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Summary

The analysis and monitoring of network traffic are of fundamental importance for
numerous activities related to its management. These activities are involved in quality
control of the service, support the planning and updates of the network based on traffic
load, and contribute to the development of advanced security systems and the identi-
fication of malicious attacks. Therefore, approaches oriented to the processing of data
represented by traffic traces are appropriate to understand the conditions and behavior
of the network.

Particularly critical is the analysis of the Hypertext Transfer Protocol (HTTP) traffic.
The last years have seen the proliferation of applications and services that rely on HTTP.
The complexity of the Web is increased and, consequently, its analysis. What is more,
cyber-criminals in the years have deployed more sophisticated and stealthy ways to
generate and spread their malicious content through HTTP traffic. In this direction,
many researchers and companies are focusing on data analysis and machine learning
techniques. Many solutions have been developed, but often pinpointing just particular
problems.

The thesis, therefore, proposes to provide a generic methodology for monitoring
HTTP traffic; in particular, it aims to identify new services, anomalies, and suspicious
traffic, looking at URLs. The Uniform Resource Locator (URL) is a unique address for a
particular web resource, such as an image, a video or a HyperText Markup Language
(HTML) file and is characterized by two components: the hostname, or the name of the
server that owns the object and the object path or the name (and path) of the object.
We have seen that, in general, malicious URLs tend to have characteristics that make
them visually different from benign ones. For example, malicious organizations tend to
use artificially generated hostnames composed of random strings that do not contain
common or easily memorable names, as is the practice for legitimate time organizations,
to avoid detection by black-lists. In general, the URLs contain essential information
about the related services, creating in that way structures that are identifiable.

In detail, the work of this thesis develops the idea mentioned above, addressing the
following research questions. The first one is (i) how to automatically reduce the amount
of traffic, creating meaningful groups, (ii) how to let the grouping technique being adap-
tive for different kinds of data, i.e., URLs, without a constant need to manually tune the
parameters, (iii) how to scale up to a big data problem, (iv) how to check the occurrence
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of new traffic and how to build a history of the previous collected information.

This thesis presents a self-tuning clustering solution, as grouping technique, called
Iterative DBSCAN. It consists of iteratively run DBSCAN, a popular clustering algo-
rithm, each time using a different value of the input parameters, in order to extract
clusters that, after an evaluation, result to be well-shaped, according to quality metrics.
To group URLSs, I considered them as strings, sequences of characters using metrics that
allow measuring the difference between two sequences.

Clustering execution is, however, a computationally demanding task, especially with
complex distance functions. This thesis aims at untieing the distance computation, from
the algorithm execution, to overcome this performance bottleneck. This approach, to-
gether with the gains of distributed platforms like Apache Spark or MapReduce, guar-
antees a faster execution of the algorithms, together with more flexibility in the choice
of the clustering method.

In order to analyze the evolution of the traffic over time, this thesis presents the im-
plementation of a self-learning methodology, where the system grows its knowledge,
which is used in turn to automatically associate traffic to previously observed services,
and identify new traffic generated by possibly suspicious applications. The whole sys-
tem takes the name of LENTA - Longitudinal Exploration for Network Traffic Analysis.

The developed methodologies are essential tools for the network administrator, be it
a corporate network or a provider. The operator will be able to generate clusters starting
from the URLs contacted by the employees of the company (or ISP customers) and,
starting from this aggregate view, identify the activities related to malicious behavior.
Following this analysis, the administrator can apply filters on these unwanted contents
within the network. These approaches ensure greater security against malicious attacks,
for the network itself and for the hosts that make it up, without affecting the quality of
the user’s navigation. Furthermore, the proposed methodologies let the analysts easily
observe changes over time in network traffic, identify new services, and unexpected
activities. The work is applied over HTTP and HTTPS data. The former case makes use
of passive traces, while the latter is the outcome of data collected using a proxy installed
on users’ devices. In particular, this second scenario requires specific care concerning
privacy and shows the potential of the proposed techniques in an enterprise context.
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Chapter 1

Introduction

The current decade has seen the growth of the Internet at an astonishing speed.
The web has especially changed a lot in the last years. New services have risen, start-
ing from social media to diverse streaming platforms. Contemporaneously, the number,
habits, needs, and behavior of active users wholly changed. According to the last statis-
tical analysis of We Are Social' and Hootsuite?, published in October, 23", 2019 [19],
the number of users grew by more than 400 million, a 10 percent increase over the last
year in total. Also according to We Are Social and Hootsuite [18], the average world-
wide time spent on the Internet by users is almost 7 hours per day. Games, for example,
are reportedly a considerable part of the Internet traffic, and they will likely increase
their significance in the future, giving the new potential given by cloud platforms. In
this context, the last in order of time the interesting scenario of game streaming pro-
vided by Google Stadia.® At the same time, the Internet is still not safe from malware
and attackers. The new threats are becoming more targeted, and are challenging dif-
ferent fields, for example attempting on businesses and interfering with elections [1].
Furthermore, nowadays, Web traffic traces are studded with a substantial quantity of
third-party services. They are often online tracking services or trackers [51]. They follow
users’ activities to create profiles, that they usually, but not only, sell to online adver-
tisers. This practice is by now everyday nature for most of the users, and while it can
be favorable, it also presents privacy and ethical concerns [70].

In this context, Hypertext Transfer Protocol (HTTP) is the de-facto standard
application-layer protocol [63]. HTTP allows the browser to retrieve the hundreds of
objects composing a page with a simple request-response mechanism. While the mas-
sive adoption of HTTP has simplified the structure of the protocol stack, the complexity

'https://wearesocial.com/
“https://hootsuite.com/
3https://Stadia.google.com
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of current developments raveled the analysis of web traffic, so that it is tough to under-
stand which services are running on the network and what information they are car-
rying. Billions of objects are available on the web, each of them identified by a Uniform
Resource Locator (URL). Static URLs directly point to an object, e.g., portions of a text
or an image file like http://acme.com/index.html, but more and more frequently
URLs encode queries that servers process to return a dynamic result. For instance, a
Google search, a click on “like” buttons, or the images served by an advertisement plat-
form are typical examples of dynamic URLs, e.g., http://acme.com/s?key=1ike.

Given the number of URLs that are retrieved to fulfill ordinary browsing activities,
monitoring, and understanding the dynamics of the network is not an easy task. In
a corporate scenario, the network analyst is interested in periodically processing the
traffic to observe which services are accessed by terminals, to take informed actions
then. This task requires to process a consistent amount of traffic so to guarantee the
correlation and comparison between events that a too coarse analysis would miss. This
scenario calls for the support of automatic tools to process, analyze, and extract useful
information from the raw data, i.e., a big data solution.

Network Traffic Monitoring and Analysis (NTMA) Understanding how Inter-
net services are operating and how users access them is critical to many applications.
Network Traffic Monitoring and Analysis (NTMA) is central to that task. Applications
range from providing a view on network traffic to the detection of anomalies and un-
known attacks while feeding systems responsible for usage monitoring and accounting.
They collect the historical data needed to support traffic engineering and troubleshoot-
ing, helping to plan the network evolution and identify the root cause of problems. It is
correct to say that NTMA applications are a cornerstone to guarantee that the services
supporting our daily lives are always available and operating as expected.

Traffic monitoring and analysis is a complicated task. The massive traffic volumes,
the speed of transmission systems, the natural evolution of services and attacks, and
the variety of data sources and methods to acquire measurements are just some of the
challenges faced by NTMA applications. As the complexity of the network continues to
increase, more observation points become available to researchers, potentially allowing
heterogeneous data to be collected and evaluated. This trend makes it hard to design
scalable and distributed applications and calls for efficient mechanisms for online anal-
ysis of large streams of measurements. More than that, as storage prices decrease, it
becomes possible to create massive historical datasets for a more accurate retrospective
analysis.

These challenges are precisely the characteristics associated with what, more re-
cently, has become known as big data, i.e., situations in which the data volume, velocity,
veracity and variety are the key challenges to allow the extraction of value from the
data. Indeed, network traffic monitoring and analysis were one of the first examples of
big data sources to emerge [49], and it poses big data challenges more than ever.

It is thus not a surprise that researchers are resorting to big data technologies
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to support NTMA applications (e.g., [40, 47, 60, 77]). Distributed file systems - e.g.,
the Hadoop* Distributed File System (HDFS), big data platforms - e.g., Hadoop and
Spark, and distributed machine learning and graph processing engines — e.g., MLIib
and Apache Giraph, are some examples of technologies that are assisting applications
to handle datasets that otherwise would be intractable. This scenario, certainly promis-
ing from a technological point of view, opens up new challenges. Undoubtedly, one
of the most interesting is to combine in the field of NTMA big data approaches with
advanced analysis mechanisms, including Machine Learning and Artificial Intelligence
methodologies.

Machine Learning and Artificial Intelligence The availability of massive amounts
of data and the necessity of fast reactions to events, together with the undeniable rise
in popularity of Artificial Intelligence (AI), and in particular Machine Learning (ML)
techniques, have concerned the network community in the last decade [59, 12]. The
capability of addressing big data problems and automating processing measurements is
appealing for multiple problems, from network security to Quality of Experience (QoE)
monitoring and analysis [12].

When it comes to ML techniques and methodologies, the reference is often and
more extensively pointed to supervised approaches. Supervised learning builds a model
starting from the data, requiring these to be a priori categorized, i.e., labeled according
to the ground truth. Ground truth is generally missing due to the structural complexity
of the data, limits of human knowledge, and significant volumes that complicate the
categorization process. This scenario is especially critical when it comes to network
traffic, where researchers and practitioners have indeed to deal with small and outdated
datasets [3].

Unsupervised techniques offer a solution to this lack of ground-truth since their
goal is to analyze the structural properties of the data, based on some form of similarity
among data instances. Different approaches are possible, depending on the overall goal
(e.g., outlier detection, categorization, and others), and the different levels of complexity
of the analysis. In any case, there is less need for ground truth.

Network Security and Network Characterization Many NTMA applications have
been proposed for assisting cyber-security [42]. The most common objective is to detect
security flaws, viruses, and malware to isolate infected machines and take countermea-
sures to minimize damages. Roughly speaking, there are two main approaches when
searching for malicious network activity: (i) based on attack signatures; (ii) based on
anomaly detection.

Signature-based methods build upon the idea that it is possible to define fingerprints
for attacks. A monitoring solution inspects the source traffic/logs/events searching for

*http://hadoop.apache.org/
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(i) known messages exchanged by viruses, malware, or other threats; or (ii) the typical
communication patterns of the attacks — i.e., similar to behavioral traffic classification
methods. Signature-based methods are efficient in blocking well-known attacks that
are immutable or that mutate slowly. These methods, however, require attacks to be
well-documented.

Methods based on anomaly detection [10, 26] build upon the assumption that attacks
will change the behavior of the network. They build models to summarize the normal
network behavior from measurements. They monitor live traffic, and they trigger alerts
when the behavior of the network differs from the baseline. Anomaly detection methods
are attractive since they allow the early detection of unknown threats (e.g., zero-day
exploits). These methods, however, may not detect stealth attacks (i.e., false negatives),
which are not sufficiently large to disturb the network. They sometimes suffer from
large numbers of false positives too [3].

Thesis proposal My work proposes the use of unsupervised machine learning, i.e.,
clustering, to explore the network traffic and users’ data, in particular, URLs, in order to
extract patterns in an aggregated view and understand better what is happening in the
network. Clustering can help to reduce the size of the problem from a hundred thou-
sand single objects — the unique URLSs - to few hundreds of clusters containing “similar”
URLs. Notice that most URLs carried by a network do not derive from an intentional
user action (e.g., the click of a link on a page), but are instead due to applications fetch-
ing objects (e.g., elements in a web page, or system component for a web-app) [74].
These latter groups often have a regular syntax, which makes them strictly different,
but similar in the format. Designing a clustering solution for URLSs requires ingenuity,
given URLs are strings, for which the notion of similarity is not trivial to define.

The work described in this thesis aims at answering the following research question:
How to group and extract significant HITP/S traffic patterns looking at the URLs lexical
similarity with no other external information? This question is rich and includes many
research queries that I will address in Section 1.1. Several works tackled these topics
before, and they are reported in Section 1.2.

The proposed solution leverages a novel density-based clustering algorithm for
the grouping, using string-based distances. This algorithm enhances classic clustering
methodologies by simplifying the parameter choice, a frequently cumbersome process.
I call it Iterative DBSCAN, or IDBSCAN for short. When clustering URLs, it outperforms
other off-the-shelf clustering algorithms in grouping URLs with a similar structure. The
analyst can, at this point, examine URLs in each cluster to identify the service that gen-
erated them, i.e., giving them a possible label. Next, I design a self-learning approach
that lets the system build System knowledge. This approach works comparing newly
found clusters to those found in the past, so to automatically re-assign the same label
if already known. In this way, the analyst will have to inspect only previously unseen
clusters, while known traffic is automatically labeled. This process lets the analyst high-
light changes and the birth of previously unseen traffic, building a longitudinal view.
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The overall solution, IDBSCAN and the System Knowledge, takes the name of
LENTA. I test LENTA on three real use cases, explained in Chapter 5. The first two
consist of traffic collected through a passive probe that observes thousands of users in
an ISP network. The first one considers one day of traffic, with the combination of labels
for malware, the second one for three weeks. In the third case, the HTTPS gathering
occurs through the use of a Man In The Middle (MITM) proxy to collect and process all
traffic coming from single hosts. The first two cases consider all unique URLs generated
by hosts in the monitored network, mimicking the case of the network analyst that is
interested in observing what the network carries. Instead, traces collected by the proxy
are processed considering all URLs generated by every single device, mimicking the
case of the security analyst that has access to HTTPS traffic and is interested in each
single device tracing. The results show (i) the ability to aggregate hundreds of thou-
sands of URLs into few clusters, which are easy to investigate and associate to services
or malicious activities, and (ii) the capability of identifying new traffic generated by
previously unknown applications.

1.1 Research Questions

The main interrogation guiding this thesis, and reported in the introductory section,
is the result of different and evolving questions that have arisen during the three years
of Ph.D. I list, in the following, the questions that drew, step by step, a path in these
years, and that I addressed throughout this thesis.

(i) How to group similar malicious traffic? This question starts together with the study
of a particular class of malware that uses the so-called DGA (Domain Generation
Algorithm) technique to elude static controls based on blacklists. The DGA tech-
nique generates pseudo-random domains starting from shared seeds (e.g., current
date or Twitter trends). However, the URLs that result from this class of threats
are often similar, and it is visually clear to find a match between them.

Given this brief introduction, it is possible to discuss the two main concerns that
this question embeds. The first and foremost is how to express the similarity (or
the dissimilarity) between strings. It is necessary to find a formal value that can
express this notion. The second concern is about which technique to use. The ob-
jective is to group similar objects, i.e., URLs, of which we may have or not have
previous knowledge about the type.

(ii) What happens after grouping a collection of URLs and what the formed groups con-
tain? This question implies the analysis of the results in toto, and a metric - or an
equivalent - for its evaluation. The current interrogation implicitly contains two
questions: is this methodology effective in extracting knowledge about malicious
traffic? Is it able to discover other attractive behaviors? The analysis focuses on
answering these questions.
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(iii) How to automate the process, especially in a fully unsupervised scenario? The con-
sidered techniques usually require a set of parameters in order to adapt to the data.
Sometimes these parameters are not transparent or are strictly linked to the struc-
ture of the dataset to analyze and thus challenging to tune in case the scenario
is entirely unsupervised. Therefore, there is the need to find ways to automate
the parameter choice. This task also implies the investigation of methodologies to
self-regulate the quality of the formed groups.

(iv) How to address the scalability problem and speed up the extractions of meaningful
groups? Computing the dissimilarity between points is the main bottleneck for
many relevant methodologies. Indeed, most of the solutions proposed in the lit-
erature, if they offer complete and not approximated solutions, they require the
computation of all the pairwise distances between the points of the collection.
The effect is a complexity of O(N?). There is, thus, the need to develop different
solutions.

(v) How can it be possible to analyze the evolution - in terms of update, birth, and dis-
appearance - of those groups over time? Analyzing one snapshot of traffic through
the aggregation provided by grouping is undoubtedly useful. More intriguing is to
develop a temporal analysis of those groups. The inspection over time helps many
possible interpretations, from user behavior analysis to network security. This tar-
get requires the definition of a structure for the storage, control, maintenance, and
update of the groups.

(vi) What happens in different scenarios? Is the system generalizable? This last question
is the starting point to evaluate other contexts where it could be possible to apply
the solution. It is necessary to cover the variety of different cases in the considered
problem, as well as checking the robustness of the implemented solutions.

