For linear systems, the problem
of designing observers can be addressed by using classical
techniques, such as Luenberger observers and the Kalman filter
[2]. On the other hand, when dealing with nonlinear plants,
the problem is significantly more challenging [3]. Several tools
have been proposed in the literature to design observers in the
nonlinear case such as linearization via output injection [4], the
extended Kalman filter (EKF) [5], Luenberger-like approaches
[6], high-gain observers [7], [8], and particle filters [9].

A classical method [3] to design state observers for non-
linear system consists in determining an injective change of
coordinates that recasts the nonlinear system in the so-called
canonical observability form, designing an observer for the
transformed system (e.g., by using high-gain observers [10],
sliding mode differentiators [11], or super twisting algorithms
[12]), and using an inverse of the change of coordinates to
estimate the state of the system in the original coordinates.

The main objective of this note consists in proposing a local
observer for nonlinear systems that converges in finite time
to the current state of the plant. Differently from the design
strategy reviewed above, such an observer does not require
the knowledge of an inverse of the change of coordinates that
recasts the system in canonical observability form.

The proposed observer has been designed coupling the
sliding mode exact differentiator given in [13] with a novel tool
that is able to dynamically invert, in finite-time, the suspension
of the observability map. In particular, the latter system has
been designed by using a tool similar to that given in [14],
[15], which is a modified version of the Newton algorithm.

It is worth noticing that several other works dealt with the
problem of inverting a diffeomorphism. For instance, in [16],
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[17], [18], high-gain approaches have been proposed to invert
the observability map of a nonlinear system through its Ja-
cobian matrix. The main difference between these approaches
and the one given in this note is that the latter allows us to
dynamically invert time-varying mappings in finite time.

Note that other methods have been proposed in the literature
to design observers for nonlinear systems in the original
coordinates [8], [19], [20]. Differently from [8], [20], the
observer proposed in this note converges in finite time and is
capable of estimating the state of nonlinear control systems,
whereas, differently from [19], we do not need any convexity
assumption to ensure local convergence of the given observer.

In order to show the effectiveness of the proposed observer,
its sensitivity to measurement noise is characterized and it is
shown that its accuracy is asymptotically the best possible
among the methods relying on the time derivatives of the
output to estimate the state of the system.

II. OBSERVABILITY FOR NONLINEAR CONTROL SYSTEMS

Let Z, R, Z>0 and R>0, R>0 denote the set of integer, real,
natural, nonnegative real, and positive real numbers, respec-
tively. The symbol 1(t) denotes the step function centered at
t = 0. Letting x ∈ Rn, ‖x‖j denotes the jth norm of x. The
symbol × denotes the Cartesian product.

Consider the nonlinear dynamical system

ẋ = f(x, u), y = h(x, u), (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ R is the input,
y(t) ∈ R is the output, f : Rn × R → Rn and h : Rn ×
R → R are functions of class Ck for some sufficiently large
k ∈ Z>0. Letting u : R>0 → R be a class Ck function for
some sufficiently large k ∈ Z>0, let φ(t, x0, u) be the solution
to system (1) from the initial state x0 ∈ Rn, which satisfies

φ(0, x0, u) = x0,
dφ(t, x0, u)

dt
= f(φ(t, x0, u), u(t)).

For simplicity, assume that the control input u(t) is such that
φ(t, x0, u) is well defined over R>0 for each x0 ∈ Rn. Thus,
let u(i,j)e

.
= [ u(i) · · · u(j) ]> for each i, j ∈ Z>0, j > i,

and define for all k ∈ Z>0

D0
fh(x, u(0,0)e )

.
= h(x, u0), (2a)

Dk+1
f h(x, u(0,k+1)

e )
.
=
∂Dk

fh(x, u
(0,k)
e )

∂x
f(x, u0)

+
∂Dk

fh(x, u
(0,k)
e )

∂u
(0,k)
e

u(1,k+1)
e . (2b)
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Thus, define the observability matrix of order κ ∈ Z>0,

Oκ−1(x, u(0,κ−1)e )
.
=


D0
fh(x, u

(0,0)
e )

...
Dκ−1
f h(x, u

(0,κ−1)
e )

 . (3)

Letting y(i)(t) = diy(t)
dti , u(i)(t) = diu(t)

dti , i ∈ Z>0, and
defining the vector y(0,κ−1)e

.
= [ y(0)(t) · · · y(κ−1)(t) ]>,

κ ∈ Z>0, κ > 1, one has that, for all t ∈ R>0,

y(0,κ−1)e (t) = Oκ−1(φ(t, x0, u), u(0,κ−1)e (t)),

i.e., Oκ−1 relates the current value of the solution of system (1)
and the derivatives of the input u(t) (up to order κ− 1) with
the current value of the time derivatives of the output y(t)
(up to order κ − 1), κ ∈ Z>0, κ > 1. Hence, let Uκe ⊂ Rn

denote the set of all the admissible u(0,κ−1)e (t) (i.e., the set
of all the admissible control inputs together with their time
derivatives up to order κ − 1) and consider the suspension
Φ : Rn × Uκe → Rκ × Uκe of the matrix Oκ−1 [21],

Φ(x, u(0,κ−1)e )
.
= (Oκ−1(x, u(0,κ−1)e ), u(0,κ−1)e ).

Such a map relates the current state of system (1) and the time
derivatives of its input with the time derivatives of the output
and of the input. Given X ⊂ Rn, let

Y .
=

⋃
(x,u0,κ−1

e )∈X×Uκe

Oκ−1(x, u(0,κ−1)e ) ⊂ Rκ.

