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Abstract: Cryogenic treatment is a supplemental structural and mechanical properties refinement
process to conventional heat treatment processes, quenching, and tempering. Cryogenic treatment
encourages the improvement of material properties and durability by means of microstructural
alteration comprising phase transfer, particle size, and distribution. These effects are almost
permanent and irreversible; furthermore, cryogenic treatment is recognized as an eco-friendly,
nontoxic, and nonexplosive process. In addition, to encourage the application of sustainable
techniques in mechanical and manufacturing engineering and to improve productivity in current
competitive markets, cryo-treatment can be considered as a promising process. However, while
improvements in the properties of materials after cryogenic treatment are discussed by the majority
of reported studies, the correlation between microstructural alteration and mechanical properties
are unclear, and sometimes the conducted investigations are contradictory with each other. These
contradictions provide different approaches to perform and combine cryogenic treatment with pre-and
post-processing. The present literature survey, mainly focused on the last decade, is aimed to address
the effects of cryogenic treatment on microstructural alteration and to correlate these changes with
mechanical property variations as a consequence of cryo-processing. The conclusion of the current
review discusses the development and outlines the trends for the future research in this field.
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1. Introduction

Subzero treatment is a deep stress relieving technology that is associated with cooling components
below room temperature. Cryogenic treatment (CT) or cryo-treatment is a subzero heat treatment
which is widely used in the production of high precision mechanical parts and components. It provides
a large number of applications ranging from industrial components to improvement of musical signal
transmission [1,2]. It encourages microstructural refinement and material property improvements
such as wear resistance, toughness, fracture resistance, hardness, thermal conductivity, dimensional
stability, and chemical degradation [3–8]. Accurate control of process parameters such as cooling rate,
soaking temperature and time, cooling fluid, and the whole procedure, promotes the acquisition of
superior mechanical properties. In addition, to encourage the application of sustainable techniques in
mechanical and manufacturing engineering, and to improve productivity in the current competitive
markets, cryo-treatment can be considered as a promising process to improve product service life
and reduce production costs in terms of tooling cost and process interruption [9–11]. CT has been
classified into three groups: cold treatment, shallow cryogenic treatment (SCT), and deep cryogenic
treatment (DCT). Cold treatment is comprised of exposing the ferrous material to be treated in the
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temperature range of 193–273 K to refine microstructure and achieve better static mechanical properties.
In contrast to heat treating, cold treatment does not require precise control of temperature, and its
success depends only on the attainment of the minimum low temperature and is not influenced
by lower temperatures [12,13]. In SCT, the samples are placed in a freezer at temperature range of
113–193 K and are then exposed to room temperature. In DCT, the samples are slowly cooled to
77–113 K, held down at this temperature for a certain duration, and are then gradually tempered to
room temperature [14,15]. The DCT process consists of three main phases: cooling, soaking time,
and warming. Each phase has significant effects on the mechanical properties and microstructure
alteration, especially soaking time [16,17]. Generally, DCT is followed by some pre-and post-processing
treatments [2,14,18]. While numerous advantages of DCT have been discussed in previous studies
and were summarized in a dated review by the authors [14], there is a need for investigating the
cryogenic treatment in relation to pre-and post-treatment and their influences on microstructural
alteration and mechanical properties. Besides, there are contradictions within the literature due to a
lack of understanding of the fundamental metallurgical mechanisms of microstructural alteration and
their correlation with the mechanical properties. Therefore, the current review survey is devoted to
clarifying the effect of CT on microstructural changes and the correlation between these alterations
and the mechanical properties, with a special focus on the knowledge deriving from more recent
studies. This review is organized into three main sections: first, all the possible alterations induced by
cryo-treatment on the microstructure will be discussed; second, the effects of these microstructural
variations on the mechanical properties and their correlation will be addressed; finally, a summary of
the conducted experimental investigations on cryo-treatment application in manufacturing engineering
will be presented.