These questions have been addressed in different published works, evolutionarily.
Questions (i) and (ii) are part of the first work, CLUE - Clustering for URL Explo-
ration [57], where I introduce and apply density-based clustering for URLs grouping,
focusing on malicious activity, and looking at lexical similarities. Question (iii) is part
of LENTA - Longitudinal Exploration for Network Traffic Analysis [55]; I introduced
IDBSCAN and the self-learning methodology there. The work presented in [23] offers
an insight on the issue of scalability in density-based clustering of question (iv). Finally,
the papers [54, 56] extensively handle questions (v) and (vi).

1.2 Related Approaches

The thesis proposes an approach for network traffic analysis at the application level,
using unsupervised techniques in a continuous evolutionary way. Categorizing and
classifying web data and traffic is a relevant topic of the last decade, for many diverse
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applications. Together with the World Wide Web explosion, the need to understand,
analyze, and categorize it to offer a more transparent structure rose rapidly. Clustering
techniques have been immediately appealing, given their capability of working in an
unsupervised fashion and offering a view of patterns and categories in the Web.

Several papers in the literature aim at identifying similar web pages or URLs. Each
work is targeting different problems or ties to a specific application, with the design
of custom techniques. The vast majority of works look for structural features that help
in distinguishing different classes of websites to consequently group or classify them.
Such features can refer to (i) to the URL of a web page, here intended as a sequence of
characters; or (ii) to the payload of the page, consisting of its layout, formatting, and
syntactical properties.

A group of previous works aims at clustering web pages directly using the text they
contain. Such an approach requires the complete retrieval of the page and typically
expensive text-processing algorithms. A notable example of clustering applied to web
content is [13]. The authors propose a methodology to quantify the syntactic similarity
between generic text files through the computation of resemblance and containment
features. They apply such technique to 30 M documents retrieved from the Web and run
clustering algorithms on top. A similar and more recent approach is presented in [17],
while [33] stresses the importance of algorithmic design to achieve high scalability of
clustering algorithms.

In the context of web page clustering for specific applications, the authors of [20]
apply clustering algorithms to disambiguate between people’s names on the Web. They
use a set of features coming both from the page content and from the URL. They split
the URL into multiple components (e.g., domain name, path, parameters) and extract
properties that have to be recombined together, making the whole process a precise but
expensive technique.

More recently, Hussain et al. in [35] present a filtering system able to classify mul-
tilingual URLs, according to URL characteristics and web page metadata.

1.2.1 Network Traffic Analysis

Thanks to the complexity and richness of network traffic, the last decade has wit-
nessed several research studies concerning the use of machine learning techniques to
automatically extract information. The critical applications are traffic classification and
anomaly detection. In both cases, the employment of clustering techniques is of great
interest.

Authors of [30, 29] addressed the task of botnet detection. The former uses a two-
step clustering of communication flows, first coarsely grouping them considering a con-
traction of the feature space, and then, for each group, computing a more refined cluster,
considering all the features. The latter uses a hierarchical clustering technique to merge
similar bags of bi-grams, extracted from messages collected from Internet Relay Chat
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monitoring. Converse to our solution, they focus uniquely on a specific target, i.e., bot-
nets, and they use different features and techniques for clustering.

Considering traffic classification, Erman et al. [21] use transport layer statistics and
test clustering algorithms (namely, k-Means, DBSCAN, and AutoClass) over different
labeled datasets. Authors of [43] use marked traffic flows and k-Means clustering for
the classification of TCP flows. Wright et al. in [76] leveraged k-Means over Hidden
Markov Models of Client-Server and Server-Client communications as an intermediate
step toward the detection of application behavior over encrypted traffic. The goal is,
again, traffic classification. In this thesis, the focus is on HTTP/HTTPS traffic and on
extracting clusters looking at the structure of the URLs.

Some studies focused on text and string mining techniques, with the goal of cluster-
ing network traffic. In the field of network security, authors of [62] use a two-level clus-
tering process, leveraging the single-linkage hierarchical algorithm to disclose similar-
ities between malicious URL; Levenshtein distance, together with Jaccard Index, is used
in the second clustering stage. They target malware signature building explicitly. In [38],
semantic features of the URLs are used to target the same problem, using DBSCAN and
Jaro-Wrinkler distance. Authors of [48] use the Levenshtein distance aiming at detect-
ing phishing sites whose names are built using typical spelling mistakes. Gao et al. [25]
use clustering techniques to identify spam campaigns on Facebook, looking at similar-
ities in destination URLs. Other works target YouTube traffic [27], or P2P traffic [8],
and use features extracted from TCP flows like round trip time, data exchanged, and
other domain-specific metrics. The authors in [58] developed an IPFIX-based big-data
lightweight methodology for traffic classification. The work uses unsupervised learning
for word embedding on Apache Spark, receiving as input “decorated flow summaries,’
which are textual flow summaries augmented with information from DNS and DHCP
logs.

All these works focus on a specific class of traffic, with a distinctive goal. Here, the
aim is broadly exploring HTTP traffic, in general. This work focuses on URLs, which
are strings, for which defining a distance and a clustering requires ingenuity. LENTA is
a general methodology that examines URLs from HTTP traffic to group elements that
look similar. This approach allows the analyst to quickly identify patterns, anomalies,
and novelties in web traffic, services, and users’ behaviors. The system proposed consid-
ers all HTTP traffic, and not just malicious URLs or URLs generated by malware during
their activity.

1.2.2 Clustering

This thesis also proposes a particular clustering technique based on the use of DB-
SCAN as a baseline algorithm, called Iterative DBSCAN. Several different works be-
fore the one presented here tried to enhance DBSCAN performance and usability. OP-
TICS [6] and HDBSCAN [50] are the main ones. This thesis includes the evaluation of
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these techniques, in Ch. 3, testing the considered methodologies on the datasets pre-
sented in Ch. 2. The results show how IDBSCAN outperforms the other techniques.
Clustering is considered one of the most interesting unsupervised learning techniques,
providing a data structure partition that can be the basis for further learning. In partic-
ular unsupervised techniques have provided the possibility to obtain various forms of
clusters and to separate the noisy points from the final result. However, the sensitivity
to the parameters and the inability to manage data sets with different densities has rep-
resented a limit. For these reasons, other methodologies started to emerge. OPTICS [6]
from Ankerst et al. offers a method to inspect the structure of clusters obtained from the
data — the reachability plot — that is used to extract groups looking at density valleys
with a visual inspection - a not always applicable solution. Campello et al. proposed
HDBSCAN [14, 50], which is built on top of DBSCAN and considers different radius
values, combining the results to find the best clustering. However, it offers limited con-
trol of the quality of clusters. In our proposed solution, IDBSCAN, the clustering stage
builds upon the classic DBSCAN. It makes use of silhouette to allow better results in
terms of quality concerning other well-known and novel algorithms. Furthermore, the
automation of the choice of cumbersome parameters reduces the effort needed by the
analyst to configure and tune the system. The results are in Ch. 3 and they report the
test of the considered methodologies on the datasets presented in Ch. 2.

1.2.3 Scalability Issue

From a system point of view, this work addresses the engineering and deployment
of scalable clustering algorithms, in particular, for density-based algorithms. We adopt
big data approaches for which ingenuity is required to parallelize the execution. In the
system community several authors are working on scalable clustering solutions [16,
31, 46, 34]. They mostly take advantage of feature space partition, leveraging Spark,
and the MapReduce paradigm. These approaches, however, are confined to the class of
problems where Euclidean distance metrics can be used and provide approximated clus-
tering. Recently, Lulli et al., in their work NG-DBSCAN [44], propose a methodology to
overcome those limitations that consist in an approximated version of DBSCAN, based
on a vertex-centring programming paradigm, built on the concept of graphs. It provides
an increase in terms of performance and scalability at the cost of lower accuracy. Other
works realize parallel optimizations of density-based algorithms, focusing on GPU com-
puting capabilities [75], or the multiprocessing API OpenMP in conjunction with graph
techniques [61].

Our approach follows a different angle and targets the parallelization of the dis-
tance matrix computation. This strategy stems from the fact that the estimate of string
similarity is per se a resource-demanding job. Being URLs possibly very long strings,
this poses severe scalability issues that are solved by providing a map-reduce solution.
Once this algorithm extracts the distance matrix, IDBSCAN can run in a centralized
manner, thus not facing any approximation, i.e., not losing information.The proposal
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is to decouple the distance computation from the algorithm execution, allowing inex-
pensive experiments with different clustering algorithms and faster parameter tuning.
Moreover, some clustering quality measures are based on the concept of cohesion and
separation, thus requiring distance computations, and, in turn, gaining from this pro-
cess. We quantify the benefits of this approach implementing it in Apache Spark, the
state-of-the-art big data platform.

1.3 Reading Map and Terminology

This introductory chapter provides an overview of the rationale of the work, from
the general scenarios and questions that the research period unhearted, to the specific
challenges. It also positions the work in the context of previous research.

I delineate in Chapter 2 the general structure of the proposed solution. This chapter
is crucial to understand the practical choices made to solve the research questions, the
matter of this work. Chapter 2 includes a description of the architecture of LENTA, i.e.,
the system that comprises IDBSCAN and the evolutionary methodology, called System
Knowledge. In this Chapter I also introduce the datasets used in the different part of
this work.

Chapter 3 explains the reasons behind the adoption of a particular class of clustering
techniques, i.e., density-based approaches. The clustering phase is a building block of
the final methodology. This chapter offers a detailed description of the features for the
proposed technique, Iterative DBSCAN, showing Iterative DBSCAN capability of out-
performing other state-of-the-art techniques also in real-case scenarios. It also presents
a solution to the problem of scalability in clustering.

Understanding how the clusters evolve in time is essential for many applications
linked to network analysis. It allows observing changes, anomalies, and patterns in
data clusters. Chapter 4 presents the methodology used in this work. It clarifies the
properties and the implementation of the evolutionary system.

I outline in Chapter 5 the results of the overall system over different real-world
settings, showing the capability of addressing different problems, providing a detailed
view of the outcomes.

Chapter 6 concludes this thesis, offering final remarks and cues for future improve-
ments and evolutions of this work.

The appendices give an insight into current and future research. Appendix A reports
the steps towards a methodology for providing an understandable explanation of clus-
tering results, using Explainable AI (XAI) solutions. Appendix B reports my research

contributions, as well as awards, collaborations, and other related activities.

Table 1.1 reports the key nomenclature and acronyms used throughout the thesis.
The aim is to provide a common terminology for the most relevant terms appearing in
the thesis.

Table 1.1: Summary of the key nomenclature and acronyms used throughout the thesis.

10
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Artificial

Intelligence (AI)

According to Stuart Russel and Peter Norvig [67], it can be interpreted as “the study

of agents that receive percepts from the environment and perform actions.”

Class label Referred to also as label, is a discrete attribute that identifies objects

characterized by certain attributes, known as features.
CLUE Clustering for URL Exploration. It refers to the first work published on this topic [57]
Clustering According to [2], it is the set of techniques that “ Given a set of data points,

partition them into a set of groups which are as similar as possible”

Command &

Infrastructures, usually servers, that manage networks for automatic

Control malicious activities
DBSCAN Density-Based Spatial Clustering of Applications with Noise.
See Sec. 3.2
DGA Domain Generation Algorithm. A technique used to generate random
domain names, dodging static controls based on hostname blacklists.
DNS Domain Name System. Is a distributed, hierarchical dataset and
an application-layer protocol. It is mainly used to translate hostnames
to host addresses.
HDEFS Hadoop distributed file system.
Hostname Is a name assigned to a host. The ones considered in this thesis are
fully qualified domain names, i.e., they report the complete domain
hierarchy of the DNS.
HTTP HyperText Transfer Protocol (HTTP), is the Web’s application-layer
client-server protocol. It defines the messages and their exchange
between clients and servers.
HTTPS Secured HTTP communication. It is characterized by a bilateral encryption.
IDS Intrusion Detection System (IDS), it is a network or system monitor appliance
for preventing malicious activities or violations.
Internet The global infrastructure that provides services to applications. [39]
ISP An Internet Service Provider is an organization that provides infrastructures and
services for accessing and using the internet.
LENTA Longitudinal Exploration for Network Traffic Analysis. Acronym for
the work presented in [55].
Machine Is, according to Tom M. Mitchell’s definition [52], the process where
Learning (ML) “a computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P if
its performance at tasks in T, as measured by P, improves with experience E.”
Malware Malicious Software. Applications that aim at harming victims of
the attacks that they pursue.
MITM Man In The Middle. In networking it consists in a relay, and if malicious
also in an alteration, of a communication.
NTMA Network Traffic Monitoring and Analysis. Ensemble of applications
related to network management.
Object path In this thesis it is intended as the path, and the name
of a web resource. It is the rightmost component of the URL.
URL Uniform Resource Locator. It consists of two parts, the hostname,
and the object path. It references a resource in the web. It is preceded by the
protocol that has to be used to communicate.
‘Web World Wide Web (WWW) is the ensemble of resources, identified by URLSs,
that are accessible throughout the Internet infrastructure.
Tstat It is a deep packet inspection tool for network monitoring
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that exposes information from both TCP and HTTP connections. See section 2.2.2.

1.4 Notes for The Reader

The work presented in this thesis is the result of my research. Therefore, I use the
personal pronoun across the manuscript. I report external technologies and methodolo-
gies, referencing the sources when I mention and use them. As in most of the research
works, the obtained results are an outcome of mutual collaboration, help, and exchange
of knowledge. Nevertheless, I want to mention Martino Trevisan, who actively helped
in thinking and, most of all, implementing the scalable methodology for clustering pro-
posed in Section 3.5.

12



Chapter 2

Overview

This chapter intends to provide an insight into the flow of the work of the thesis.
The objective is dual. First of all, it aims at detailing the approach followed to solve the
previously discussed research questions. Secondly, it points up the different fields of
application taken into account for this thesis.

Therefore, Section 2.1 presents the approach. It begins describing the motivations
for URL clustering, showing with examples what is the desired outcome. Afterward, it
presents a description of the different parts of the system, showing how the different
parts and proposed methodologies interact and work together.

Section 2.2 introduces the datasets used through different experiments. It explains
the data gathering for all the various collections.

The content of this chapter is part of previously published works. The overview of
the system is reported in [55, 56, 54]. The different datasets are present, in various ways
and combinations, in all the previous works [57, 55, 56, 54].

2.1 Approach

The approach followed aims to obtain an internet traffic analysis, focused on the
study of URLSs, in order to group them and extract meaningful information.

In particular, this thesis takes into account both HTTP and HTTPS traffic. An anal-
ysis of the latter case is significant since more and more services are or have switched
to this communication type. This trend is also actual for malicious traffic. Indeed, while
the majority of it still runs on top of HTTP [5], services are moving to HTTPS. ! 2

'https://www.paloaltonetworks.com/documentation/71/pan-os/pan-os/
decryption/ssl-forward-proxy

2https://www.juniper.net/documentation/enfUS/junos—spacelS.2/t0pics/
concept/junos-space-ssl-forward-proxy-overview.html
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A detailed analysis of results on these two use cases will be addressed in Chapter 5,
tackling different perspectives.

This section describes the practical approach followed. Firstly, it details the motiva-
tions that guide the selection of specific methodologies. Subsequently, it explains how
those methodologies interact together, to solve the research questions of this thesis.

2.1.1 Motivation

The goal of this thesis is to group URLs based on their similarity. The chosen way to
achieve this purpose is to leverage string distance to generate homogeneous groups of
URL:s instead of just merging those elements that have, e.g., a common domain name. In
principle, the aim is to strive for grouping together all those URLs that refer to the same
service while separating URLs of different services, present some real cases to give the
reader the intuition (and the complexity) of doing this.

Table 2.1 shows examples of URLs. Al, A2, and A3 belong to the same malware
called TidServ - that a professional IDS provided by a leading cybersecurity company
spotted in the HTTP-labeled Dataset dataset, presented later in Section 2.2.2. All URLs
share substrings in the object path, but with strictly different domain names and URLs.
This is a common behavior in malicious applications which apply approaches to change
the domain name rapidly, with the goal of evading static blacklist-based controls, the
so-called DGA (Domain Generation Algorithm) technique, successfully used by sev-
eral malware programs like Conficker [64] and Torpig [68], and addressed in various
research works [7], [11]. BI and B2 illustrate two URLs generated by Sony connected
Smart-TVs which access the same service, but with different URLs. This characteristic
is representative of services that employ the same web platform, and that can be inter-
esting to point out. In both the above examples, it is preferable to obtain two groups in
output from the algorithm, one for the malware, one for Smart-TV traffic.

It is worth to remark that grouping by domain name is not enough. Indeed, certain
domains host logically very different services. This is the case of the third example, C1
and C2, where Google Flights and Gmail URLs are shown. In this case, the algorithm
should identify two groups, one for each service. This work aims at reaching this goal
using clustering approaches.