System (1) is strongly κ-differentially observable in X ×Uκe ⊂
Rn × Rκ if the restriction of Φ(·, ·) to X × Uκe ,

ΦX ,Uκe : X × Uκe → Y × Uκe , (4)

ΦX ,Uκe (x, u
(0,κ−1)
e ) = Φ(x, u

(0,κ−1)
e ) for all (x, u

(0,κ−1)
e ) ∈

X × Uκe , is an injective immersion [21]. On the other
hand, system (1) is strongly observable if the suspension
Φ(·, ·), obtained from (Oκ−1(x, u

(0,κ−1)
e ), u

(0,κ−1)
e ) by taking

κ → +∞, is an injective immersion. Clearly, κ-differential
observability implies strong observability while the converse
need not hold [22]. In addition, differently from linear sys-
tems, nonlinear ones may have singular inputs that make
them unobservable (these inputs are ruled out here by the
subsequent assumption that the sets X and Une are such that
ΦX ,Une is a diffeomorphism). However, by [23], κ-differential
observability is a generic property for nonlinear systems in the
form (1), i.e., almost all the systems that can be written in the
form (1) are κ-differentially observable, for some κ ∈ Z>0,
although, generically, κ > n.

In order to design a finite-time observer for system (1), all
throughout this preliminary paper, we assume that system (1)
is n-differentially observable in X × Une ⊂ Rn × Rn and we
show that if the trajectories of system (1) are bounded, then it
is possible to design a local state observer that converges to the
state x(t) of system (1) in finite time. Toward this objective, in
the following section, we propose a technique to dynamically
invert, in finite time, a suspension.

III. FINITE-TIME DYNAMICAL INVERSE OF A SUSPENSION

In this section, by suitably adapting the technique given in
[24], a method to dynamically invert a suspension is proposed.

Consider the suspension L : A× V → B × V ,

L(x, v) = (`(x, v), v), (5)

with A and B beings suitable subsets of Rn, and assume that
(x, v) 7→ L(x, v) is a diffeormophism in A× V .

For any ε ∈ R>0, define the sets

Ωε
.
= {ξ ∈ Rn : ‖ξ‖2 < ε}, (6a)

Aε .
= {ξ ∈ A : ξ̂ := ξ − ξ̃ ∈ A, ∀ξ̃ ∈ Ωε}, (6b)

and assume that ε is sufficiently small so that Aε 6= ∅.
The main objective of this section is to find an algorithm

able to invert (x, u) 7→ L(x, u) in finite time, i.e., given ε ∈
R>0, x : R>0 → Aε and v : R>0 → V , letting

(z(t), v(t))
.
= L(x(t), v(t)), ∀t ∈ R>0,

the goal of this section is to construct a dynamical system that,
on the basis of measurements of z(t) and v(t) for t ∈ [0, T ?],
is able to reconstruct the value of x(t) for t = T ?. Such a
goal is pursued by using a state observer that implements a
modified version of the Newton algorithm. Toward this end,
note that x 7→ `(x, v) is a diffeormophism for each v ∈ V since
(x, v) 7→ L(x, v) is a diffeomorphism. Hence, the matrix

G(x, v)
.
=
∂`(x, v)

∂x

has full rank for all (x, v) ∈ A × V [25]. Thus, consider the
following nonlinear system

˙̂x = G−1(x̂, v)

(
µ ‖z̃‖α2 sign(z̃) + ż − ∂`(x̂, v)

∂v
v̇

)
, (7)

where µ ∈ R>0, α ∈ (0, 1), z̃ .
= z−`(x̂, v) = `(x, v)−`(x̂, v),

and sign(·) denotes the entry-wise sign(·) operator,

sign(x) =


−1, if x < 0,

[−1, 1], if x = 0,

1, if x > 0.

To begin with, consider the following lemma, whose proof
is wholly similar to [26, Lem. 3.2] and is therefore omitted.

Lemma 1. Let V be a compact set. If the map x 7→ `(x, v)
is a diffeomorphism on a compact set A for all v ∈ V , then
there exist constant M,N ∈ R>0 such that

‖x− x̂‖2 6M ‖`(x, v)− `(x̂, v)‖2,
‖`(x, v)− `(x̂, v)‖2 6 N ‖x− x̂‖2,

for all x, x̂ ∈ A and all v ∈ V .

The following theorem guarantees that, under some mild
assumptions about the sets A, V , and B, system (7) is able to
locally invert the suspension L(x, u).

Theorem 1. Let ε ∈ R>0, the suspension L : A×V → B×V ,
and (z(t), v(t)) = L(x(t), v(t)) ∈ B × V , with x(t) ∈ Aε
for all t ∈ R>0, be given. Assume that the sets A and V
are compact. Thus, if t 7→ x(t) is continuous, then there exist
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κ ∈ R>0 and T ? ∈ R>0 such that, letting x̂(t) be the solution
of system (7) from x̂(0), if ‖x(0)− x̂(0)‖2 < κ, then

x̂(t) = x(t), ∀t > T ?.

Proof. Let x̃ .
= x− x̂ and consider the function

V =
1

2
z̃>z̃ =

1

2
‖z̃‖22. (8)

Thus, let1

T
.
= inf{t ∈ R>0 : x̃(t) /∈ Ωε},

that is in R>0 since x̃(0) ∈ Ωε and by the continuity of t 7→
x(t) and t 7→ x̂(t). By computing the time derivatives of V
along the trajectories of system (7), one obtains that,

V̇ = z̃> ˙̃z = z̃>
(
ż −G(x̂, v) ˙̂x− ∂`(x̂, v)

∂v
v̇

)
= −µ‖z̃‖α2 ‖z̃‖1 6 −µ√n ‖z̃‖α+1

2 6 −µ√nV α+1
2 , (9)

for all t ∈ [0, T ). Furthermore, since L : A×V → B×V is a
diffeomorphism, there exists a smooth function `−1 : B×V →
A such that `−1(`(x, v), v) = x for all (x, v) ∈ A× V .