2. Effects of CT on Microstructure Alteration

There are imposed stresses whenever a material undergoes any manufacturing process which
follows the mechanical component’s production. In addition, there are some stresses due to defects in
the crystal structure of the material, of which vacancies, dislocations, and stacking faults are the most
common [19]. The structural defects are proportional to the level of the imposed stresses when the
materials undergo manufacturing processes and cyclic stresses while the materials are under service.
Cyclic stresses encourage the defect’s migration and their accumulation within the matrix, while the
further movement of defects requires more energy. The higher the level of stress, the greater the degree
of the defect’s migration, which leads to an increase in the interatomic spacing. Consequently, crack
nucleation starts and propagates as the distance between the atoms exceeds a critical distance.

For different materials, distinctive alteration scenarios take place in the microstructure during
CT [20]. The magnitude of these changes is affected by the treatment process parameters. In most steels,
the transformation of retained austenite into martensite [21–24], fine carbide precipitation [25,26], and
uniform distribution of secondary carbides [3,27], as well as interstitial carbon atoms segregation,
are the common changes observed in the microstructure after CT execution in comparison to the
conventional treatments (quenching and tempering) [28]. Applying the appropriate temperature and
soaking time causes substantial transformation of the soft austenite with a face centered cubic (FCC)
crystal structure into hard martensite with a body centered cubic (BCC) structure, as shown by Figure 1.
In addition, metallurgical alteration of martensite at a lower temperature can be obtained [29,30].
These metallurgical changes in martensite are in the form of a reduction in brittleness and an increased
resistance against plastic deformation [31]. The formation of fine and very small carbide particles
dispersed within the martensite [25,32] provides more interfaces with the base martensite matrix. These
interface increments provide more obstacles against dislocation movements and prevents the foreigner
particles from penetrating into the matrix, thereby improving the abrasion wear resistance [33,34].
Due to differences in the crystal size of austenite and martensite, there will be imposed stresses where
both coexist. CT, and especially DCT, eliminates these stresses by transforming austenite to martensite.
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Interstitial carbon atom segregation near dislocations is observed during CT, which acts as growing
nuclei for the formation of fine carbide particles on subsequent tempering [35,36].
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Figure 1. Transformation of soft retained austenite to relatively hard and stable martensite at lower
temperature [30].

3. Effects of CT on Microstructure Variation and Hardness

There is a continual demand to improve mechanical properties of industrial components as their
complexity grows and functionality requirements increase. Therefore, DCT can be recognized as an
alternative process to obtain better mechanical properties with microstructural manipulation. Figure 2
exemplifies a general illustration of the DCT process. DCT improves hardness via two mechanisms,
precipitation hardening and martensitic transformation. This section is aimed at providing an insight
into the hardening mechanisms contributed by DCT.
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Figure 2. Deep cryogenic treatment (DCT) with single tempering.

A reduction in the level of retained austenite, or even its elimination, can be substantially obtained
if DCT is performed efficiently in a vacuum environment. Leskovšek and Ule carried out DCT
on AISI M2 high-speed steel to reach a compromise between hardness and fracture toughness [37].
Furthermore, tool shape and dimensional stability have been examined. It was observed that the
volume fraction of the retained austenite, and hardness, have a paramount impact on the fracture
toughness. DCT promotes a higher rate of retained austenite transition into martensite which improves
the hardness, while at the same time, worsens the fracture toughness. Figure 3 shows the effect of
DCT on hardness and fracture toughness and their intercorrelation [38]. The combination of DCT
and a vacuum environment encourages a higher austenite to martensite transformation and better
dimensional stability. In contrast, shape distortion was detected due to the combined effects of
transformational and thermal stresses.
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Zhirafar et al. conducted an observation to evaluate the alteration of mechanical properties of AISI
4340 after DCT [39]. Higher hardness was detected and consequently, the fatigue limit was improved
because of the austenite transformation into martensite. The interaction between hardness and fatigue
limit is anticipated to be influenced due to the microstructural changes in steel, considering that the
microstructural alteration in steel encourages the achievement of a linear trend between hardness and
fatigue limit, even for higher values of hardness [40].

An experimental investigation has been conducted to trace a coherent picture of the effects of
DCT on microstructure variation [41]. The complete transformation of austenite to martensite, coupled
with a higher volume fraction of fine carbides in the martensite matrix, improved the hardness of En 31
steel as result of DCT and subsequent tempering treatment.