2.1.2 System Overview

Figure 2.1 sketches the overall process. The system processes URLs in batches, each
one marked as U G (i), where I insert all unique URLs seen during the i-th time interval of
duration AT. This analysis solely considers unique URLs, extracting them from the logs,
since the goal is to understand which resources are fetched by clients, independently of
their popularity. At the end of a period, collected URLs are clustered in € (i). The original
log is kept in storage so that it is possible to trace back and inspect other information,
starting from the URL.

14
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Table 2.1: Examples of similar URLs

swltcho81.com/[...]JVyPTQuMCZiaWQ9|...] A1l
rammyjuke.com/[...]VyPTQuMCZiaWQ9]...] A2
iau71nag001.com/[...]VyPTQuMiZiaWQ9]...] A3

bravia.dl.playstation.net/bravia/WidgetBundles/[...]/info.xml B1
applicast.ga.sony.net/WidgetBundles/SNY_RSSReader/icon.png B2

google.com/flights/#search;f=TRN,ITT,TPY;t=LAX;d=2018-01-22
;1=2018-01-26 C1
google.com/mail/u/0/#inbox/160c745d9e5f6684 C2

Several challenges arise here, from the computation of the similarity between two
URLs to the proper choice of the clustering algorithm, from the parameter settings to a
scalable design.

Once the algorithm outputs the clusters, a sampling process takes care of reducing
the dimensionality, i.e., by extracting a summary of URLs found in each cluster, obtain-
ing the sampled cluster € (i). This operation has the benefit to reduce the footprint of
the data and to limit the computational complexity of the next steps.

At last, the system compares clusters found in the current batch with those found
in the past, which it collects in a structure named System Knowledge and for which the
notation used is Z (i = 1). If there is no match, then the current cluster is considered
new and added to the System Knowledge after, eventually, the analyst’s inspection, to
provide a meaningful label. As the results will show, the availability of several URLs of
the same type substantially simplifies the labeling process.

2.2 Datasets

During the evolution of this work, the use of different datasets serves several goals.
Furthermore, it allows a broader perspective on the applicability of the overall system.
The main focus of this thesis is on network traffic analysis. Specifically, the subject
matter is web URLs.
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Figure 2.1: LENTA overview. From the bottom, URLs are grouped in batches to then
extract clusters. The clusters are sampled and used to update the System Knowledge.

Table 2.2: Overview of the datasets.

‘ Dataset ‘ Type ‘ Elements- Total ‘ Labels ‘ Days of collection ‘ Users ‘
Synthetic-labeled Dataset | Synthetic 20000 Yes - -
HTTP-labeled Dataset HTTP 78 421 Yes 1 34
HTTP-not-labeled Dataset | HTTP 1716917 No 21 30
HTTPS-not-labeled Dataset | HTTP + HTTPS 800766 No 14 4

The choice of the datasets aims at covering the related essential use cases and Ta-
ble 2.2 outlines them. The first collection, Synthetic-labeled Dataset, embodies synthetic
points in euclidean space. This set functions as test data for algorithm analytics. The
second set, HTTP-labeled Dataset, is a day of traffic, collected in 2013. It includes knowl-
edge of malicious traffic. The third collection, HTTP-not-labeled Dataset, is a three-week
generic capture of traffic from households of an Italian ISP. It signifies a representa-
tive sample of a household’s daily navigation, allowing various observations, including
time-related monitoring. The last dataset, HTTPS-not-labeled Dataset, consists of a rep-
resentation of single users web activities. It contains both HTTP and HTTPS traffic
through the use of a web proxy installed on every single device.
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2.2.1 Synthetic Dataset

For benchmarking and comparison with state of the art algorithms, I generate data
using the Python machine learning library Scikit-Learn.® I rely on the make blobs mod-
ule. It creates globular clusters by specifying the total number of points, the number of
desired clusters, the feature space dimension, and the standard deviation of the points
in each cluster. The benchmarks require distinct sets. The two synthetic datasets are the
following:

(i) variation on the number of clusters, from 10 to 100, while keeping the dataset size
equal to 20 000;

(ii) variation on the size of the dataset, keeping a fixed number of clusters to 100 —
maintaining the ratio between the number of objects and number of clusters equal
to 200.

In both cases, the feature space is three-dimensional, and the standard deviation of
points is equal to 0.4.

2.2.2 HTTP - Labeled

Here, I provide an overview of the technologies used to record network traffic and of
the tools used to extract useful information. The scenario consists of a sniffer, which pas-
sively monitors the traffic generated by a group of hosts, e.g., hosts in a LAN network,
or households connected to a Point-of-Presence (PoP) of an Internet Service Provider
(ISP). The sniffer is capable of identifying HTTP requests and log them to a file for later
post-processing.

In this case, the traffic capture takes place at the PoP of an Italian ISP, where approx-
imately 20 000 customers are connected. Most of them are residential customers access-
ing the Internet via ADSL modems. The passive probe in the PoP monitors the traffic
generated by residential users. The probe runs the passive monitoring tool Tstat [72].
Tstat has been internally developed at Politecnico di Torino, and it is freely available at
http://tstat.polito.it/. Tstat rebuilds each TCP flow tracks it, and, at the end
of the connection, logs a record reporting statistics in a simple textual format. When the
application protocol is HTTP, Tstat extracts the URL and logs it. In the case of multiple
HTTP transactions, due to the usage of an HTTP-persistent option, Tstat logs multiple
records. Tstat collects URLs for an entire day, generating more than 100GB of data. For
user privacy protection, there is no maintenance of the parameters in the URL, and only
saved unique URLs.*

*https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets

*The usage of this data set has been discussed and approved by my institution ethics committee, and
by the ISP security group.
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Table 2.3: HTTP-labeled Dataset characteristics.

All hosts | TidServ infected hosts

HTTP Flows 267393 171863
HTTP Volume 89.99 GB 44.16 GB
Total URL 411727 255304
Unique URL 78421 43479
Unique Tidserv URL 228 228

The access to a commercial Intrusion Detection System (IDS) allows the labeling of
URLs as possibly malicious. The IDS has, at its disposal, an internal database of rules
modeling network threats. If some URL matches one (or more) of these rules, the IDS
raises an alert and flags the URL with a Threat-ID, i.e., a numeric code identifying a
specific threat. For this purpose, the relevant signatures are one of a specific malware
called TidServ (see Section 3.6.1 for a description of the malware). TidServ is known to
use polymorphic strings in the URLs to evade detection techniques. The system identi-
fied 14 hosts to be infected by the malware in the available dataset.

In the following, I consider one dataset. Table 2.3 provides some statistics about
characteristics in terms of volume, number of URLs, and more. The dataset considers
traffic generated by the 14 hosts infected by the TidServ malware, i.e., for which the IDS
flagged at least one flow as malicious, and 20 additional hosts randomly selected from
the population of users; the IDS flags none of the URLs of this second group of hosts. In
total, more than 411 000 URLs are present, 78 421 of which are unique. For the sake of
completeness, Table 2.3 details also the statistics considering only the 14 infected hosts.
Out of the 255000 total URLSs, 43 479 are unique, of which only 228 have the TidServ
flag.

2.2.3 HTTP - Not Labeled

The five years of collaboration with the Italian ISP allowed the extraction of large
collection of passive traces, using Tstat. For my work, I consider a three-week-long
HTTP trace. It is the results of traffic collection in March 2016 in the ISP network, where
traffic from more than 20 000 customers was visible. In that period, still more than 40%
of traffic was carried by HTTP [37], [71]. I randomly chose 30 users, among the most
active ones, i.e., the ones that produce more traffic, collecting almost 2 million URLs
for the three weeks. Looking more in detail at the dataset, Figure 2.2 shows that the 30
selected users access every hour several tens of thousands of unique URLs (solid curve -
left y-axis) via HTTP, with the total number of unique URLs (dotted curve - right y-axis)
that grows to more than 430 000 URLs after one week. The considered users access more

18



2.2 — Datasets

12500 - Hourly unique URLs g
w | o Total of unique URLSs over time : - 400000 g
— : : : : : >
& 10000 - "
= - 300000 4
& 7500 1 =
g - 200000 8
> 5000 - g =]
= =)
g j=]
2 Hso0 - - 100000 =
=
0 - - 0 ﬁ

\Y o o

69%'0 6,9“:’@ 69%’0 b,g”b’g 6,0“3’0 6,0“3’Q 6,0%’0 6&“3’0

O NN S S\ N N N\

Days

Figure 2.2: Evolution of unique URLs observed on the ISP network.

than 60 000 per day. These numbers give the intuition of the variety of traffic today.

2.2.4 HTTPS - Not Labeled

In this case, ERMES Proxy, > a Man In The Middle (MITM) proxy, collects and pro-
cesses all traffic coming from single hosts. ERMES Proxy is a software module that runs
on end hosts. By installing a trusted key, and configuring a system-wide proxy, it gains
visibility on all HTTP and HTTPS requests. ERMES Proxy logs all entries and uploads
them to a centralized repository on our campus. Volunteers installed the ERMES Proxy
for at least one month. The participants’ recruitment took place on social networks, spe-
cialized forums, and among students at our University. The offer of monetary incentives
and the involvement in an experiment aiming at showing them the pervasiveness and
danger of web tracking served as motivation. The volunteers have explicitly approved
the data collection program, and the project was also subject to a privacy impact assess-
ment, drew together with the data protection officer of our institution. The collection
considers two weeks of traffic data, from the most active and dedicated users.

5https://www.ermes.polito.it

19


https://www.ermes.polito.it

20



Chapter 3

Clustering

This chapter intends to answer research questions (i), (ii), (iii), and (iv). It aims at
showing the significance of clustering, explaining the choices of the presented imple-
mentation, showing the results, and producing a comparison with other well-known
clustering techniques.

First of all, Section 3.1 introduces a common terminology for what is intended to
be clustering. It describes the principal categories of clustering, helping in then discuss
and demonstrate the performed choices.

Subsequently, Section 3.2 details the category density-based, which is the one con-
sidered in this thesis. It specifies which are the distinctive characteristics that are im-
portant to solve the related research questions. Section 3.2 contextually presents the
main, prominent algorithms in this category.

Section 3.3 introduces the metrics used to express the pairwise distance between
data, both synthetic and URLs. In particular, it details edit distance metrics, used to
denote the dissimilarity between strings. This Section discusses and compares different
implementations of this class of metrics, analyzing the capability of better expressing
the dissimilarity between URLs.

Section 3.4 moves on to the description of Iterative DBSCAN. It reports how this
proposed technique differs from the other methodologies considered in Section 3.2
and how it performs the clustering operations. This section includes a comparison
of IDBSCAN with the other techniques, using main quality metrics on two different
datasets (Synthetic-labeled Dataset and one day of traffic extracted from HTTP-not-
labeled Dataset). Section 3.5 offers a detailed view of the issue of scalability in clustering,
including a proposal to solve it.

Finally, in the Sections 3.6 and 3.7, I show in detail what IDBSCAN can extract and
provide in output, testing it on two different cases of collections of a day of HTTP URLs,
HTTP-labeled Dataset, and HTTP-not-labeled Dataset.

The work on IDBSCAN is the combination of the outcome of [55, 54, 56]. The issue
of scalability in clustering collects the results presented in [23].
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3.1 Introduction to Clustering

Clustering or cluster analysis refers to the process of partitioning a set of data into
different subsets [69]. Each subset is a cluster.

Clustering is useful as it can guide the discovery of previously unknown groups of
objects, all within the collection. Clustering is called data segmentation in some appli-
cations, because of the cluster analysis process partitions a large set of data, creating
groups based on their similarity. A way of mentioning cluster analysis is also unsuper-
vised learning. Compared to what happens for the classification, in this case, the class
label is not present. For this reason, the grouping can be considered a form of learning
through observation rather than learning through examples. It also refers to meaningful
analysis, obviously, that provides meaning, for the kind of technologies that, starting
from the data, are automatically supplied to find classes. Classes are, in fact, conceptu-
ally expressive groups of objects that share common characteristics. Cluster algorithms
also have several requirements to be met: these factors require scalability and the ability
to deal with different types of components, noisy data, incremental updates, arbitrary-
shaped clusters, and the ability to meet constraints.

The clustering methods classification proposed by [69] considers the following main
categories:

(i) Partitional methods: Given n objects, a partition type method constructs k data
partitions, where each partition represents a cluster, with k& < n. The partitioning
methods perform an exclusive cluster separation. Most partitional methods rely
on the concept of distance. Some examples of this type of clustering are K-means
and K-medoids;

(ii) Hierarchical methods: they create a hierarchical decomposition of a given set
of objects. There are two main approaches, bottom-up or top-down;

(iii) Density-based methods: most partitional clustering methods are based only on
the distance between objects, which means that they can only find spherical-
shaped clusters while they encounter difficulty if the clusters are arbitrary. This
class of algorithms relies on the concept of density; the idea is to continue ex-
panding a given cluster until the density (the number of objects or points) in the
neighborhood of an object equals or exceeds a certain threshold. This method can
be used to exclude noisy or outlier objects and discover clusters of arbitrary shapes.
Typically, density-based methods consider only mutually exclusive and non-fuzzy
clusters. The most prominent method of this class is DBSCAN;

(iv) Grid type methods: in this class of methodologies, the object spaces consist of a
finite number of cells that form a grid structure. Their main advantage is to guar-
antee a short calculation time. The time complexity of these algorithms depends
just on the number of computed cells and not on the dataset size. Examples of
grid-based methodologies are STING and CLIQUE.
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3.2 — Density-based Clustering

3.2 Density-based Clustering

In developing this work, for the problem in question, I considered using this method-
ological class. As previously introduced, hierarchical and partitional methods are de-
signed to find spherical clusters. Wanting to trace groupings of another type, such as
”S-” or oval-shaped ones, the aforementioned techniques would be ineffective and inac-
curate; they would identify convex regions where noise and outliers would be included
in clusters. This is the reason why a solution to the problem is to model clusters as dense
regions in the data space separated by sparse regions. This class of methodologies has
other fundamental characteristics useful for this research topic. They include the pres-
ence of noise, preventing non-coherent elements from being added to the cluster. They
allow the user not to define the number of clusters a priori. Not having to define cen-
troids helps in the replicability of the experiments, the results will always be consistent.
Finally, datasets made with elements that can not be traced in Euclidean space can be
considered.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) The
basic algorithm for density-based clustering is DBSCAN. DBSCAN identifies a cluster
as the concatenation of successive dense areas in the data space. Given an object o, it
is possible to measure its density by considering the number of elements close to it.
DBSCAN finds the core points, i.e., those objects that have dense neighborhoods; then
it connects these core points and their neighbors to form the dense regions, i.e., the
clusters. The € parameter defines the neighborhood area. This parameter represents the
radius of the sphere that has o as the center. A neighborhood is dense if there are at
least MinPoints in the sphere of radius e.

Other density-based algorithms have been proposed during the years.

OPTICS (Ordering Points To Identify the Clustering Structure) [6] Ankerst et
al. addressed the difficulty of setting DBSCAN parameters and, in particular, the choice
of e. OPTICS stems from the basic idea that, given a fixed value for MinPoints, the clus-
ters at higher density are contained in the ones that have lower densities. So, the con-
tribution is to compute core points for high-density areas first, finding in that way the
denser clusters. OPTICS order points according to their density and provides that list in
written or graphical form. Clusters can be identified graphically or automatically from
that structure, and so different local densities, i.e., ¢, may be defined in order to extract
clusters in different areas of the data space.

HDBSCAN (Hierarchical DBSCAN) [14, 50] A limitation of DBSCAN is that it is
not able to identify clusters made of points that lay at different densities. HDBSCAN
aims at solving this problem. It first creates a tree representation of all the possible clus-
ters for different €. The algorithm then solves the problem of finding the best clusters
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as an optimization problem, where the overall stability of the clusters, defined follow-
ing Hartigan’s definition of density-contour clusters [32], is maximized. Thanks to this
approach, there is no need to tune the e parameter.

CANF (Clustering and Anomaly detection method using Nearest and Farthest
neighbor) [22] This method finds the nearest and furthest neighbors to define sub-
groups of data. In creating the subgroups, it does not need to consider global parameters
like €. It computes the radius of subgroups based on the variance of data points, and the
number of points in each subgroup and its volume are adaptive to data distribution.
Thus, it can identify clusters with different shapes and densities. Since CANF uses sub-
sampling, the time complexity is reduced compared to the methods that use the aggre-
gate data set. However, being iterative, worst-case complexity entails the comparison
of all distance pairs again.