This implies that the map x 7→ `(x, v) is a diffeomorphism
on A for all v ∈ V , and hence, by Lemma 1, there exist
M,N ∈ R>0 such that ‖x − x̂‖2 6 M‖`(x, v) − `(x̂, v)‖2
and ‖`(x, v)− `(x̂, v)‖2 6 N‖x− x̂‖2 for all x, x̂ ∈ A. Let

δ
.
=

ε

2M
, κ .

= min

{
δ

N
,
ε

2

}
.

Since x(t) ∈ Aε and x̃(t) ∈ Ωε for all t ∈ [0, T ), one has
‖x̃(t)‖2 6M‖z̃(t)‖2 and ‖z̃(t)‖2 6 N‖x̃(t)‖2, ∀t ∈ [0, T ).

Assume now, by contradiction, that T < +∞, i.e., that
there exists T ∈ R>0 such that ‖x̃(T )‖2 = ε. This implies
that there exists T̃ ∈ R>0, T̃ < T , such that ‖z̃(T̃ )‖2 > ε

2M .
This is in contradiction with ‖x̃(0)‖2 < κ (which implies
‖z̃(0)‖2 6 N‖x̃(0)‖2 < δ) and with the monotonically
decreasing behavior of ‖z̃(t)‖2 induced by the condition given
in (9) for all t ∈ [0, T ). Therefore, we have that T = +∞.
Hence, by classical results about finite-time convergence [27],
the inequality given in (9) implies that

z̃(t) = 0, ∀t > 2
α+1
2 δ1−α

(1− α)µ
√
n

.
= T ?.

The proof is concluded by the fact that, since x 7→ `(x, v) is a
diffeormophism for each v ∈ V , one has that `(x, v) = `(x̂, v)
if and only if x = x̂, for each v ∈ V .

Note that the proof of Theorem 1 establishes also robustness
with respect to inflations and perturbations of the inversion
dynamics given in (7). In fact, by Lemma 1, we have that
‖z̃‖2 6 N‖x̃‖2, and hence, if x̃ ∈ Ωε, z ∈ B, and z − z̃ ∈ B,
the function V given in (8) satisfies

1

2M2
‖x̃‖22 6 V 6

N2

2
‖x̃‖22, (10)

i.e., V is a local Lyapunov function for the error dynamics. By
Chapter 7 of [28], the existence of such a function establishes
asymptotic stability of the error to the set {0} with respect to

1In the following, we use the convention inf ∅ = +∞.

(small) measurement errors and to perturbations of the vector
field governing the dynamics (7).
Remark 1. Note that the assumptions about the sets A, V ,
and B can be weakened by requiring that there exist λ, λ ∈
R>0 such that λI 6 G>(x, v)G(x, v) 6 λI for all (x, v) ∈
A × V (thus guaranteeing that both G(x̂, v) and G−1(x̂, v)
are bounded along the trajectories of system (7)) and that the
map (z, v) 7→ `−1(z, v) satisfies ‖`−1(z, v) − `−1(ẑ, v)‖2 6
M‖z − ẑ‖2 for all z, ẑ ∈ B and v ∈ V (thus guaranteeing
that ‖x̃(t)‖2 6 M‖z̃(t)‖2 for all t ∈ [0, T )). However, the
conditions given in the statement of Theorem 1 can be easily
verified in practice and hence have been preferred.

IV. FINITE-TIME OBSERVERS FOR NONLINEAR SYSTEMS

In this section, the methods detailed in the previous section
are coupled with the exact differentiator given in Section 6.7
of [13] in order to design a finite-time local observer for a
nonlinear control system. Toward this end, it is assumed that
the input and its time derivatives are measured for all times,
i.e., the vector u(0,n)e (t) is available for all times t ∈ R>0.
Such an assumption is removed in the subsequent Remark 5.

Given ε ∈ R>0 and letting Y ⊂ Rn, define the sets

Ωε
.
= {ϑ ∈ Rn : ‖ϑ‖2 < ε},

Yε .
= {ϑ ∈ Y : ϑ̂ := ϑ− ϑ̃ ∈ Y, ∀ϑ̃ ∈ Ωε},

and assume that ε is sufficiently small in order to guarantee
that Yε is nonempty. Thus, let

J(x, u(0,n−1)e )
.
=
∂On−1(x, u

(0,n−1)
e )

∂x
,

and consider the following system

η̇0 = ζ0, (11a)

ζ0
.
= η1 − λn L

1
n+1 |η0 − y|

n
n+1 sign(η0 − y), (11b)

η̇1 = ζ1, (11c)

ζ1
.
= η2 − λn−1 L

1
n |η1 − ζ0|

n−1
n sign(η1 − ζ0), (11d)

...
η̇n = ζn, (11e)
ζn

.
= −λ0 L sign(ηn − ζn−1), (11f)

˙̂x = J−1(x̂, u(0,n−1)e )

(
µ ‖η̃(0,n−1)e ‖α2 sign(η̃(0,n−1)e )

+ η(1,n)e − ∂On−1(x̂, u
(0,n−1)
e )

∂u
(0,n−1)
e

u(1,n)e

)
, (11g)

where η(1,n)e
.
= [ η1 · · · ηn ]>,

η̃(0,n−1)e
.
= [ η0 · · · ηn−1 ]>−On−1(x̂, u(0,n−1)e ), (11h)

λ0, λ1, . . . , λn ∈ R>0 are properly chosen constants (see [13,
Rem. 6.1] and [29, Prop. 1]), α ∈ (0, 1), L ∈ R>0 and µ are
sufficiently large parameters.

The following theorem guarantees that system (11) is a local
observer for system (1).

Theorem 2. Let X , Une and Y be suitable subsets of Rn such
that the suspension ΦX ,Une given in (4) is a diffeomorphism.
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Assume that the sets X and Une are compact and that the nth
time derivative of the output

y(n)(t) = Dn
f h(φ(t, x0, u), u(0,n)e (t)),

is L-Lipschitz as a function of t ∈ R>0. Thus, there are
γ, µ?, ν, % ∈ R>0 such that if On−1(φ(t, x0, u), u

(0,n−1)
e ) ∈

Yγ , µ > µ?, ‖η̃(0,n−1)e (0)‖2 6 ν, and |y(i)e (0) − ηi(0)| 6 %,
i = 0, . . . , n, then there exists a finite T ? ∈ R>0 such that

x̂(t) = x(t), ∀t > T ?.

Proof. By Section 6.7 of [13], there exists T ?1 ∈ R>0 such
that ỹ(0,n)e (t)

.
= y

(0,n)
e (t) − [ η0(t) · · · ηn(t) ]> vanishes

identically for all times t > T ?1 . Therefore, letting x̃ .
= x− x̂

and η(0,n−1)e
.
= [ η0 · · · ηn−1 ]>, if ‖x̃(T ?1 )‖2 6 ε and

‖`(x̂(T ?1 ), v(T ?1 ))− `(x(T ?1 ), v(T ?1 ))‖2
= ‖`(x̂(T ?1 ), v(T ?1 ))− y(0,n−1)e (T ?1 )‖2 6 δ,

for some sufficiently small δ ∈ R>0, then, by Theorem 1, there
exists T ?2 ∈ R>0 such that x̃(t) = 0 for all t > T ?2 . Therefore,
in order to establish the statement, it suffices to prove that the
latter two conditions hold.

By Theorem 6.4 of [13], the dynamics of the estimation
error ỹ

(0,n)
e are Lyapunov stable, i.e., for each γ ∈ R>0

there exists % ∈ R>0 such that if ‖ỹ(0,n)e (0)‖2 6 % then
‖ỹ(0,n)e (t)‖2 6 γ

2 for all t ∈ R>0. Therefore, since, by
assumption, y(0,n−1)e is in Yγ , if ‖ỹ(0,n)e (0)‖2 6 %, then
η
(0,n−1)
e (t) ∈ Y γ

2
for all t ∈ R>0. Due to the injectivity of

Φ : X × Une → Y × Une , for each (x, u
(0,n−1)
e ) ∈ X × Une ,

there exists O−1 : Y × Une → X such that

O−1(On−1(x, u(0,n−1)e ), u(0,n−1)e ) = x,

for all (x, u0,n−1e ) ∈ X × Une . Thus, let χ
.
=

O−1(η
(0,n−1)
e , u

(0,n−1)
e ), which is well defined for all t ∈ R>0

since η(0,n−1)e (t) ∈ Y γ
2

for all t ∈ R>0. Hence, let χ̃ .
= χ− x̂

and consider the function

V =
1

2
(η̃(0,n−1)e )>η̃(0,n−1)e . (12)

Letting
T3

.
= inf{t ∈ R>0 : ‖χ̃(t)‖2 > ε}

and by computing the time derivative of V along the trajecto-
ries of (11), one has

V̇ = (η̃(0,n−1)e )>
(
η̇(0,n−1)e − η(1,n)e

− µ ‖η̃(0,n−1)e ‖α2 sign(η̃(0,n−1)e )

)
,

for all t ∈ [0, T3). Hence, let σi = η̇i−ηi+1, i = 0, . . . , n−1,
so that η̇(0,n−1)e −η(1,n)e = [ σ0 · · · σn−1 ]>

.
= σ. By (11),

it can be easily derived that

σi = −λn−i L
1

n+1−i |ηi − ζi−1|
n−i
n+1−i sign(ηi − ζi−1), (13)

where ζ−1 = y, for i = 0, . . . , n − 1 and for all t ∈ R>0.
Therefore, there exists S ∈ R>0 such that ‖σ(t)‖ 6 S for all
t ∈ R>0. This implies that

V̇ 6 ‖η̃(0,n−1)e ‖2(S − µ√n ‖η̃(0,n−1)e ‖α2 ), (14)

for all t ∈ [0, T3). Thus, letting

µ?
.
=

2S√
nγ

,

if µ > µ?, then V̇ 6 0 for all η̃(0,n−1)e such that ‖η̃(0,n−1)e ‖2 >
γ
2 and for all t ∈ [0, T3). Therefore, if ‖η̃(0,n−1)e (0)‖2 6 γ

2 and
µ > µ?, we have that ‖η̃(0,n−1)e (t)‖2 6 γ

2 for all t ∈ [0, T3).
Furthermore, since η

(0,n−1)
e (t) ∈ Y γ

2
for all t ∈ R>0, if

‖η̃(0,n−1)e (0)‖2 6 γ
2 , then On−1(x̂(t), u0,n−1e (t)) ∈ Y for

all t ∈ [0, T3). Since the set Une is compact and the map
x 7→ On−1(x, u

(0,n−1)
e ) is a diffeomorphism on X for all

u
(0,n−1)
e ∈ Une , by Lemma 1, there exist M̃, Ñ ∈ R such that
‖χ−x̂‖2 6 M̃‖On−1(χ, u