3.3 Definition of Distances

The concept of distance refers to a specific class of dissimilarity measures that aim
at quantifying, with a numeric value, the degree to which two points are far away [28].
The information extracted by the distance computation serves for the clustering step.

Distance is a specific class of dissimilarity, which can be defined informally as a
numerical measure of the degree to which two objects are different. In particular, a
measure of dissimilarity can be called distance if it respects three particular properties,
which characterize a measure such as a metric.

1. Positivity

(@) d(x,y) > 0 for every x and y,
(b) d(x,y) =0justif x = y.

2. Symmetry
d(x,y) = d(y, x) for every x and y.
3. Triangle Inequality
d(x,z) <d(x,y)+d(y, z) for every point x, y, and z.

For multi-dimensional points space, the Euclidean Distance is the most well-
accepted choice. It defines the dissimilarity between two objects as their actual geo-
metric distance.

The distance is thus described as follows:

d(p,q) = \/Zmi - p)? (3.1)
i=1
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In the URL use case, I look for a distance metric to compute the dissimilarity of
strings. Distance measures suitable for application to textual strings take the name of
“string metrics” or “string distance functions”. The adoption of such metrics is mainly
widespread in the field of text-mining, but they find their application in other classes
of problems. For example, in medical analysis, when considering DNA traces or in ex-
ploratory cases where it is required to compare groups of elements for which one has
no a priori knowledge or understanding. Textual distance metrics, therefore, represent
a convenient and viable way to represent in numbers the dissimilarity among strings
succinctly.

Here, I focus on a particular class of distance metrics, the edit-distance based func-
tions [15]. As the name suggests, the distance between two given strings s; and s,
represents the minimum number of steps required to convert the string s into s,. Edit-
distance functions have been used to target the analysis of free text where strings are
well-formed words from a dictionary, with a defined grammatical syntax and with well-
understood constraints.

The most popular technique is the Levenshtein distance [41] d; (s, 5,) that assigns
a unitary cost for all editing operations, i.e., insert, remove, or replace one character. It
computes an absolute distance between strings that is at most equal to the length of
the longer string. This approach makes the Levenshtein distance inconvenient when
comparing a short URL against a long one, as URL length possibly spans from few to

hundreds of characters.
The Levenshtein distance d g1A|s;1, |5,|) is defined as:

max(i, j) if min(i, j) = 0.
dpp i, j) = dipgi—1,/)+1
minsdpp (i, j—1)+1 otherwise.

dppfli = 1,j = DHI(sy; # 55))

where i and j are respectively the lengths of s, and s,, i.e., |s{]| and |s,|, respectively,
d; pyAi, j) is the distance between the first i characters of s; and the first j characters of
55, and [ is the indicator function, namely equal to 0 when s; = s, ;.

The Jaro distance follows a different approach. In this case, the distance function
considers the number and the order of shared characters between two strings. Let m
be the number of matching characters, and ¢ be half the number of transpositions. The
Jaro distance djgo(sy, 5;) is defined as:

J 1 itm=0.
JROZ N _Lm , m , mt i

1 3(|S1| + 5] + — ) otherwise.

Given the peculiarity of URLs, whose length may vary widely and which may in-

clude random substrings, I propose a custom modification of the Levenshtein distance,

dy rr- URLs are possibly very long strings with up to thousands of characters. For this

I explicitly consider the string length, and normalize the results in a [0,1] range:
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dppy=(51, 57)

(Is1] +Is20)

This leads to a bounded distance metric, and specifically d;g; = 0if s; = s,, while
dyrr = 1 if the two strings are completely different. We count the total number of
insertions and deletions, but I weight replacement by a factor of two to count it as a
deletion and insertion operation. We call it dj gy «.

To give the intuition of the different results achievable, consider a simple exam-
ple. Let s; be “google.com” and s, be “1goggle.com”. We now compute the numerical
value provided by each of the considered distance functions. The Levenshtein distance
d; sy, $,) = 2, accounting for one insertion (“1”) and one replacement operation (“0”
— “g”). For djgo, the number of matches m is 9 (g,0,g,le,..c,o,m), and the number of
transpositions 7 is 0. Thus d;gp = 0.094. d; g, is the normalized version for the
Levenshtein distance; as I analyzed above, d; gy is 2, thus dj gy, = 0.095. Finally,
dy rr = 0.143 since I have one insertion, weighted 1, and one replacement, weighted 2.

We now run a simple experiment to raise awareness on the importance of choosing
an adequate distance function. We consider all the URLs found in my dataset TidServ, a
polymorphic DGA malware, has generated that. We then compute the distance between
any pair of URLs (u{, u,). Fig. 3.1 shows the Cumulative Distribution Function (CDF) of
the measured distances for dy gy, d;ro, dp gy, and dypg;, respectively.

Given my goal is to cluster elements that are “close” one to the other, I prefer to
have distances concentrated in ranges. A pair of similar elements should exhibit a small
distance, while a pair of different elements should exhibit a considerable distance. d; g}
shows three groups in its CDF, suggesting potential clusters. However, d; g} support is
not bounded in a given range (in my experiments, it spans in the [0:250] range), since
it does not entail normalization. This strategy makes the comparison mostly driven by
string lengths, i.e., any two short strings will be much more similar than any two long
strings. djpo instead results in a nearly-uniform shape, showing no clear steps that
would help in separating close from far away pairs.

drgy,,, and dygy satisfy the intuition of having distance ranges, as clearly shown
by three modes in the CDF. Moreover, their support is bounded in the [0:1] range, nor-
malizing the distance for the length of the two considered strings. The results of the
two approaches are similar. However, I opt for d;g; since, as I can notice comparing
Fig. 3.1c with Fig. 3.1d, the latter is able to produce larger values of distances, easing
thus the separation of two elements. In fact, d; gy, range is smaller than dy g, . For
example, considering the two TidServ elements T1 and T2, where:

The results that I obtain with dy gy, and dy gy are respectively: dyp gy = 0.49,
dyrr = 0.70. The distance obtained with di; g is slightly larger. This feature is however
very useful when taking into account URLs that are meant to be different. Considering
the C1 and C2, taken from Table 2.1:

dyrr(sy,$p) =
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Figure 3.1: CDFs of distances on the TidServ URLs.
To facilitate the consequent clustering of URLs, I aim at having distances concentrated
in ranges.

« C1: google.com/flights/#search;f=TRN, ITT,TPY; t=LAX;d=2018-
01-22
:r=2018-01-26

+ C2: google.com/mail/u/0/#inbox/160c745d9e5f6684

The results are dy gy, = 0.49, and dyg; = 0.70. The difference in this case is
positively and strongly highlighted, enhancing the contrast between the two elements.

3.4 Iterative DBSCAN

3.4.1 Explaining the Algorithm

In IDBSCAN, the setting of the MinPoints and € parameters is, in general difficult. In
particular, MinPoints can be reasonably set using domain knowledge since it represents
the minimum number of elements of a cluster. € is instead hard to set, especially if the
used distance is not well known. In the first version of my work, CLUE [57], I had
to set € by manually tuning it, a cumbersome and error-prone task. Here I propose a
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new approach to automatically compute €, while also improving the final clustering.
The intuition is to iteratively run DBSCAN, each time using a different value for €, and
each time accepting only those clusters that are well-shaped. Objects in badly-shaped
clusters are eventually re-clustered in the next iteration, with a different choice of e.
This approach produces a remarkable improvement of the clustering stage, by further
splitting/merging clusters at each iteration, until they eventually form a well-shaped
cluster. After a maximum number of iterations, or in case of a dead loop, the algorithm
stops and labels all the remaining elements as noise points (i.e., not assigning them to
any cluster). Those are outliers that the system would ignore.

I define € by using an a priori rule, i.e., letting the algorithm cluster a given percent-
age n of objects at each iteration. To choose the proper € that would guarantee this, I
rely on the k-Distance graph rule [2]. Let K = MinPoints. For each objecti = 1,..., N
in the current batch, the k-th nearest point is found, whose distance is d;. I next sort
{d;} from the lowest to the highest distance, and look for the minimum threshold d,,
for which d; < d,j, for n = 0.75 (75% of points). I set € = d,;,. With this choice, 75% of
objects have at least k = MinPoints objects at a distance smaller than €. Those would
become core points, and form a cluster.

To identify well-shaped clusters, I rely on the silhouette analysis, an unsupervised
cluster evaluation methodology to find how well each object lies within its cluster [66].
The silhouette coefficient s(i) measures how close the point i € C is to other points in
C, and how far it is from points in other clusters. Let a(i) be the average distance of
point i with all points in its cluster. Let b(i) be the minimum among average distance
of point i to points in other clusters. In formulas, I have:

) d 3.2
a(i) = ICl je;# ure(i;J) (3.2)
s() = M (3.4

max(a(i), b(i))

It results s(i) € [—1,1]. Values close to 1 indicate that the sample is far away from the
other clusters, and very close to all other points in its cluster, i.e., cluster C is very com-
pact. Instead, values close to 0 indicate that i is on or very close to the decision boundary
between two clusters. Finally, negative values of S(C) indicate that the clustering pro-
cess might have assigned i to the wrong cluster. The average S(C) = E[s(i),i € C]
over all points in cluster C is a measure of how tightly grouped all the elements in C
are.

Given a cluster C, I say it is well-shaped if S(C) > §,,,,, where S,,;, is a threshold
for the silhouette values. If C is well-shaped, I insert C in the set of clusters found so

far. Otherwise, I put back all points in C in the set of points that I would consider for
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Algorithm 1 Iterative DBSCAN

Require: distance_matrix [> The distance matrix is precomputed
Require: MinPoints [> Dataset size

1: [> Extract € from the k-Distance graph.
2: € = select_automatic_epsilon(distance_matrix, MinPoints)

3: [> Compute DBSCAN using M inPoints and the extracted e. Subsequently, extract the sil-

houette for each cluster.

clusters = DBSCAN (distance_matrix, e, MinPoints)

function EXTRACT CLUSTER_SILHOUETTE(cluster)
S(C) = avg([s(i) foriincluster]) [> i is a point in the considered cluster.
emit S(C)

end function

clusters_silhouette = [extract_cluster_silhouette(clust) for clust in clusters]

A A

10: [> Check the silhouette value for each cluster, if lower than S,,,,,
for the points in that group.

11: for cluster_silh in clusters_silhouette do

12: if cluster_silh < S,,;, then

recompute the clustering

13: cluster_distance_matrix = extract_cl_distance_matrix(distance_matrix) [> This
function extracts a new distance matrix just with the elements of the considered clusters.

14: cluster_e = select_automatic_epsilon(cluster_distance_matrix, MinPoints)

15: second_stage_clusters = DBSCAN (cluster_distance_matrix, cluster_e, MinPoints)

16: end if

17: end for

the next iteration. By setting a maximum number of possible iterations, I avoid dead
loops. If the IDBSCAN process is not able to rearrange a cluster, the algorithm labels
the contained elements as noise.

Algorithm 1 describes the main steps of IDBSCAN. Firstly, it loads the distance ma-
trix distance_matrix, precomputed in a distributed fashion according to the methodol-
ogy described in Section 3.5. Using the MinPoints value provided in input, it extracts e,
using the k-Distance graph rule at line 2. With the extracted parameters, it computes
DBSCAN at line 4.

At this point, if each cluster silhouette S(C), computed with the function Ex-
TRACT_CLUSTER_SILHOUETTE at line 5, has a value greater than S,;,, it is accepted as is.
Conversely, Algorithm 1 performed the same procedure followed on the whole dataset,
but this time just with the elements of the clusters to reshape. This latter nested stage
extracts new clusters that are replacing the old, unfitted ones.

At the end of iterations, I are guaranteed to have all well-shaped clusters, with the
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final clustering € being
& = JIC)IS(C) > S} (35)
J

3.4.2 Parameter Tuning
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Figure 3.2: Evaluation of IDBSCAN over artificially generated datasets, varying # (left)
and S,,;, (right).

min

To understand the behavior of IDBSCAN and its sensitivity to parameter settings, I
start to test performance over a synthetic set of 20 000 points, which form 100 clusters.
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I then vary the s and §,;, parameters, keeping one fixed, respectively = 0.75 and
S,,in = 0.3, and varying the other. The Minpoints value is set to 20 in all experiments.
For performance indexes, I consider i) the number of clusters, ii) the homogeneity score,
and iii) the silhouette. Each configuration has been executed three times, each time with
different random points. Plots report the mean value.

Figure 3.2 reports the results. The plots on the left refer to € [10,90]1%, S,,;, =
0.3. Results show that values of 7 higher than 60% generate very pure clusters, with
homogeneity score close to 0.9, and silhouette higher than 0.6. The number of clusters
is in the 85-90 range (w.r.t. 100 ideal clusters). In a nutshell, IDBSCAN prefers very pure
clusters, eventually discarding some few clusters, which turn out to be not very pure.
Right plots report the sensitivity to S,,;, (with # = 75%). Any value between 0.1
and 0.5 shows negligible impact, with the performance that suddenly degrades when
S ,nin is larger than 0.6. In a nutshell, IDBSCAN is very robust to .S,,;,, so that any value
in [0.1, 0.5] range would be good.

For the goals of my work, I prefer to give importance to those settings that guarantee
homogeneous and pure clusters, well separated to the others. For this, I fix n = 0.75

and S, = 0.3.

3.4.3 IDBSCAN and Other Density-based Algorithms
Synthetic Dataset

Here I compare the performance of DBSCAN, OPTICS, HDBSCAN, and IDBSCAN
over artificially generated dataset 2.2.1. I use the Scikit-Learn implementations of DB-
SCAN and HDBSCAN, OPTICS is executed using the pyclustering version, while IDB-
SCAN uses Scikit-Learn DBSCAN as the building block.! For all the algorithms, I use
MinPoints equal to 20 and, for DBSCAN and OPTICS, an € value of 0.2.

Figure 3.3 reports the results. I focus on two cases: On the left, I keep the total
number of points fixed, and I split them over an increasing number of clusters; on the
right, I keep the number of points per cluster fixed, and increase the number of clusters.

Results show that IDBSCAN and HDBSCAN outperform both DBSCAN and OP-
TICS, especially when the number of clusters is high. In those scenarios, HDBSCAN
and IDBSCAN can identify a higher number of clusters (top plot), with the number of
identified clusters that grows almost linearly with the actual number of clusters. Homo-
geneity and Silhouette (middle and bottom plots) are very good, too. In this benchmark,
where data contains groups of points that are all of the same density, OPTICS performs
identically to DBSCAN, given the pyclustering implementation that offers a threshold
for e. Not reported here, CPU time of OPTICS is also much higher than the one of HDB-
SCAN and IDBSCAN, with the original DBSCAN being the fastest, as expected.

http://scikit-learn.org/, https://pypi.org/project/pyclustering
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Figure 3.3: Evaluation of density-based algorithms over artificially generated datasets.
Plots on the left consider a fixed number of points, split over a varying number of clus-
ters. Plots on the right refer to the case where the number of points per clusters is fixed.

IDBSCAN with Traffic Traces

I compute the quality of clustering considering the first day of traffic collected by
Tstat, containing 59 543 unique URLs, i.e., considering dataset 2.2.3. I test all algorithms
setting the value of MinPoints = 20; ¢, used by DBSCAN and OPTICS, is set at the
value € = 0.4, as suggested in [55]. Off the shelf Scikit-Learn implementations of DB-
SCAN and HDBSCAN are used, OPTICS is executed using the pyclustering version,
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Figure 3.4: Boxplot representing the mean silhouette values for the clusters obtained by
each different algorithm on the first day of traffic.

IDBSCAN uses Scikit-Learn DBSCAN as the building block, while CANF uses the au-
thors’ developed code.

To evaluate the performance of the algorithms, I report statistics about the cluster-
ing results in terms of cluster quality, measured using the silhouette coefficients S(C)
obtained for each cluster C in the set € of extracted clusters. Figure 3.4 depicts the sil-
houette distribution among all clusters, for each algorithm, using boxplot graph. The
orange line depicts the median .S(C) value for each algorithm. The colored boxes repre-
sent the Interquartile Range (IQR), i.e., the values between Q1 (25" percentile) and Q3
(25" percentile). The black horizontal lines below and above the boxes delimit a larger
area, comprised respectively between the “minimum” ie., Q1 — 1.5 * IQR, and the
“maximum”, i.e., O3 + 1.5 * IQR. Finally, the black circles are the outliers, i.e., all the
points that fall out of the previous described areas. In this plot, the y-axis represents the
range of silhouette values - recall that silhouette smaller than 0 is an indication of poor
clustering - while the x-axis contains the evalued algorithms. Inspecting the boxplots,
IDBSCAN shows the best distribution of silhouette between minimum and maximum,
HDBSCAN, the worst. This behavior is given by the fact that IDBSCAN rejects by con-
struction all clusters whose silhouette is smaller than §,,;,. Moreover, the IDBSCAN
iterative process splits and re-clusters poorly shaped clusters with variable €. By con-
trast, the other algorithms produce considerably more variability in silhouette values,
since they do not discard poorly shaped clusters.