(0,n−1)
e )−On−1(x̂, u

(0,n−1)
e )‖2, and

‖On−1(χ, u
(0,n−1)
e )−On−1(x̂, u

(0,n−1)
e )‖2 6 N‖χ− x̂‖2 for

all χ, x̂ ∈ X and all u(0,n−1)e ∈ Une . Thus, since χ(t), x̂(t) ∈
X for all t ∈ [0, T3), one has that ‖χ̃(t)‖2 6 M̃ ‖η̃(0,n−1)e (t)‖2
for all t ∈ [0, T3). Thus, the same reasoning used in the
proof of Theorem 1 can be used to prove that, if γ 6 ε

M̃
,

then T3 = +∞. Since χ(T ?1 ) = x(T ?1 ), this implies that if
‖η̃(0,n−1)e (0)‖2 6 min{γ2 , δ}

.
= ν and ‖ỹ(0,n)e (0)‖2 6 %, then

‖x̃(T ?1 )‖2 6 ε and ‖`(x̂(T ?1 ), v(T ?1 )) − y(0,n−1)e (T ?1 )‖2 6 δ,
thus concluding the proof by the reasoning given at the
beginning of the proof.

Theorem 2 guarantees that system (11) is a finite-time local
state observer for system (1), i.e., if the initial estimation
error is sufficiently small, then such an observer is able
to reconstruct the state of system (1) in finite time. The
following remark shows that, by allowing a time delay in the
dynamics (11), it is possible to relax the conditions about the
initial errors |y(i)e (0)− ηi(0)| 6 %, i = 0, . . . , n.

Remark 2. Let ỹ(0,n)e
.
= y

(0,n)
e − [ η0 · · · ηn ]>. By [30],

for each R ∈ R>0, if ‖ỹ(0,n)e (0)‖2 6 R and |y(n+1) − ζn| 6
R, then the time T ?1 ∈ R>0 such that ỹ(0,n)e (t) = 0 for all
t > T ?1 can be made arbitrarily small by suitably selecting
the parameters λ0, λ1, . . . , λn ∈ R>0 and L ∈ R>0. Hence,
consider the observer given in (11) with (11g) substituted by

˙̂x = 1(t−T ?1 )J−1(x̂, u(0,n−1)e )

(
−∂On−1(x̂, u

(0,n−1)
e )

∂u
(0,n−1)
e

u(1,n)e

+ η(1,n)e + µ ‖η̃(0,n−1)e ‖α2 sign(η̃(0,n−1)e )

)
. (15)

Note that, by the continuity of t 7→ φ(t, x0, u), if ‖x(0) −
x̂(0)‖2 < ε then ‖x(T1) − x̂(T1)‖2 = ‖x(T1) − x̂(0)‖2 6 ε,
provided that T ?1 is sufficiently small. Therefore, by the
assumption that the set X is compact, this implies that
‖`(x̂(T ?1 ), v(T ?1 )) − y

(0,n−1)
e (T ?1 )‖2 6 δ, provided that ε is

sufficiently small. Therefore, by using (15) rather than (11g)
to dynamically invert ΦX ,Une , in order to guarantee finite time
convergence of the proposed observer, it suffices to require
that ‖ỹ(0,n)e (0)‖2 6 R, |y(n+1) − ζn| 6 R, and that T ?1 is
sufficiently small instead of |y(i)e (0)−ηi(0)| 6 %, i = 0, . . . , n.

Although the tool given in Remark 2 relaxes the assump-
tions about ηi(0), the observer obtained by substituting (11g)
with (15) is still local due to the fact that we still have to
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guarantee that ‖x(0) − x̂(0)‖2 < ε so that ‖x̃(T ?1 )‖2 6 ε.
The following corollary extends the result given in Theorem 2
by providing some conditions that guarantee finite-time semi-
global convergence [21] of the observer (11).

Corollary 1. Assume that Φ : Rn × Une → Rn × Une is a
diffeomorphism, that Φ(Rn × u

(0,n)
e ) = Rn × u

(0,n)
e for all

u
(0,n)
e ∈ Une , that there exist λ, λ ∈ R>0 such that

λI 6 J>(x, u(0,n−1)e )J(x, u(0,n−1)e ) 6 λI (16)

for all (x, u
(0,n−1)
e ) ∈ Rn×Une , and that the nth time deriva-

tive of the output y(n)(t) = Dn
f h(Φ(t, x0, u), u

(0,n)
e (t)) is L-

Lipschitz as a function of t ∈ R>0. Thus, for any R ∈ R>0

such that ‖y(0,n)e (0) − [ η0(0) · · · ηn(0) ]>‖2 6 R and
‖x(0) − x̂(0)‖2 6 R, there exist µ? ∈ R>0 and T ? ∈ R>0

such that, if µ > µ?, then

x̂(t) = x(t), ∀t > T ?.

Proof. In this proof, we use the same notation used in
the proof of Theorem 2. Since the suspension Φ :
Rn × Une → Rn × Une is a diffeomorphism, we
have that the matrix J−1(x, u

(0,n−1)
e ) is well defined for

all (x, u
(0,n−1)
e ) ∈ Rn × Une [25]. Furthermore, since

λ I 6 J>(x, u
(0,n−1)
e )J(x, u

(0,n−1)
e ) 6 λ I for all

(x, u
(0,n−1)
e ) ∈ Rn×Une , we have that both J(x, u

(0,n−1)
e ) and

J−1(x, u
(0,n−1)
e ) are bounded for all (x, u

(0,n−1)
e ) ∈ Rn×Une .

Hence, if ‖x(0)− x̂(0)‖2 6 R, since Φ(Rn×Une ) = Rn×Une ,
by the same reasoning used in the proofs of Theorems 1
and 2, we have that there exists P ∈ R>0 such that
‖y(0,n−1)e (0)−On−1(x̂(t), u

(0,n−1)
e (0))‖2 6 P . This, together

with the fact that ‖ỹ(0,n)e (0)‖ 6 R, implies that there exists
W1 ∈ R>0 such that ‖η̃(0,n−1)e (0)‖2 6 W1. Thus, consider
the function V defined in (12), whose time derivative satisfies
(14) for all t ∈ R>0 by the same reasoning used in the proof of
Theorem 2. Hence, if µ > S√

nW1

.
= µ? then ‖η̃(0,n−1)e (t)‖2 6

W1 for all t ∈ R>0. Thus, since, by Theorem 6.1 of [13],
‖ỹ(0,n)e (0)‖ 6 R implies that there exists W2 such that
‖ỹ(0,n)e (t)‖ 6 W2, we have that there exists W .

= W1 + W2

such that ‖y(0,n−1)e (t) − On−1(x̂(t), u
(0,n−1)
e (t))‖2 6 W for

all t ∈ R>0, i.e., the output error is uniformly bounded.
By Section 6.7 of [13], there exists T ?1 ∈ R>0 such that

ỹ
(0,n−1)
e (t) = 0 and σ(t) = 0 for all t > T ?1 . Therefore, for

all t > T ?1 , it results that

V̇ 6 −µ√nV α+1
2 , (17)

thus implying that, for all t > T ?1 +
2
α+1
2 W 1−α

1

(1−α)µ
√
n

.
= T ?,

y(0,n−1)e (t) = η(0,n−1)(t) = On−1(x̂(t), u(0,n−1)e (t)).

The proof is concluded by the fact that On−1(x̂, u
(0,n−1)
e ) =

On−1(x, u
(0,n−1)
e ) if and only if x = x̂.

The following two remarks provide further insights on the
properties of the considered sliding mode observer.
Remark 3. By Corollary 6.1 of [13], since the function V given
in (12) satisfies (10) and (17), the stability of the observer (11)
is robust with respect to small perturbations. Nonetheless,

while the exact differentiator is independent of the vector field
f and of the function h, the inversion algorithm relies on the
knowledge of the map On−1, which, in turns, depends on f
and h. Thus, although the sliding mode differentiator (11a)–
(11f) is insensitive to model uncertainties, the fact that we
employ (11g) to reconstruct the state x of system (1) makes
the proposed observer sensitive to parameter uncertainties.
Remark 4. The assumptions of Corollary 1 are met by observ-
able linear systems, provided that the state is bounded and that
the control input has bounded time derivatives.

In the remainder of this section, we characterize the sen-
sitivity to additive noise of the proposed observer. Hence, let
d : R>0 → R be any Lebesgue-measurable function such that
|d(t)| 6 D for all t ∈ R>0 and let

ψ(t) = h(φ(t, x0, u), u(t)) + d(t), ∀t ∈ R>0.

The following proposition characterizes the sensitivity of the
proposed observer with respect to the noise d.

Theorem 3. Let the assumptions of Corollary 1 hold and
assume that, in (11a), y(t) is substituted by ψ(t) for all
t ∈ R>0 (i.e., assume that the measures of y are corrupted by
an additive Lebesgue-measurable disturbance with magnitude
not exceeding D ∈ R>0). Thus, the inequality

‖x̂−x‖2 6 C

√
(D2 − 1)D

2
n+1

D
2

n+1 − 1
+

S√
nµ

√
(D2 − 1)

D
2

n+1 − 1
(18)

is established in finite time for each µ ∈ R>0, where C and
S are positive constants independent of the disturbance.

Proof. In this proof, the same symbols used in the proofs of
Theorem 2 and Corollary 1 are used. By [30], [13] and [29],
there exist C1 ∈ R>0 and T ?1 ∈ R>0 such that |y(i)(t) −
ηi(t)| 6 C1D

n+1−i
n+1 for all times t > T ?1 , i = 0, . . . , n (see

also [31, Thm. 6]). Hence, we have

‖ỹ(0,n)e (t)‖2 6 C1

√
(D2−1)D

2
n+1

D
2

n+1−1
, ∀t > T ?1 .

Furthermore, in view of (13), we have that there exist
Q0, . . . , Qn−1 ∈ R>0 such that |σi(t)| 6 Qi |ηi(t) −
ζi−1(t)| n−i

n+1−i for all t ∈ R>0, i = 0, . . . , n− 1. Note that, by
the dynamics given in (11), one has that |ηi(t) − ζi−1(t)| 6
Qi|ηi−1(t)− ζi−2(t)|n−i+1

n+2−i for all t ∈ R>0, i = 0, . . . , n− 1.
By iterating this procedure, one obtains that there exists
S1 ∈ R>0 such that, for all t > T ?1 ,

|σi(t)| 6 S1 |ηi−j(t)− ζi−j−1(t)| n−i
n−i+j+1 ,

for i = 0, . . . , n− 1 and j = 0, . . . , i. Thus, letting j = i, we
have |σi(t)| 6 D

n−i
n+1 for all t > T ?1 , i = 0, . . . , n− 1. Hence,

‖σ(t)‖2 6 S1

√
(D2 − 1)

D
2

n+1 − 1
, ∀t > T ?1 .

Thus, by (14), there exists T ?2 > T ?1 such that, for all t > T ?2 ,

‖y(0,n−1)e (t)−On−1(x̂(t), u(0,n−1)e (t))‖2

6 C1

√
(D2 − 1)D

2
n+1

D
2

n+1 − 1
+

S1√
nµ

√
(D2 − 1)

D
2

n+1 − 1
.
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Therefore, since J−1(x, u
(0,n−1)
e ) is upper bounded for all

(x, u
(0,n−1)
e ) ∈ Rn × Une , by Lemma 1, there exist C ∈ R>0

and S ∈ R>0 such that (18) holds.