Table 3.1 provides more details, complementing the silhouette coefficient metric.
The results confirm that IDBSCAN appears to be the best algorithm in terms of percent-
age of URLs clustered, with CANF being the worst. Comparable results are obtainable

33



3 — Clustering

Table 3.1: Clustering results obtained applying different density-based algorithms over
one day of traffic.

DBSCAN HDBSCAN OPTICS CANF IDBSCAN

Percentage clustered 45.14 53.16 44.65 29.67 55.55
N. clusters 238 563 227 233 283
Size largest cluster 15246 4360 15214 15946 4359
S(C) largest cluster -0.15 0.52 -0.15 -0.09 0.52
Size smallest cluster 16 20 2 2 12
S'(C) smallest cluster 0.41 -0.17 0.44 0.84 0.41
Mean cluster size 148.28 82.34 205.45 148.28 147.87
25% cluster size 5.0 28.0 27.0 5.0 27.0
50% cluster size 16.5 41.0 44.0 16.5 44.0
75% cluster size 57.75 65.0 89.0 57.75 83.0
Computational time (s) | 113.70 218.43 8175.82  1500.73 843.63

with HDBSCAN, which, however, generates more clusters, thus increasing the analyst
work during the inspection phase. The other algorithms generate large clusters of more
than 15 000 elements (more than 25% of the data set size), which are difficult to analyze
and usually aggregate diverse URL types (as also seen by the low silhouette values).
The comparison between clusters’ statistics and the silhouette coefficient results in Fig-
ure 3.4 helps to shed light on clustering performances. Specifically, the first, second
(median), and third quartile of cluster size, they provide clear information on clusters
structures. Even if CANF and DBSCAN have a good median silhouette value, they form
a large number of small clusters, with the first quartile equal to five. Small clusters are
usually denser, influencing thus the silhouette statistics.

Considering execution time, IDBSCAN is slower than DBSCAN and HDBSCAN be-
cause of the iterations. Still, the clustering is completed in less than 850 s. In Section 3.5
I provide more details on scalability.

3.5 The Problem of Scalability

Severe scalability issues challenge the use of density-based clustering algorithms
for network monitoring. For instance, DBSCAN, the most popular algorithm, has been
shown to have polynomial complexity [24]. The main issue of density-based algorithms
is the use of expensive e-neighborhood queries that require computing distances among
all pairs of records. Some proposals try to overcome such limitations by partitioning the
feature space, but this approach is only applicable to points in Euclidean space [16, 46].
They fail when dealing with complex or textual data, such as strings, URLs, or system
logs, for which particular distance metrics are required. Edit distance is an example of
a metric to compare strings, where Levenshtein distance [41] and other variants are
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Figure 3.5: DBSCAN execution time and percentage of time spent in calculating dis-
tances among strings.

among the most popular. Despite the good results that these metrics provide, they re-
quire considerable computation time, which typically scales with the string length, and
makes their use in large datasets particularly costly.

To further illustrate the role of distance computation, Figure ?? reports the time
spent by the standard implementation of DBSCAN in Scikit-Learn with respect to the
growth of the dataset size.? Input data are URLs, and the metric used to express their
dissimilarity is Levenshtein distance. The execution time (left y-axis in log scale, black
curve) exhibits a quadratic growth concerning the dataset size (x-axis also in log scale).
As the dataset grows, most of the time is spent on the pairwise string distance compu-
tation (right y-axis, red curve).

Considering density-based algorithms, many works propose parallel versions, on
both centralized and distributed systems. The authors of [75] propose a parallel version
of DBSCAN using the tremendous level of parallelism allowed by GPUs. The authors
of [61] design a parallel OPTICS implementation that leverages graph algorithm tech-
niques and builds on the OpenMP high-performance computing platform. Other works
propose distributed versions of DBSCAN using Spark and MapReduce platforms [16, 31,
46, 34]. They all partition the feature space and distribute the workload to the executors

?Scikit-Learn is a Python library for machine learning: http://scikit-learn.org/stable/
documentation.html
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to achieve parallelization. However, these works are limited to Euclidean distance met-
rics, and, thus, cannot handle arbitrary data. It is worth to mention that all these works
implement the exact clustering (e.g., DBSCAN or OPTICS) solutions that have been
proven to have polynomial complexity with respect to input dataset size. Specifically,
DBSCAN complexity is 0(n*?) for any dataset with more than two dimensions [24].
Quasilinear time complexity is achieved by authors of NGDBSCAN [44] that propose
an approximated version of DBSCAN at the price of lower accuracy. Differently from
previous works, I show that calculating distances is the slowest part of density-based
clustering when textual data is considered. I claim that, once the distance computation
is distributed, it is possible to run centralized versions of the clustering algorithm with
no performance penalty with respect to fully parallel algorithms.

3.5.1 Distance Matrix Computation

In my approach, in a first step, I compute the pairwise distances among all couples
of elements in the dataset in a distributed fashion, and store them in matrix form; then
I run the centralized versions of the clustering algorithms, providing as input the pre-
computed distance matrix. I first describe the matrix computation and then test and
compare the performance of my approach before evaluating the final clustering.

Given a set .S of n = |.S| strings, my goal is to compute the matrix D € R™" of
all pairwise distances between s;,s; € S. I use a modified version of the Levenshtein
distance proposed in my previous work [57]. This metric belongs to Edit distance class,
which, given two strings s; and s,, measures the variations required to let s, be equal
to s;. Differently to the standard Levenshtein distance, results are normalized by the
length of the input strings. Note that the time required to compute the Levenshtein
distance typically increases with the string length. Given two strings of size /; and [},
the Levenshtein edit distance scales with complexity O(/; - [)).

To compute distances in a distributed fashion, I build on Apache Spark to distribute
the workload on several executor nodes °. Some ingenuity is required here. I consider
two possible solutions.

The first simple solution splits the matrix S into k rows, and then “maps” the com-
putation of each row among executors. With k = n, each executor would compute all
distances from one string s; to any s; € S. Rows are then collected to build D, which is
stored on disk. This solution, however, suffers from the fact that executors that are as-
signed a long string s; would become the bottleneck easily since the length of s; heavily
influences the computation of the distance.

The second smarter solution instead generates all possible pairs (s;, 5;) and “maps”

]
the computation of each pairwise distance. Here, in the first stage, executors generate

3The code is public and available at: https://github.com/marty90/
spark-distance-matrix
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Algorithm 2 Distance Matrix computation on Apache Spark

Require: S = {strings} [> Input dataset .S of strings
Require: n [> Dataset size
Ensure: matrix_rdd [> The n X n distances

1: [> Create a RDD containing all possible pairs of elements.
2: index_rdd = parallelize({0,1,...,.n—1})
3: pairs_rdd = index_rdd X index_rdd [> Cartesian product

4: [> The COM PUTE_DI ST function calculates the distance between pairs of elements
given the strings dataset.
function coMPUTE_DIST(i, j)
d = edit_distance(strings;, strings)
emit (i, (j, d))
end function
distances_rdd = pairs_rdd.map(COM PUTE_DIST)

R A

10: [> Rebuild the distance matrix grouping and sorting pairs for a specific row.
11: function REBUILD(fuples)

12: sorted_tuples = tuples sorted by first element
13: sorted _dist = [d fori,dinsorted_tuples]
14: emit sorted dist

15: end function

16: matrix_rdd = distances_rdd.groupByKey()
17: matrix_rdd.map(REBU I LD)

18: emit matrix_rdd.sort()

all the element pairs in parallel, and the resulting list is automatically split across nodes
by using the shuffling mechanisms of Spark. In the second stage, executors compute the
distances for the pairs. In case an executor gets stuck in the computation of one pair
involving very long strings, other executors can still consume other pairs. Finally, the
matrix is rebuilt and stored on disk. The resulting algorithm is thus much less sensitive
to the way data is split among nodes. Algorithm 2 shows the pseudo-code of the second
solution. I leverage the specific Spark feature to compute the Cartesian product auto-
matically to generate all string pairs (line 3). The function COM PUT E_DI1ST (s;, s;)
computes and emits the distance between s; and s; (lines 4-8). Results are then first
grouped by key, i.e., the string s;, to for a row of D (line 16). Later rows are re-ordered
and aggregated by the function REBU I LD() (lines 11-15). The real implementation
actually performs an extra optimization computing distances only for the upper trian-
gular matrix and mirroring them to the lower triangle.

For the sake of comparison, I also compute distances in a centralized fashion, and
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Figure 3.6: Elapsed time in distance matrix computation.

profit from the Scikit-Learn Python library, using the pairwise_distances func-
tion that allows parallelism by splitting the workload on multiple jobs (see Scikit-Learn
glossary for details), i.e., exploiting the vertical scalability offered by multi-core CPU
architectures.

3.5.2 Distance computation

This analysis attempts to investigate the cost of calculating the pairwise distance for
all the pairs of input elements, producing, as a result, the final distance matrix. Given n
records, n X n distances have to be computed, allowing clustering algorithms to perform
the e-neighborhood queries.

Benchmarking Datasets For the experiments, I use the dataset HTTP-not-labeled
Dataset, extracting the URLs from the first two days of activity. The dataset includes
more than 100,000 unique URLs. To build smaller datasets, I randomly split the original
100,000-URL set. I also perform experiments with a set of different URL lengths to
evaluate the impact of the computational time of the Edit distance.

Experimental Platform For my experiments, I rely on two different systems. Cen-
tralized experiments are run on a high-end server equipped with two Intel® Xeon®
E5-2640 processors providing 40 cores in total and 128 GB of RAM. Experiments with
Apache Spark run on a medium-sized Hadoop cluster composed of 25 worker nodes
with 564 cores and 2TB of RAM overall. I use Spark version 2.3.0, and all code is written
in Python for a fair comparison.

Figure 3.6 depicts the elapsed time — i.e., the amount of time needed for the job to
complete — for the distance matrix computation while varying the dataset size, both
with a centralized (red dashed lines) and distributed approach (solid blue lines). I con-
sider two different numbers of jobs (10 and 40) and executors (100 and 500). Results
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Figure 3.7: Speedup factor of Spark distributed approach varying the number of Spark
executors w.r.t. centralized algorithm using 40 threads.

point out the differences between the two methods: the centralized approach shows a
clear, direct relation with the dataset size, and grows with a O(nz) complexity (note the
log-log scale). With the broadest dataset (100 k URLSs), 40 jobs on a single machine re-
quire more than 7 hours to complete the operation, while the 10 jobs configuration does
not reach completion in a reasonable time. On the other hand, the Spark-based version
takes less than 1 hour, showing the goodness of the horizontal scalability approach for
a large and complex dataset. Note indeed that for datasets smaller than 5,000 URLs,
the overhead caused by the initialization of the executors and the shuffling of results
impact the distributed solution, making it slower than the centralized one.

For both the centralized and distributed approach, the increase in the number of
jobs and executors guarantees a better utilization of resources, providing better overall
scalability, and proving that the distance matrix computation is amenably parallelizable.
Specifically, with Spark, the overall job time remains practically constant up to when
the cluster capacity is reached. The cluster capacity depends on the number of used
executors, and on the size of the cluster. In particular, with more than 10,000 elements,
the complexity becomes again O(n?), meaning that all the computation power of my
system has been saturated.

To better highlight results, Figure 3.7 depicts the speedup factor, computed dividing
the execution time of the centralized implementation (40 jobs) by the distributed one
(100, 200, and 500 executors). Results allow to appreciate better that: (i) the speedup is
less than 1 when dataset size is small (red area); (ii) when the size is big, i.e., the input
dataset contains more than 10,000 URLs, the speedup factor increases significantly. In-
creasing the number of executors has a noticeable impact on the speedup factor growth,
which is shown to reach a value up to 8 when Spark exploits 500 executors. With exten-
sive datasets, the communication overhead slows down the speedup. In Figure 3.6 and
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Figure 3.8: Distance matrix computation time with different number of Spark workers.

in Figure 3.7 it can be noticed that the performance obtained using 500 executors on
small datasets are worse than what obtainable with lower parallelization, that because
of the initialization cost. The results are better for dataset sizes greater than 10,000.

I now concentrate on the impact of different parallelization levels, measuring the
time required for the matrix computation when varying the number of executors from
5 to 500. I consider three different dataset sizes, n =5 000, 10 000 and 20 000 URLs. In
Figure 3.8 one can appreciate the effects of greater parallelization in the execution time
(notice the log-log scales again). However, one can notice the curve flattening for the
values of 200 and 500 executors, where the benefits of higher parallelism are nullified
by the communication and synchronization overhead.

Lastly, I investigate the impact of the string length on the overall computation time.
To quantify this phenomenon, I conduct experiments considering sets of URLs lying in
different length ranges. I define 11 bins and divided original URLs according to their
length until 10000 elements composed each bin. I used the 40-jobs configuration for
the centralized approach and 500 executors for the distributed one. Figure 3.9 reports
the time elapsed for computing the entire distance matrix for each set of different length
URLs. The results demonstrate the impact of the string sizes and, again, the different be-
haviors of centralized and distributed approaches. Note how, in the centralized case, the
computation time is highly dependent on the URL length, with a penalty incurred with
extremely long strings for which the distance computation becomes the main driver.
The distributed approach instead can better exploit the higher parallelism, so that over-
all time decreases. Again, for particularly short strings, the initialization and commu-
nication overhead is still dominating the computation.

The experiments in the computation of the distance matrix show the potential of
the horizontal scalability, which allow a dynamical allocation of resources, enabling an
enhancement in performance without negatively influencing the users [4]. At the same
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Figure 3.9: Distance matrix computation time for sets of different string length, with
n = 10000 strings in each set.

time, when dealing with small data, a centralized solution. Indeed, with respect to the
centralized solution, it requires an initial setup time and communication between the
nodes.

3.5.3 Clustering Algorithms Computation

Once the distance matrix D has been computed, it is possible to run the desired
clustering algorithms, tune their parameters, and compare the results. To show this,
I now focus on the execution time of the clustering process, when the pre-computed
distance matrix is provided as input. I consider five possible clustering algorithms that
I briefly introduce next, before running experiments. They all require to compute all
pairwise distances among points.

All algorithms were tested by setting the value of MinPoints = 20; the additional
parameter €, used by DBSCAN and OPTICS, is set at the value € = 0.4 and starting from
a pre-computed matrix D. My aim here is to show the possible improvement in terms of
total execution time and the flexibility in the algorithm choice that the pre-computation
of the distance matrix produces. Off the shelf Scikit-Learn implementations of DBSCAN
and HDBSCAN are used, OPTICS is executed using the pyclustering version, IDBSCAN
uses Scikit-Learn DBSCAN as the building block, while the authors fully develop CANF.

Figure 3.10 shows the execution time of the clustering algorithms, using the off-
the-shelf implementation offered in Scikit-Learn. The dark gray area indicates the best
execution time for the distance matrix, as obtained from Figure 3.6. The light gray one
represents the computation time with the centralized approach. As it is visible, for most
of the algorithms, the execution time is an order of magnitude lower than the time
needed for the mere computation of the distance matrix (note the log-log scales). Even
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CANF benefits from the distributed computation of D for large datasets. The clustering
stage would bottleneck only OPTICS. DBSCAN and HDBSCAN obtain the best perfor-
mance. Despite running on a single thread, both end the computation in several orders
of magnitude less than the time to compute the matrix D, even when extensive datasets
are involved. The heterogeneity in the obtained results reflects the variety in the chosen
algorithm implementations. Each of them, indeed, takes advantage of a different degree
of optimization. Regardless of time performance, in this thesis, I opted for restricting
the field of investigation to three widely-known and applied algorithms (i.e., DBSCAN,
OPTICS, and HDBSCAN), and to two (i.e., CANF and IDBSCAN) designed explicitly
by the authors having the URL clustering problem in mind. Such choice results also in
different clustering performance, whose analysis is out of the scope of this work.

3.6 Malware Detection

This section presents experiments conducted on the HTTP-labeled Dataset dataset.
The results show the capacity of the proposed solution to capture and highlight the
anomalous behaviors carried out by malicious activity in a completely unsupervised
manner.