Note that, under the assumptions of Corollary 1, if, addition-
ally, the initial error |ζn(0)− y(n+1)(0)| is bounded, then the
transient time may be arbitrarily shortened by the same rea-
soning given in [30]. Furthermore, in view of Theorem 3 and
[13], letting µ → ∞, the accuracy of the proposed observer
is asymptotically the best possible among the methods using
the time derivatives of the output to estimate the state. Indeed,

by [13, Sec. 6.7, p. 220], the accuracy C̄

√
(D2−1)D

2
n+1

D
2

n+1−1
is

asymptotically the best possible when estimating the time
derivatives of a noisy signal; see [11, Prop. 2, Thm. 3]. Thus,
since O−1n−1(·, ·) is assumed to be Ck and hence absolutely
continuous, the sensitivity given in (18) is asymptotically the
best possible among the methods using y(0,n−1)e . Furthermore,
note that, differently form classical high-gain observers [32],
such a sensitivity is independent of the frequency of the
disturbance affecting the output.

In the following remark, we discuss the hypothesis about
measurability of the time derivatives of the input u(t).

Remark 5. If the time derivatives of the input u(t) cannot be
measured, a sliding mode observer wholly similar to (11a)–
(11f) can be used to estimate them. In fact, assuming that
u(n)(t) is Z-Lipschitz, consider the following system:

υ̇0 = $0, (19a)

$0
.
= υ1 − λn Z

1
n+1 |υ0 − y|

n
n+1 sign(υ0 − u), (19b)

...
υ̇n = $n, (19c)
$n

.
= −λ0 Z sign(υn −$n−1), (19d)

where λ0, . . . , λn ∈ R>0 are the same one as in (11).
Hence, letting ũ

(0,n)
e

.
= u

(0,n)
e (0) − [ υ0(0) · · · υn(0) ]>,

if there exists H ∈ R>0 such that ‖ũ(0,n)e (0)‖2 6 H and
|$n(0) − u(n+1)(0)| 6 H , then there exists T ?1 ∈ R>0 such
that ũ(0,n)e (t) = 0 for all t > T ?1 . Furthermore, the time T ?1 can
be made arbitrarily small by suitably selecting the parameters
of (19). Hence, by the same reasoning given in Remark 2, if,
in the dynamics of the observer (11), (11g) is substituted by

˙̂x = 1(t−T ?1 )J−1(x̂, υ(0,n−1)e )

(
−∂On−1(x̂, υ

(0,n−1)
e )

∂u
(0,n−1)
e

υ(1,n)e

+ η(1,n)e + µ ‖η̃(0,n−1)e ‖α2 sign(η̃(0,n−1)e )

)
, (20)

where υ(i,j)e = [ υi · · · υj ]>, i, j ∈ Z>0, j > i, then x̂(t)
still converges in finite time to the state x(t) of system (1),
provided that the time T ?1 is made sufficiently small.

Remark 6. In the literature, several techniques have been
proposed to design observer in the original coordinates for
nonlinear systems; see, e.g., [33], [34]. For instance, by using

Lemma 1 and arguments wholly similar to the ones employed
in the proof of Theorem 2, it can be easily proved that, letting

F (y, y(0,n−1)e )

:=


y(1) − λ̃n−1L

1
n |y(0) − y|n−1

n sign(y0 − y)

y(2) − λ̃n−2L
2
n |y(0) − y|n−2

n sign(y0 − y)
...

y(n−1) − λ̃1L
n−1
n |y(0) − y| 1n sign(y0 − y)

λ̃0L sign(y0 − y)

 ,

where λ̃n−1 = λn−1, λ̃i = λiλ̃
i
i+1

i+1 , i = n − 2, . . . , 0, under
the assumptions of Theorem 2, the n-dimensional system

˙̂x = J−1(x̂, u(0,n−1)e )

(
F (y,O(x̂, u(0,n−1)e ))

− ∂On−1(x̂, u
(0,n−1)
e )

∂u
(0,n−1)
e

u(1,n)e

)
, (21)

is a local state observer for (1) that converges in finite time.
The key advantage of (11) over (21) is that the estimation of
the time derivatives of the output y, which is performed via the
sliding mode differentiator (11a)–(11f), is independent of the
inversion of the suspension Φ(x, u

(0,n−1)
e ), which is carried

out via the dynamical inversion algorithm (11g). Therefore, if
the output of system (1) is affected by measurement noise,
it is possible to mitigate its effects on the estimate x̂ of
the state x by substituting in (11g) and (11h) the estimates
η
(0,n−1)
e and η

(1,n)
e with the vectors η̌

(0,n−1)
e and η̌

(1,n)
e ,

obtained by suitably filtering η(0,n−1)e and η(1,n)e . In particular,
if the output signal y(t) is affected by an additive disturbance
of the form d(t) = R sin(ωt + ϕ), then this approach is
generically more effective than filtering directly the estimate
x̂. In fact, if R and ω are such that y(n)(t) + dnd(t)

dtn is an
L-Lipschitz function of t, then there exists a finite time T
such that ηi(t) = yi(t) + Rωi sin((−1)i+1(iπ2 − ωt − ϕ)),
i = 0, . . . , n, for all t > T . Thus, in such a case, the effects
of the disturbance can be easily mitigated via linear filters,
provided that the bandwidth of the signal d(t) is known; see
the example reported in the subsequent Section V and the
numerical examples given in [30]. On the other hand, filtering
directly x̂ = O−1n−1(η

(0,n−1)
e , u

(0,n−1)
e ) may lead to large

errors due to the fact that the map O−1n−1(·, ·) is generically
nonlinear. Furthermore, by using the numerical trick given in
Remark 2, it is possible to avoid inverting the observability
map On−1 during the transient behavior of the exact sliding
mode differentiator, thus possibly allowing for larger initial
errors in the estimate x̂(0) of x(0).