3.6.1 TidServ Overview

This section firstly provide some highlights on the traffic produced by TidServ, a
popular Trojan Horse also known as Alureon, TDSS or TDL [9]. After infecting a host
and transforming it in a bot, this malware communicates with a Command-and-Control
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(C&C) server to receive commands.* Communications with C&C servers are typically
established using HT TP, so to evade firewalls. Initially, communication was taking place
using static URLs. In this scenario, security software could easily block the communi-
cations using, e.g., static rules, and blacklisting. However, the malware started to evade
such rules by using polymorphic approaches successfully, e.g., randomly generating
and rotating hostnames for C&C servers, or adding randomness in the URL path. This
evolution in the approach makes the compilation of static blacklists based on string
matching a more difficult task and in turn, less effective.

TidServ adopts this expedient by changing the URLs periodically to contact C&C
servers. To give the reader the intuition of how random a TidServ URL can appear,
Table 3.2 reports four examples of URLs that the IDS flagged. Hostnames and paths
change, but some common parts (in bold) are still visible. In some cases, the shared pat-
tern may be very long, but in others as few as four characters are found in common,
suggesting that different communication patterns may be present. Observing these pat-
terns is easy if one is provided the correct set of URLs, but spotting them when mixed
in the hundreds of thousands of URLs generated by a host makes the detection very
challenging.

3.6.2 IDBSCAN Execution Over Labeled Dataset

I run IDBSCAN over the dataset, including one day of HTTP traffic from 34 hosts,
14 of which are flagged by the IDS as infected by the TidServ malware, from the dataset
HTTP-labeled Dataset presented in Section 2.2.2. Afterward, I check those clusters which
contain at least one TidServ URL. In total, IDBSCAN identifies 7 clusters according to
the distribution reported in Table 3.3. Each cluster contains URLs not originally flagged
by the IDS. By manually checking those, it confirms that IDBSCAN correctly assigns
those to TidServ clusters, being those very likely to be false negatives for the IDS (i.e.,
the IDS did not flag those despite being malicious). The table shows the polymorphic
behavior of the malware. Several hostnames are used for the C&C server, and random-
ness is introduced in the URL paths too. IDBSCAN is able to identify all the TidServ
labeled URLs in the entire set of 78,421 URLs. For instance, consider the first cluster, be-
ing the largest with 192 URLs pointing to resources hosted on 14 different hostnames,
whose shared pattern is only the . com substring. Interestingly, IDBSCAN groups to-
gether 118 different URLs that the IDS flags as TidServ, and 74 additional URLs not
flagged by the IDS. Table 3.4 details cluster 7. In this case, only the first (in bold) URL
out of 37 is flagged as malicious by the IDS. The similarity within all URLs is, however,
clear. I therefore conclude that those are false negatives for the IDS. This clear example
explicates how IDBSCAN could be used to support the generation and update process

“The C&C servers run on central computers that attackers use to update, instrument and control
infected hosts.
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Table 3.2: Examples of TidServ URLs flagged by the IDS. Common substrings in bold.

swltcho81.com/NZf4A07d7r7yE1C1dmVyPTQuMCZiaWQ9YjZjYW VhNj
EONjhhMmQ4ZTc00GQ3ZTEzMTIyMDZiMDQ4NWY2M;jJhYSZhaWQ9
NDAxOTemc2lkPTAmecmQ9MCZlbmc9d3d3Lmdvb2dsZS5pdCZxPXV
pbmZIIG15ZGVzaw==38c

rammyjuke.com/kallwWRdA8Y5ytbU9dmVyPTQuMCZiaWQ9YjZjYW VhNj
EONjhhMmQ4ZTc00GQ3ZTEzMTIyMDZiMDQ4NWY2MjJhYSZhaWQ9
NDAxOTcmc2lkPTAmemQ9IMCZIbmc9d3d3Lmdvb2dsZS5pdCZxPWZ
venVtIGFybWF0YSBkZWxsZSB0ZW51YnJ137g

bangl24nj14.com/TVq2BttP743qt1c8dmVyPTQuMCZiaWQ9YjZjYWVh
NjEONjhhMmQ4ZTc00GQ3ZTEzMTIyMDZiMDQ4NWY2M;jJhYSZhaWQ9
NDAxOTemc2lkPTAmecmQ9MCZlbmc9d3d3Lmdvb2dsZS5pdCZxPXV
pbmZIIG15ZGVzaw==05c

iau71nag001.com/Kvb13nWd6P4XrFs3dmVyPTQuMiZiaWQIMDUONWQw
ZDQwY2MyODU4YWN;jYzF1ZjJkM2FiZDA5N2RiYmRIYmVkZiZhaWQON
TAWMTgmc2lkPTAmcmQ9MCZIbmc9d3d3Lmdvb2dsZS5pdCZxPWZhY2
Vib29r27c

Table 3.3: TidServ clusters identified by IDBSCAN.

’ ID ‘ Tot. URLs | TidServ URLs | Hostnames | Most common hostname

1 192 118 14 81hja0laala.com

2 79 75 1 wuptywcj.cn

3 32 18 2 clickpixelabn.com

4 6 1 biiwf3iidpkxiwzqmj.com
5 5 1 z1091kha644.com

6 5 1 zhakazth.cn

7 37 1 3 lkckclckllili.com

for IDS signatures.
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Table 3.4: URLs in cluster 7. The IDS flagged only the first.

gnudokeOr.com/4..PTQuMCZiaWQINWJjNWFiMjE1Yj...5pdCZxPWxvdWIzIGNydWI1zZXM=16h
Ikckelckliili.com/...PTIUNCZiaWQINWJNWFIMjE1Yj..jE1YyZhaWQIMzAwMDEmc2lkPTAmecmQIMA==27g
Ikckelckl1ili.com/...PTIUNCZiaWQINWJNWFIM]E1Yj...jE1YyZhaWQIMzAwMDEmc2lkPTAmcmQIMA==27¢g
Ikckelckliili.com/..PTIUNCZiaWQINWJNWFiMjE1Yj.. JE1YyZhaWQ9MzAwMDEmc2lkPTAmemQIMA==26g
Ikckelekl1ili.com/...PTIUNCZiaWQINWJNWFiMjE1Yj.. JE1YyZhaWQ9MzAwMDEmc2lkPTAmcmQIMA==26g
Ikckelckliili.com/...PTIUNCZiaWQINWJNWFIMjE1Yj..jE1YyZhaWQIMzAwMDEmc2lkPTAmecmQIMA==18x
Ikckelekl1ili.com/...PTIUNCZiaWQINWJiNWFiMjE1Yj.. JE1YyZhaWQ9MzAwMDEmc2lkPTAmemQ9MA==18x
etc.

3.7 IDBSCAN on One Day of Unlabeled Traffic

In this section, I provide experimental results on a general use case. I choose AT =
24h,n =0.75, 8,,;, = 0.3, p = 0.2 and MinPoints = 20 to look for well-shaped and
big enough clusters. I tested different parameters, observing little changes. Experiments
are not reported here for the sake of brevity.

I start to analyze the first day of traffic. As seen from Table 3.1 in Section 3.4.3,
IDBSCAN obtains 283 clusters from the set of 59 543 original unique URLs. The Silhou-
ette coefficient S(C) has a value of 0.5 or more for 183 clusters, with 55 of them with
S(C) > 0.75. That is, clusters result very well-shaped.

The top part of Table 3.5 shows the most massive clusters, while the bottom part
displays those with the highest silhouette. The table reports the silhouette S(C), the
most common hostname in the cluster (in brackets the total number of distinct host-
names), the number of unique URLs, and the type of the service. Although the majority
of clusters are relatively small, some contain a considerable number of distinct URLs and
different hostnames. That behavior is not to be taken for granted, as often the complex-
ity of URLs structure tends to increment the distance also for actually similar elements.

After this stage is already possible to identify some suspicious clusters, for in-
stance, 30 unique URLs form a cluster where URLs have all the same IP address
219.129.216.161 - but random paths. After further analysis®, this cluster is indeed
found to be malicious. Other suspicious clusters emerge as well. At last, it is essential to
mention that the same service, i.e., the same hostname, may be broken apart in multiple
clusters, each one containing specific content. For example, from the analysis of other
clusters, it results that the Chinese messaging system msg. 71 . am finds its represen-
tation into two clusters, one serving images (.GIF), and the other exchanging control
information like device reports.

These results clearly show that IDBSCAN let the services that commonly charac-
terize the traffic emerge. The security analyst can then analyze clusters and easily label
them.

>Google results: https://goo.gl/q3DgT8; VirusTotal results: https://goo.gl/fqrNkG
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Table 3.5: Insight of the clustered HTTP traffic from the first day of analysis. On the
top, the largest clusters. On the bottom, the top well-shaped clusters.

‘ S(C) ‘ Main hostname (unique hostnames) ‘ Elements ‘ Activity

0.52 | scontent-mxp1l-1.cdninstagram.com (4) 4359 Instagram CDN

0.92 | se-rm3-18.selive3.msf.ticdn.it (6) 3504 Entertainment -
Streaming CDN

0.36 | skyianywhere2-i.akamaihd.net (9) 2087 Entertainment -
Streaming CDN

0.30 | www.google-analytics.com (29) 1940 Tracking

0.95 | rtinfinityh2-a.akamaihd.net:80 (1) 1227 Entertainment -
Streaming CDN

0.76 | videoassets.pornototale.com (1) 751 Adult content

0.57 | tracking.autoscout24.com (2) 592 Tracking

0.37 | ec2.images-amazon.com (10) 575 Image CDN

0.56 | thumbs-wbz-cdn.alljapanesepass.com (1) 393 Adult Content

0.66 | video-edge-8fd1c8.cdg01.hls.ttvnw.net (4) 359 Entertainment -
Streaming

0.98 | iframe.ad (1) 27 Advertising

0.97 | news.biella.it (1) 23 News

0.95 | rtinfinityh2-a.akamaihd.net:80 (1) 1227 Entertainment -
Video Streaming CDN

0.93 | motoitalia01.wt-eu02.net (1) 45 Tracking

0.92 | skygo.sky.it (1) 45 Entertainment -
Video Streaming Platform

0.92 | se-rm3-18.se.live3.msf.ticdn.it.msf.ticdn.it (6) 3504 Entertainment -
Video Streaming CDN

0.92 | 219.129.216.161 (1) 30 Malware

0.92 | a.applovin.com (1) 20 Analytics

0.92 | rum-dytrc.gazzetta.it (1) 47 Entertainment - Analytics

3.8 Conclusion

This Chapter presented IDBSCAN, a clustering solution based on the iteration of
DBSCAN, to improve the quality of the results. Sections 3.6 and 3.7 showed the appli-
cability of this methodology over two interesting real-world cases. IDBSCAN exhibited
the capability of offering an easy way of exploring traffic data, through the formation
of well defined clusters where similar URLs are grouped. Thanks to the cohesiveness of
the formed clusters, clues about the processed traffic easily emerge and let the analyst
identify possibly malicious traffic or advertisement, tracking and third-party services.

While we clearly showed the effectiveness of our approach by presenting produced
results on a real but small dataset, an additional effort is still required to make the
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system scale at runtime usage, in order to enhance the effectiveness of the analysis and
the discovery of anomalies, which would be difficult to spot in a single day exploration.
This topic will be discussed in Chapter 4, and the application of the system to real-world
use cases will be described in Chapter 5.
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Chapter 4

Evolution and System Knowledge

This chapter presents the study for the generation of an evolutionary analysis of the
URLs traffic produced during a period, across different users. The evolutionary analysis
implies the use of different techniques, tools, and methodologies. The idea behind this
system is to create a record of all the clusters visited for each snapshot, then use clus-
tering each day and compare the newly generated clusters with an activity record, with
a solution called System Knowledge.

Firstly, Section 4.1 presents System Knowledge. It is a core part of the overall system.
This section displays the different parts and introduces the following sections.

Subsequently, Section 4.2 describes the sampling stage, that must be performed
immediately after the clustering step, to mitigate the storage consumption and facil-
itate the comparison between clusters. This section describes the considered sampling
methodologies, including the proposed one. It reports sampling tests on both synthetic
and real-case datasets, showing the effectiveness of the introduced methodology.

Afterward, Section 4.3 describes how to compare the new clusters, extracted in the
last observation of data, with the ones previously obtained, from an analysis of the
similarities between the new and old clusters. It describes the performance of the System
Knowledge in a controlled experiment, obtained considering peculiar URLs.

Section 4.4 reports a procedure called ageing. It is a fundamental step to keep the
System Knowledge up to date. After the comparison, if a new cluster is similar to some
System Knowledge cluster, it is necessary to update and interchange the elements repre-
senting the latter, to follow the evolution of the comprised category. Finally, Section 4.5
describes pruning techniques. These techniques are necessary to remove old, not visited
clusters, and keep the System Knowledge clean. A technique based on a sliding window
determines the life of the System Knowledge clusters.

The evolutionary approach described here is the current output of the works pre-
sented in [54, 56].

49



4 — Evolution and System Knowledge

4.1 What is the System Knowledge

This section aims at describing the structure and implementation of the System
Knowledge. System Knowledge Z is a data structure, which contains a collection of
groups Z, € Z. These groups contain, at least initially, a representative subset of URLs
in a cluster. Besides, they have at least two metadata, the date of addition of the group
in the data structure, and the date of the last appearance. Indeed, as described in Sec-
tion 2.1, at each clustering step, the new clusters C(i) are compared with the group in
the System Knowledge. If the groups are similar, the group in the System Knowledge
is updated, also updating the elements contained in the reference group, as explained.
Another possible meta-data is the group of ID(s) of the user(s) that generated clusters
containing that type of content, even at different times. Depending on the application
case, this information may be present or not. HDEFS is the storage structure for the Sys-
tem Knowledge since its size can grow in time.

The comparison of each newly found cluster C (1) with those present in the System
Knowledge Z (t — 1) is a CPU intensive operation. Also, this involves the computation
of edit distances between many URL strings. Therefore, the System Knowledge module
runs in the Spark environment to guarantee scalability, both in terms of storage and
performance. The idea again is to first compare in parallel the clusters C ;€ € (1) with

Z € Z(t—1),Yj,1.In a second step, perform the insert and update operations on the
System Knowledge representatives.

Using a tree organization - through the implementation of the Vantage-point tree
(or VP tree) [78] - for the representatives in Z, improves look-up of the most similar
cluster in the System Knowledge (Equation (4.3)). The VP-Tree structure is replicated
in each executor and used to compute the k-NN (with k = 1) for each representative
of each cluster C;(?). In the end, the algorithm updates :?}, and build and redistributes
the newly updated VP-tree. This technique speeds up the process and improves its scal-
ability. Considering the applicative scenarios discussed in Chapter 5, computing and
maintaining the System Knowledge for the two weeks of HTTPS traffic - apart from
the clustering computation - requires 34 minutes, on average circa 2 minutes and 30
seconds per day. Considering the three weeks of HTTP data, the whole process takes
less than five hours, circa 14 minutes per day.

4.2 Sampling

Once the clustering algorithm returns the final clusters, it is necessary to sample a
subset of elements from each of them. The rationale is twofold: to ease the comparison
between clusters by reducing computational complexity while maintaining their infor-
mation quality; and to keep in the System Knowledge a digest of the collected traffic,
thus reducing its footprint.
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I sample each cluster C; € @ keeping either a ratio r € [0,1] of the cluster popula-
tion, or a fixed specimen. At the end of the process, a set of sampled clusters € = U i ¢ y
is obtained. Let m be the number of elements to extract. In case of fixed ratio r, I set
m = [r||C,||], and then pick éj = sample(C;, m). In case of a fixed sampling, I choose
m a priori, and I select elements as éj = sample(C;, m).!

sample(C;, m) is a function that extracts m samples from C;. I consider three sam-

plings:

« Random sampling: selecting m objects at random from the elements of C;, i.e.,
sample(Cj, m) = rand(Cj, m);

« Proportional sampling: selecting m objects at random from the elements of C;
where m is chosen according to the ratio r € [0,1], ie, sample(C;,m) =
rand(C;, m), where m = [r||C,|[],

« Percentile sampling: selecting the elements that best represents the different kind
of URLSs present in a cluster, i.e., sample(C;, m) = percentile(C;, m).

percentile(C;, m) extracts m representatives by looking at the distribution of mean dis-
tances for each URL s5; € C;

{EskECj[dURL(Siask)]’VSi € Cj} (4.1)

The selected elements are the ones that correspond to values that divide in equally sized
sets the cluster, i.e., that correspond to the m percentiles. The idea behind percentile se-
lection is having a set of cluster samples containing both elements that are in the center
area of a cluster and the ones at its border. Note that in case of m = 1, percentile(C;, m)
would select the so-called medoid, i.e., the element whose average dissimilarity to all
the objects in the cluster is minimal.? The medoid is generally an appropriate choice
to describe a group of elements, but it is more appropriate for spherical and homoge-
neous clusters. Since a cluster in IDBSCAN consists of a chain of interconnected smaller
spherical dense areas, the choice of only one point would exclude other possibly dis-
tinguishing instances. In this sense, the percentile sampling produces a sampling that
better represents the population of the cluster.