V. NUMERICAL EXAMPLES

Let n = 3 and consider the following nonlinear system:

ẋ1 = u−5
x2
2+1

+ ux1 + u

+ x1 + x2 + 6−10x1x2

(x2
2+1)2

− 10x2

(x2
2+1)3

, (22a)

ẋ2 = −5x1 − 3x2 −
5

x22 + 1
, (22b)

y = x1 +
1

x22 + 1
. (22c)
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By computing the observability map of system (22) as in (3),

O2(x, u(0,1)e ) =

[
x1 + 1

x2
2+1

u(0)x1 + u(0)+1
x2
2+1

+ u(0) + x1 + x2

]
.

By letting J(x) :=
∂O2(x,u

(0,1)
e )

∂x , U2
e = {u(0,1)e : |u(0)e | 6 10},

and using the tools given in [35], one obtains that (16)
holds with λ = 0.00529 and λ = 188.753. Additionally, by
using the algebraic geometry tools given in [36], it can be
derived that O2 : R2 × U2

e → R2 is a diffeomorphism. Thus,
the hypotheses of Theorem 2 are met, provided that y(2)(t)
is an L-Lipschitz function of time and x̂(0) is sufficiently
close to x(0). Nonetheless, is rather difficult determine an
expression in closed-form for an inverse O−12 (x, u

(0,1)
e ) of

the observability map O2(x, u
(0,1)
e ) since computing such

an inverse requires to find the solution to a set of rational
equations in the unknowns x1, x2.

Numerical simulations have been carried out to test the
observer (11), (19). In all the simulations reported hereafter,
the parameters of the observer (11), (19) have been chosen
as λ = [ 1.1 1.5 3 ], L = 102, Z = 103, α = 0.1,
µ = 10, the input has been chosen as u(t) = 0.4 sin(3t) +
0.5 sin(2t) + 0.2 sin(5t), the initial condition of system (22)
has been assumed to be x0 = [ 1 2 ]T , and the observer has
been initialized at x̂0 = 0, η(0,n)e (0) = 0, and υ(0,n)e (0) = 0.

In the first simulation, whose results are depicted in Fig-
ure 1(b), it has been assumed that the output of system (22) is
noiseless, whereas, in the second simulation, whose results
are depicted in Figure 1(c), it has been assumed that the
output is affected by band-limited white noise with power
10−4 and sampling time 10−3. As shown by Figure 1, the
observer (11) is capable of reconstructing the state of sys-
tem (22) also if the output is affected by noise. Moreover, in
the noiseless setting, it converges in finite time to the state
of system (22). Finally, another simulation has been carried
out assuming that the output is affected by the sinusoidal
disturbance d(t) = 0.01 sin(48t). Following the construction
proposed in Remark 6, we substituted, in (11g) and (11h), the
estimates η(0,n−1)e and η

(1,n)
e with the vectors η̌(0,n−1)e and

η̌
(1,n)
e , which have been obtained by filtering each entry of
η
(0,n)
e with a filter having transfer function Q(s) = s2+502

s2+5s+502 .
The results of this simulation are depicted in Figure 1(d).
In order to corroborate the effectiveness of this approach,
Figure 2 depicts the estimation error obtained by using the
n-dimensional observer (21), with the same parameters.

As shown by such figures, despite the proposed observer
is more complex than (21) due to the fact that it has 2n
rather than n states, it allows one to reduce the effects of
sinusoidal measurement noise on the estimated state x̂ by
suitably filtering the estimates η(0), . . . η(n).

VI. CONCLUSIONS

In this note, a local finite time observer for nonlinear
control systems has been proposed. In particular, it has been
shown that it is possible to design a state observer that, in
the absence of measurement noise, reconstruct the state of a
controlled nonlinear system in finite time. The observer has
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(b) Output and estimation error in the noiseless case.
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(c) Output and estimation error with white noise.
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(d) Output and estimation error with sinusoidal noise.

Fig. 1. Results of the numerical simulations.
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Fig. 2. Estimation error obtained using system (21).

been designed by coupling exact differentiators with a tool
able to invert, in finite-time, a suspension.

The dimension of the proposed observer is two times the di-
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mension of the system (while other observation schemes, such
as the one given in [20], have dimension equal to the one of the
system). Nonetheless, as shown in Remark 6 and in Section V,
by suitably filtering the additional states η(0), . . . η(n) that are
estimated through the considered observer, it is possible reduce
the effects of sinusoidal measurement noise.

The main differences between the state observer given here
and the ones given in [15] and [8] are that it is capable
of estimating in finite time both the time derivatives of the
output and the state of the system and that it can be used also
for nonlinear control systems. However, while the observers
given in [15] and [8] allow one to estimate the state of the
system if it is κ-differentially observable for some κ > n,
the observer given in this note is guaranteed to converge only
in the n-differentially observable case. The extension to the
κ-differentially observable case, with κ > n, (which may
be possibly dealt with by using a coordinate augmentation
approach similar [20]) will be the objective of our future work.

Furthermore, note that the proposed observer requires the
knowledge of the input u and of its time derivatives. Another
objective of our future research is to extend the results given
in this note to the case of unmeasurable input.
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