4.2.1 Sampling on Synthetic dataset

I compare the sampling methodologies over the results of the IDBSCAN clustering
applied in the artificial dataset scenario 2.2.1, with 20 000 points, 100 clusters, and three-
dimensional feature space.

In case |C;| < m, all elements are selected.

*The medoid is different from the centroid since the first consists in selecting an element among the
ones of the cluster, while the second does not have this restriction.
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Figure 4.1: Sampling applied to the artificial dataset with 100 clusters, 50 of which were
already seen in the past.

I set up an experiment where starting from the data &, I generate a subset D C 9.
Through D I build the System Knowledge Z(0), which contains the clusters generated
by applying IDBSCAN on D. From the complete set 2 I extract the ensemble of clusters
# (1), which mimic the second day of analysis. I apply sampling and compare (1)
to Z(0). The expect result is that IDBSCAN would generate similar clusters for the
common elements in the two sets and that then the System Knowledge algorithm would
to identify half of the clusters as already known, and the other half as new.

In this experiment the first part contains points belonging to 50 labels, i.e., clusters,
present in the Synthetic-labeled Dataset. The second set contains, instead, all points
in Synthetic-labeled Dataset. I compute the clustering on the first set and extract the
representatives. I then rerun the clustering with all points from all 100 clusters, extract
the representatives, and compare them with the previous representatives. The idea is,
as said before, to check if the clusters sampling technique allows the identification of
the same clusters (the 50 clusters present in the first and second dataset), checking the
similarity between the new representatives and the old ones. I repeat this experiment
for the different sampling strategies and an increasing number of representatives.

Figure 4.1 shows the results. For each test, I report, for each cluster C, the mini-
mum distance between its sample representation C ; and the System Knowledge Z.ie.,
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4.2 — Sampling

d.. (C s %), sorted by increasing d, .. . Ideally,  would expect to have d,. = 0 for those
50 clusters that are in common, while d,,;,, > « for the 50 new clusters that are present
in the second batch only.

Results show that the sampling and System Knowledge enhancement work quite
well, with the percentile sampling performing better given its deterministic approach
to select representatives. As I could expect, all of the three sampling methodologies per-
form better when increasing the number of representatives. The comparative approach
seems to offer excellent results in this scenario. It is worth to recall that, in this bench-
mark, all clusters contain about 200 points each, so that also random sampling and fixed
sampling present good results.

At last, considering the choice of the threshold a, I can see that any value higher
than 0.1 would offer a good separation between the 50 old clusters, and the 50 new
clusters.

4.2.2 Sampling with URLs

To choose which strategy works best in the real case scenario, I run a second exper-
iment in which I again split the set of URLs in the first day of data 2.2.3 into two sets.
I run the clustering considering the first half of URLs, extract representatives for each
identified cluster, and add them to the System Knowledge. I then rerun the clustering
considering all URLs, extract representatives, and match the new clusters with those in
the System Knowledge. In this case, too, I expect about 50% of clusters to be old, i.e.,
dpin < @, and 50% to be new, i.e., d,,;, > a.

Results are depicted in the plots of Figure 4.2, which compares the three differ-
ent sampling strategies, with different parameters. The figure shows that the System
Knowledge matching works as expected. The more the number of representatives, the
more the ideal step-curve-behavior is visible. The approximation is satisfactory, picking
a fixed m equal to 16, and very similar to the step curve with proportional r of 20% or
30%.

For both the experiments, I obtain the best results when using percentiles, whose
smart sampling guarantees optimal results. Indeed, when I consider the percentile ap-
proach, I always obtained a perfect distance of 0 for the clusters that contain the same
elements as the compared ones. That is happening because two sets are equal, and I
deterministically select the representatives.

Considering the choice of @ when actual URLs are considered, Figure 4.2a, Fig-
ure 4.2b and Figure 4.2c clearly show that the new clusters tend to be very dissimilar
from the old ones, and that any a € [0.2,0.4] is a proper choice. To not discard poten-
tially new and interesting clusters, in the following, I choose a value of @ = 0.3.

At last, enlarging the number of representatives has the drawback of increasing the
computation complexity, due to the need to compute O(m?) dy 1 (). Figure 4.3 shows
the experimental computational time using lin/log scales considering the set of 60 000
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Figure 4.2: d,,;, when 50% of traffic is the same and 50% is new. Different choices of
sampling approaches.
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Figure 4.3: Computation time for different sampling strategies. Without sampling, the
comparison of the System Knowledge would require too much time.
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URLs. For variable fraction r, I report results in the plot assigning to m the value cor-
responding to the closest integer to the average number of elements in the clusters. As
expected, the curve grows quadratically for m (logarithmically in log scale), with m = 32
and r = 20% (on average 23 samples) or 30% (avg. 35 samples) that already have a com-
plexity larger than 3 000s. Without sampling, these experiments would require more
than 7 hours to complete. Considering the System Knowledge would have thousands of
clusters and that this step shall be completed every AT, the best trade-off between clus-
ter similarity identification and computational time is obtained using a fixed m = 16.

4.3 System Knowledge Enhancement

The System Knowledge Z (t) maintains the set of clusters found in the past. At the
beginning Z(0) = @. Given a sampled cluster C, I want to identify the closest cluster
found in the past. Let

dmin(év 2\0) = l:nlnA (d (é’ Z))
ZeZ
where d(C, Z) = mig dyri(c,z) (4.2)
ce

zeZ
Let €(7) be the result of the clustering of the current batch. I need to check if a
cluster C JONS € (t) contains the similar content of an already registered one, or if it
represents new traffic. For the cluster ¢ (1), the most similar cluster Z =1) e Z(-1)
is

Z,(t - 1) = argmin (d,,,;, (C;(), Z(t - 1)) (4.3)
A cluster is then considered as new if the minimum distance is larger than the threshold
a. The System Knowledge is updated as follows:

ZO=Zt-DU{C,H)€CW |dy, (C;),ZE-1) > a} (4.4)
That is, I add a new cluster found at time t if its distance to the closest cluster is
higher than a.

4.3.1 In vitro experiment

To evaluate the reaction of the System Knowledge with respect to the appearance
of anomalous elements, I design a controlled experiment in multiple stages. I start from
an initial group U G(0) of almost 33 000 unique URLs extracted at random from the 2.2.3
HTTP dataset. I then artificially create new groups UG(1), UG(2), and U G(3), where
I progressively inject URLs belonging to different applications. I first add a block of
200 torrent URLs, ie., UG; = UGy U {TorrentU RLs}. Next, I add 228 malicious

*In this case, too, CPU time can be reduced by computing dy, 5, in parallel.
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Figure 4.4: Curves of distances when new traffic is injected in the controlled experiment.
Top 20% clusters are reported.

Table 4.1: New clusters after the comparison with the System Knowledge.

Experiment stage d_;, Main hostname(s)
UG, Torrent 0.75 b-0.ad.bench.utorrent.com
0.57  scorecardresearch.com, pixel.quantserve.com
0.23 torrent.gresille.org
UG, Malware 0.76 wuptywcj.cn
0.76 *-6nbcv.com, iau71nag001.com
0.76 bangl24nj14.com, switcho81.com
U G5 Streaming 0.75 198.38.116.148
0.74 23.246.50.136, 198.38.116.148
0.74 198.38.116.148
0.73 23.246.50.136, 198.38.116.148
0.72 198.38.116.148

URLs generated by hosts infected by TidServ, i.e.,, UG(2) = UG(1)U {TidservU RLs}.
Finally, I inject 549 URLs generated by a popular streaming service, i.e., UG3) =
UGQ2) U {StreamingU RLs}.

After each stage of clustering and comparison with System Knowledge, I check the
ability to identify the new traffic. Results are reported in Figure 4.4, which shows the
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Table 4.2: Behavior of the system during the week.

Mar-01 Mar-02 Mar-03 Mar-04 Mar-05 Mar-06 Mar-07

Unique URL 59543 62842 67789 61849 77770 87928 88396
Daily Clusters 283 322 348 304 396 428 431
System knowledge 283 475 643 765 927 1097 1267
System enhancement 283 192 168 122 162 170 170

minimum distance dmin(é(t), Z(t — 1)) between clusters found in UG(¢) and those in
the System Knowledge build on previous steps. I report only the first 20% of clusters,
ordered by distance. As clearly shown, LENTA is able to recognize the new traffic: first,
d,in is equal to zero for those clusters in U G(¢) that were already present in UG(¢ — 1).
Second, and more importantly, the new traffic is clustered in totally different clusters,
whose d,,;, is much higher than « = 0.3.

In detail, Table 4.1 depicts the results of the experiment. First, all clusters contain
only new URLs injected in each step of the process. Second, notice that the system
identifies multiple new clusters for each stage. This behavior is welcome since each clus-
ter corresponds to a semantically different service. For instance, for the video stream-
ing case, each cluster corresponds to videos served for different platforms (iOS, An-
droid, and PC), and torrent clusters correspond to different swarms and trackers. Third,
din > 0.3 for all clusters but one in the Torrent data, for which d,,;, = 0.23. This
cluster would be associated with a previously seen cluster. The association is correct,
and URLs have a very similar syntax to the one already found and related to a tracker
service, tntvillage.

4.4 Ageing

When dmin(é 0, Z(@ - 1)) < a, two clusters are considered similar, so they con-
tain the same kind of information. The new cluster is associated with the old one and
may contain new knowledge, e.g.,, some important changes in the particular service
or differences in the structure or information carried by URLs. It is vital to register, if
possible, those updates.

Iapply a random replacement policy. That is, I substitute each element z;, € Z,(t—1)
with the element ¢; € ¢ JO) with a certain probability p. So,

zii=c < pVie[l,ml, z;€ Z(t-1),¢; € C;(1) (4.5)

In doing so, we update the System Knowledge representatives, ageing and replacing
“old” ones with fresher information.
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4.5 Pruning Based on Inactivity

The System Knowledge keeps information on clusters since the first time they had
been added to it. Let ,,;, be the first time in which a cluster appears in Z, and ,,, be the
last time it has been encountered, i.e., when the System Knowledge associates, through
similarity, a newly found cluster to it.

The information about the “last seen” date is crucial to understand the development
of network traffic clusters. Knowing which are the most recently visited clusters, it is
possible to understand which are the trends in the network. At the same time, looking
at the “old” clusters helps in notifying changes in behavior, in suggesting the rise of
new services or the replacement of old ones.

On the other hand, keeping old, clusters that are not contacted anymore, can rep-
resent a limitation in terms of storage and a bottleneck during the analysis, since each
time the system compares the sample of the newly found clusters with all the elements
present in the System Knowledge. For this reason, it is essential to implement a prun-
ing mechanism to remove those inactive clusters that contain content that users did not
visit in the recent past. The information of the last active date, i.e., #;,;, is leveraged to
remove old and inactive clusters. Given Z, it is possible to define AT}, ive = t — 145 If
AT, erive = DL pposyn, With ALy . defined as Inactivity Threshold, then Z,, ..., is Te-
moved from Z. Section 5.1 contains a discussion of the impact of AT, in a real-case

scenario.
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Chapter 5

Application

This chapter contains the verification, in application scenarios, of the system com-
posed of the components described in Chapters 3 and 4, IDBSCAN clustering, and Sys-
tem Knowledge, i.e., LENTA. The overall system is analyzed in real scenarios, prolonged
over time, containing the navigation activities of different users. This thesis explores
two scenarios.

Section 5.1 refers to 3 weeks of analysis on passive traces, i.e., HTTP-not-labeled
Dataset. The test reported in this section analyzes the System Knowledge over daily
bins of unrepeated URLs extracted from all users. In this way, the clusters possibly
contain pages and resources visited by more than one user. This approach allows an
overall analysis of the whole network.

In Section 5.2, the dataset contains HTTP and HTTPS webpages, intercepted from
the users’ machine. The analysis here is per-user, i.e., it implies the performing of IDB-
SCAN clustering for each user. The investigation objective is two-fold. First of all, it
aims at observing the single-day and evolutionary activity of single users. Secondly, it
focuses on scrutinizing the commonalities in the actions of the monitored group.

The results reported in this chapter are part of the work presented in [56].

5.1 HTTP Traffic Over Time

Figure 5.1 reports the process of System Knowledge evolution over the 21 days under
analysis. In the first day all the clusters are added, thus being all labeled as new (in
green). From the second day, we can notice different operations: (i) some new clusters
join the System Knowledge, (ii) the system operates updates on others when it finds
similar clusters (blue), and (iii) the remaining group (gray) is in idle. The growth of Z
continues up to the beginning of the second week when the pruning action - based on
inactivity - starts evicting some old, inactive clusters (yellow). The red bar details how
many discarded clusters reappear in the future steps.

The values obtained for the last two features depend on the size of Al,,.,. To check
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the impact of this choice, Figure 5.2 reports the number of clusters that would be evicted
from and eventually re-inserted into system knowledge. As expected the number of both
deleted and reappearing clusters decreases enlarging Al,,.,;,- This behavior indicates
a non-negligible periodicity, especially in consecutive days, that may suggest a natural
stabilization of the system knowledge size over long periods. For extended analysis, a
higher Al,;,,,, may be more suitable, following memory and storage limitations, to let
the system have time to level off.

Compare Figure 5.1 with the growth in Fig 2.2. The number of unique URLs tops
more than 420 000 after seven days, with on average 72 000 unique URLs per day. The
number of clusters instead solely reaches 1600, with less than 200 newly found clusters
per day. In a nutshell, this approach can decrease the amount of information the security
analysts have to process by three orders of magnitude so that they have to inspect less
than 200 clusters per day instead of managing several tens of thousands of unique URLs.
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Figure 5.1: Daily enhancement of system knowledge for HTTP data.

The variability of URLs grouped in the same cluster also simplifies the investigation
of the involved services. For instance, I checked some clusters that came into sight after
each System Knowledge enhancement phase. I report, for each day of the first week of
observation, the five new most different clusters for the previously collected traffic, i.e.,
those for which d,,,;,,(C;(1), ZF(@—-1)is highest.
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Table 5.1: Most interesting clusters obtained by the daily comparison with the system
knowledge in the controlled experiment.

Day Main hostname (unique hostnames) Activity Day Main hostname (unique hostnames) Activity
adnxs.com (3) Advertising ams1.mobile.adnxs.com (1) Advertising
www.bing.com (1) Search Engine ads1l-adnow.com (3) Advertising
Mar-02 amazon.it (3) E-commerce Mar-03 uk-ads.openx.net (1) Advertising
doubleverify.com (9) Advertising c.3g.163.com Chinese Website
mp.weixin.qq.com (1) Chinese Website googleapis.com (1) Cloud Storage
banzai-d.openx.net (1) Advertising engine.bitmedianetwork.com (1) uTorrent Adv
dt.adsafeprotected.com (1) Hijacker 62.210.188.202:8777 (1) Suspicious Port
Mar-04 gvtl.com (3) Hijacker Mar-05 adaptv.advertising.com (1) Suspicious Adv
windowsphone.com (1) CDN Marketplace pubnub.com (16) Messaging
ocsp.digicert.com (1) Certificate inspection irs0l.com (1) Suspicious Tracking
23.246.50.130 (5) Netflix Italy aww.com.au (2) News
198.38.116.148 (3) Netflix Germany *liverail.com (1) Advertising
Mar-06 23.246.50.136 (3) Netflix Italy Mar-07 spaces.slimspots.com (1) Adware attack
23.246.51.136 (2) Netflix Italy googleusercontent.com (2) Page Translation

178.18.31.55:8081 (7)

Suspicious Streaming

s8.algovid.com (1) Malicious Adv

Table 5.1 details the results. In this case, as well, the services are related to stream-
ing, advertising, and e-commerce services. Some unexpected traffic emerges as well; for
instance, on March 3rd, the c.3g. 163. com cluster emerges. It is related to the Chi-
nese web portal www. 163 . com, a service not reported in the previous days. URLs are
related to a newsfeed specific service. March 4th and 5th, I register some suspicious
or malicious traffic. Clusters are related to browser hijacker services, mainly adware,
and aggressive advertisement. March 6th is distinctively captivating. Eight out of ten
most different clusters contain URLs characterized by IP addresses which resolve Net-
flix Italy or Netflix Germany CDNs. These were not found in the previous days, high-
lighting a change in the Netflix load balancing policies. The other cluster contains traf-
fic from 178.18.31.55:8081, connected to liverepeater, a keyword related to illegal
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streaming content. Finally, in the last day, some suspicious traffic is visible: a rare ser-
vice like aww. com. au, an Australian news website, and webpages translated using the
Google Translate online service (curiously translating an adult-content website, possi-
bly to evade content filtering policies).

5.2 HTTPS Traffic Over Time

Here I report on my second experiment with HTTPS traffic collected via the ERMES
proxy, see Section 2.2.4. The users were monitored and stimulated in producing traffic
for 30 days, as more continuatively as possible. The collection in exam considers the
users active for two consecutive weeks, in order to explore their activity day after day,
using LENTA. Indeed, differently from the previous analysis, here the exploration con-
siders individual users (albeit after anonymization). Starting from the traffic generated
each day by each volunteer, the process aims at first to characterize the usage patterns
of each user, and secondly, to observe how it changes over time. Plus, LENTA has been
specifically configured in order to collect the information of which and how many users
visited a cluster present in the System Knowledge, to inspect the most prominent be-
haviors.
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Figure 5.3: Daily enhancement of system knowledge in HTTPS traces.
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Figure 5.3 shows the behavior of the System Knowledge for the current investiga-
tion. The functioning of the overall system is comparable to the preceding experiment,
reported in Figure 5.1. However, in this use case, the results produce information about
the behavior of users, showing the flexibility of the system in supporting data explo-
ration. In relation to the smaller sample of users, here the per-user exploration produce
in proportion a larger number of clusters. This is due both to the fact that I perform the
clustering on a per-user basis, and thanks to the availability of HTTPS traffic.

In the work of this thesis, I focus on the analysis of the most common categories of
services accessed by users, in order to analyze the behavior of users and the impact of
trackers in the amount of traffic inspected from the users activity. The focus is on 171
clusters that resulted in being common for at least two users. The categories extraction
derives from manual inspection of clusters, in conjunction with the support of public
lists for data categorization. This step results greatly simplified thanks to the similarity
and expressiveness of URLs contained in each cluster. Overall, I identified 20 coarse
categories of services.
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Figure 5.4: Most popular categories extracted from the clusters visited by at least two
users.

Figure 5.4 reports the fraction of clusters that fall into the same category. Almost a
quarter of the groups are related to third-party services, which include advertisement,
web tracking, and analytics; their pervasiveness affects the results of the system. Not
surprisingly, social networks occupy the second position. In the third place, I can find
cloud services belonging to Google and some CDN used for image storage. Overall, I
can map URLSs to categories easily. The system dramatically simplifies manual labeling,
thanks to the rich information offered by URLSs in each cluster.

An extract of the clustering results, together with its characterization, is publicly
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available on the SmartData@PoliTo website. !

'https://smartdata.polito.it/lenta-dataset/
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Chapter 6

Conclusions and Future Research
Directions

6.1 Summary and Contribution

Today, the Internet environment is growing in size and complexity. For this reason,
researchers, Internet Service Providers (ISPs) and companies are working on new de-
velopment for network traffic monitoring and characterization. This is a critical task for
network administration and analysis. These approaches can help in identifying patterns
and trends, detecting malicious behaviors, simplifying the examination, supporting the
analysts in analyzing network traffic.

In this direction, in this work, I presented a methodology for the fast identification
of HTTP/HTTPS-based services by looking at URL strings similarities. This approach
avoids using other features, and does not require any labeling. The results showed how
this methodology reduces the amount of traffic that needs a manual check and eases
the observation of changes in the network traffic. It exposes well-formed clusters of
URLSs, which significantly simplifies the identification of possibly malicious and unde-
sired traffic (Chapter 3).

I designed a recursive version of a clustering algorithm over daily HTTP/HTTPS
traffic generated by hosts in a network, called IDBSCAN. I tested it against other oft-
the-shelf algorithms, namely DBSCAN, HDBSCAN, CANF, and OPTICS, using both a
synthetic dataset and a real use case with URL objects, showing the benefits of my
proposed solution (Chapter 3). The code is publicly available on GitHub. !

I outlined an evolutionary system for the temporal analysis of URL clustering. The
design includes the engineering of the storage and comparison solution, a sampling
methodology for the clusters, and ageing and pruning techniques to keep the system

https://github.com/AndreaMorichetta/compute_clustering/blob/master/
compute_clustering.py
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up-to-date (Chapter 4). The evolutionary approach has been applied using two differ-
ent observation points, a passive probe for HTTP traffic, and a MITM proxy installed
on users’ machines. The results show that the overall methodology, applied in a long-
term observation, can identify anomalies in the traffic and changes in users’ behavior
(Chapter 5).

The findings in this work can be useful in different ways. They have a role in re-
ducing the problem complexity, quickly producing an outcome for the analyst to whom
are offered few hundreds of clusters instead of several hundreds of thousands of URLSs.
Thanks to the use of an unsupervised methodology, there is no need for labels, often
a cumbersome problem, thus facilitating exploratory approaches. The improved clus-
tering algorithm does not require the setting of parameters through complex and long
tuning processes. This approach can be useful not only for network analysts but, in
general, for researchers or companies interested in this kind of solution.

The evolutionary, general-purpose methodology allows a continuous analysis in
time, facilitating traffic investigation, the extraction of patterns, anomaly detection, and
encourage progressive traffic modeling.

6.2 Future Work

An extra effort is necessary to extend big data approaches to all the stages of the
system to better scale the analysis. The work can go from the study of more efficient
and scalable clustering techniques, which still has to be computed locally.

Other types of distances may be used in order to speed up the step, which until
now represent the main bottleneck in its execution. A more organic collaboration of
the different system components is also essential to improve stability. Making the code
and the tools more uniform, as well as extending the number of data typologies that the
system can handle, will help in broadening the application scenarios.

Regarding the last point, some of these contexts can be other use cases that involve
lexical features, e.g., hostnames in DNS queries, or user-agents in HTTP requests, or
completely different applications, e.g., topics evolution in scientific research articles.

In addition to my dissertation research, in the last months, I had the chance to focus
on a new and fascinating subject that of conceiving methods and techniques to explain
better the functioning and the decisions provided by machine learning models, such
that human experts can understand these. This problem is better known as eXplainable
AT (XAI).

Having humans in the loop of machine learning, especially in critical applications
like network security, where the accuracy and reliability of the final decision are crucial,
is of essential importance. A future effort can be the study and the implementation of
collaborative and explanatory evaluation methodologies. In particular, they could be
combined with other information, like external sources, e.g., blacklists, categories list,
or other parameter from the traffic log, e.g., IPs, user-agents or referrer, in order to
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better assist the decision. This approach could be important in case of lack of detailed
information, because of encrypted traffic.

Thanks to the research developed in my Ph.D. I matured strong knowledge in un-
supervised learning, network traffic analysis, and network security, as well as big data
technologies. Working on these topics allowed me to deepen specific themes as well as
challenge myself with different problems and applications.

67



68



Appendix A

Steps Towards Explainable Al

The work reported here is part of the article [53] that will be presented at the 3rd
ACM CoNEXT Workshop Big-DAMA, in December 2019.

A.1 Introduction

The application of unsupervised learning techniques, and in particular clustering,
offers invaluable help in the analysis of network measurements to discover underlying
characteristics, group similar elements together, and identify eventual patterns of in-
terest. Unfortunately, clustering does not always provide precise and clear insight into
the produced output, especially when the input data structure and distribution are not
clear. The following sections will present EXPLAIN-IT, a methodology which deals with
unlabeled data, creates meaningful clusters and suggests an explanation of the results to
the end-user. EXPLAIN-IT relies on a novel explainable Al approach, which allows un-
derstanding the reasons leading to a particular decision of a supervised learning-based
model, but extending its application to the unsupervised learning domain. The steps
toward explainability in unsupervised solutions are reported applying EXPLAIN-IT to
the problem of YouTube video quality classification under encrypted traffic scenarios.

A.2 System Description

The goal of EXPLAIN-IT is to explain the outcome of unsupervised algorithms. In
general terms, it addresses the process of knowledge discovery in datasets, providing a
comprehensive tool tackling the variety of steps of this process. Figure A.1 depicts an
overview of the system and its multiple steps. EXPLAIN-IT consists of two consecutive
analysis steps, namely (i) reduction of the cardinality of the problem under analysis
(e.g., data summarization and compression), and (ii) knowledge extraction and building
of explanations.
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Figure A.1: The EXPLAIN-IT system. Data is firstly embedded into the exploration space,
relying on expert knowledge when available. The summary space is the result obtained
by clustering the exploration space. Next, it builds a supervised data splitting model
out of the clustering results. Finally, it applies an XAI approach (LIME) to this splitting
model, interpreting the contents of the clusters by adding local interpretations.

Exploration and Summary Spaces

In the first step, EXPLAIN-IT relies (when available) on the knowledge of experts
to extract the right features, structuring the data analysis and the way for interpret-
ing the results. This process may include feature selection and engineering methodolo-
gies. The definition/extraction of features corresponds to embedding the data into an
exploration space, which serves as a basis for the data exploration process. Naturally,
when no expert domain knowledge is available, the embedding would take place in an
entirely blind fashion, using the features defined by the analyst. Once the data is em-
bedded, EXPLAIN-IT uses unsupervised learning techniques to explore it, looking for
relevant structures of interest. EXPLAIN-IT uses in particular clustering techniques, but
any unsupervised methodology which creates a summary of the data can be applied.
Clustering here plays the role of a meta-learning approach, which reduces the com-
plexity of the analysis by aggregating similar instances, generating what I refer to as
the summary space. Different clustering algorithms can be used, depending on the de-
sired result, amount of data, space dimensionality, and other constraints. For example,
in case the user wants to obtain a certain number of groupings or classes, solutions that
require the number of clusters as input are preferred, e.g., K-Means. Otherwise, if the
data structure itself should determine the exploration process, or if anomaly detection
is relevant in the process, other techniques such as density-based ones (e.g., DBSCAN)
are better suited.
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Modeling the Summary Space

The second step of EXPLAIN-IT consists of automatically characterizing the result-
ing clusters obtained in the summary space. A common way to measure the effective-
ness of clustering algorithms [36], is to use intrinsic or derived characteristics, like com-
plexity, steadiness, computational time, as well as internal and external validity met-
rics, like the silhouette and the rank indexes. Those measures are useful in evaluating
the goodness of the algorithm. However, they provide little insight into what clusters
contain. The main idea is, therefore, to identify, for each of the obtained clusters, the
most relevant features explaining the assignment of each data instance to it. While this
could be in-principle done by per-feature analysis and using weighted distances and
linear discriminant functions, there is always a limitation of such an approach, based
precisely on the considered notion of distance. Depending on which type of distance
metric one would use, the obtained explanations would be different. For example, Eu-
clidean distances would favor features defining spherical-like rules explaining the re-
sults, whereas sparse spaces and heavy-tailed distributions would impact probability-
based or correlation-based distances. Also, global linear discrimination would not per-
form accurately in most practical cases. Other empirical approaches, such as manual
inspection, relevant features description, or extraction of the most representative data
instances, suffer from scalability, and the limitations mentioned above.

In the absence of a general solution to this problem, and inspired by the notions
behind white-box and black-box XAIL I rely on a purely data-driven approach and de-
cide to model the results of the clustering step through a supervised learning model,
which I then explain through XAI. As I said before, to improve discrimination power,
I do not rely on natively interpretable models (e.g., decision trees or linear discrimi-
nant functions), but I consider more powerful data splitting models. Here, in particular,
I take Support Vector Machine (SVM) discriminant models [73], which are well-known
for their performance to identify non-linear and complex boundaries among instances,
relying on the use of kernel functions and the so-called “kernel trick” to construct such
boundaries.

XAI with LIME

The final step of the analysis consists of using black-box XAI approaches to finally
interpret the structure of the summary space by explaining the SVM-based modeled
clusters. In particular, I use LIME [65], a model-agnostic interpretation approach which
relies on local model linearization to identify the most relevant features leading to a
particular decision, for an individual data instance. LIME relies on sampling for local
model exploration and linearization. To explain the LIME approach, let us assume I have
a complex model f(-), and a specific instance x for which I want to explain the features
leading to f(x). LIME constructs a natively interpretable model g(-), which is locally
faithful to f(-) in the vicinity of x, the latter captured by certain similarity measure
D.(-). For doing so, LIME randomly generates new instances z around x, which are
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then weighted by D,(z) to define their local relevance. Finally, g(-) is built based on in-
puts z and their corresponding labels f(z). In particular, LIME uses linear discriminant
functions to build g(-).

Naturally, other XAI methodologies such as SHAP [45] are also very promising and
could be part of EXPLAIN-IT. SHAP has solid mathematical foundations, but it has a
much higher complexity that makes it hard to use on exploratory approaches. However,
it results in better explanations - or at least approximations, making it more reliable
in case of more stringent requirements. Nevertheless, LIME offers the best trade-off
between computational time and interpretability, therefore its high popularity.

By combining the explanations provided by LIME for each data instance belonging
to each cluster, EXPLAIN-IT finally provides guidelines easing the interpretation of the
clustering results. The overall solution is very modular, allowing different settings and
flexibility in the various stages of the process.
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Publications, Awards, Patents and
Collaborations

In this appendix, I report the list of the published papers, as well as prizes. I also
present my collaborations, and other activities connected to my research career.'

Journals:

1. D’alconzo, Alessandro; Drago, Idilio; Morichetta, Andrea; Mellia, Marco; Casas,
Pedro, A Survey on Big Data for Network Traffic Monitoring and Analysis, in:
IEEE Transaction on Network and Service Management, 2019

2. Morichetta, Andrea; Mellia, Marco, Clustering and evolutionary approach for lon-
gitudinal web traffic analysis, in: Performance Evaluation, 2019

3. Morichetta, Andrea; Mellia, Marco, LENTA: Longitudinal Exploration for Net-
work Traffic Analysis from Passive Data, in: IEEE Transaction on Network and
Service Management, 2019

Conferences:

1. Morichetta, Andrea; Trevisan, Martino; Vassio, Luca, Characterizing Web Pornog-
raphy Consumption from Passive Measurements, in: International Conference on
Passive and Active Network Measurement, 2019

2. Faroughi, Azadeh; Javidan, Reza; Mellia, Marco; Morichetta, Andrea; Soro,
Francesca; Trevisan, Martino, Achieving Horizontal Scalability in Density-based
Clustering for URLs, in: Proceedings of the 2018 IEEE International Conference
on Big Data, 2018

"More information can be found at https://www.telematica.polito.it/member/
andrea-morichetta/.
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3.

Morichetta, Andrea; Mellia, Marco, LENTA: Longitudinal Exploration for Net-
work Traffic Analysis, in: 30th International Teletraffic Congress (ITC 30), 2018

. Ciociola, Alessandro; Cocca, Michele; Giordano, Danilo; Mellia, Marco;

Morichetta, Andrea; Putina, Andrian; Salutari, Flavia, UMAP: Urban Mobility
Analysis Platform to Harvest Car Sharing Data, in: Proceedings of the IEEE
Conference on Smart City Innovations, 2017

. Morichetta, Andrea; Bocchi, Enrico; Metwalley, Hassan; Mellia, Marco, CLUE:

Clustering for Mining Web URLs, in: International Teletraffic Congress, 2016

Patents:

1.

Mellia, M; Metwalley, H; Bocchi, E.; Morichetta, A., “™METODO PER L’ESPLO-
RAZIONE DI TRACCE PASSIVE DI TRAFFICO E RAGGRUPPAMENTO DI URL
SIMILI”, 2016

Research cooperations with other universities and research centers:

Visiting student at the Austrian Institute of Technology (Vienna, AT) — Re-
searcher. from January 2019 to July 2019. The collaboration focused on eXplain-
able AI (XAI) for unsupervised machine learning.

Cisco Labs in San Jose, CA, In July 2017. Focus on Anomaly Detection and Secu-
rity for DNS traffic analysis.

Travel grants and Prizes:

TMA 2019 - Ph.D. School. Best Poster Award - Runner up, “Steps Towards Ex-
plainable AI for Clustering: the Case of Unsupervised QoE Analysis for YouTube
Encrypted Traffic”

Travel Grant TMA 2019.

ITC30, 2018. Best Student Paper Award: “LENTA: Longitudinal Exploration for
Network Traffic Analysis.”

Travel Grant TMA 2018.

Travel Grant TMA 2017.
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Other topics of interest:

2018 [Workshop Assistance] Assistance during the course “From Packets to
Knowledge: Applying Data Science Approaches to Large Scale Passive Measure-
ments” (prof. Idilio Drago) as part of the 2018 Traffic Monitoring and Analysis
Ph.D. School

2017 [Lab Assistance] Lab Assistance and exercises preparation in ICT in Trans-
port Systems (prof. Marco Mellia)

2016 [Talk and Assistance] Project description and assistance during Big Dive,
5th edition on behalf of SmartData@PoliTO center

2016 [Talk] Seminar talk in “Big Data Summer School” organized by “Ordine degli
Ingegneri di Asti”
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