Harish et al. tried to understand the impact of DCT and SCT on En 31 bearing steel microstructural
alterations [42]. Higher hardness was obtained through the CT in comparison to conventionally treated
samples. Fractography, by means of optical microscopy (OM), provided evidence of equiaxed dimples
and flat facets present in the SCT workpiece, and a wide size range of dimples and microcracks in
the DCT specimen. Retained austenite and a fine distribution of medium size spheroidized carbide
particles have been observed after DCT. Tempered martensite, some spherical carbide particles, and an
amount of retained austenite were detected due to SCT execution after tempering. Some needle-like
regions were observed in the DCT microstructure prior to tempering, which implies the presence of
untampered martensite and the existence of some retained austenite with a lower volume fraction,
in comparison to SCT and conventional heat treatment (CHT). Meanwhile, the existence of retained
austenite in SCT and DCT structures proved that CT boosts the formation of martensite from retained
austenite, but a complete transformation was not observed even after DCT and SCT.

An investigation has been conducted to study the impact of DCT on the microstructure and
mechanical property alterations of cold work die steel (Cr8Mo2SiV) [43]. It was observed that the
content of precipitation carbides is influenced by the soaking time. DCT results in a martensite and
austenite lattice contraction with a homogeneous carbide distribution, and consequently, carbon
atoms are forced to diffuse and make a new carbide nucleus. Regarding these alterations, the carbide
precipitation content is dependent on the repeating time. Therefore, the volume fraction of the carbide
precipitation is affected by both the soaking time and the repeating times. At the end of the process, the
hardness of the DCT samples was found to be greater than those obtained by conventionally treated
workpieces (quenching and tempering).
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HS6-5-2 high speed steel microstructure alteration after DCT has been examined by means of
transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) [44]. Qualitatively,
it was observed that the martensite obtained after quenching, DCT, and heating up to the ambient
temperature was formed by a lamellar-lenticular structure, and internally twinned with a very high
density of dislocations. Homogeneous distribution of spherical carbides within the martensite grains
is responsible for the hardness improvement.

The effects of SCT and DCT on surface residual stresses, hardness, and impact toughness of
4140 steel have been compared [45]. Higher residual stresses were generated after DCT, in comparison
to quenching and further SCT, due to a reduction in the density of lattice defects (dislocations) and
thermodynamic instability of the martensite. These effects motivate the movement of carbon and
alloying elements toward the defects, and this movement, as mentioned, acts as a basis to form fine
carbides after stress relief. It was highlighted that the precipitation of carbides in tempered SCT and
DCT samples is responsible for the residual stress relaxation. Meanwhile, the temperature reduction
of CT encourages a higher transformation of austenite into martensite and at the same time greater
compressive residual stress in the untempered DCT specimens. It is worth mentioning that in contrast
to tensile stresses in CHT and SCT workpieces, compressive stresses were observed after DCT.

Mehtedi et al. examined the effects of DCT on treatment response, microstructural alteration,
and their correlation with X30 CrMoN 15 1 steel hardness [46]. It was noted that DCT encourages
the transformation of the retained austenite to martensite and a homogeneous decoration of the
martensitic matrix by refined carbides particles, with a consequent improvement in hardness. It is
worth mentioning that, generally, hardness variation is proportional to the austenitizing temperature.

Amini et al. examined the effects of soaking time in liquid nitrogen on the microstructural
alteration, carbide distribution, and volume fraction, as well as hardness of 1.2080 tool steel [34]. In all
the different soaking times, the elimination of retained austenite, an increment of carbide particles
density with homogenous distribution, and a uniform size were observed. Nevertheless, the magnitude
of these alterations was affected by the soaking temperature. Hardness improvement was obtained by
DCT, but further changes were not noted after a certain holding duration (36 h).

Finite element analysis considering the transformation kinetics has been conducted to simulate
DCT and was experimentally validated [47]. Comparison of the experimental data with the numerical
method reveals that multiphysical field coupling simulation is an effective and accurate approach to
evaluate the cooling behavior of DCT. It was observed that the amount of retained austenite significantly
decreased, and as a result, hardness was improved.

Comparative investigation has been conducted to contrast CHT, SCT, and DCT effects on AISI
M35 HSS microstructural variations [48]. A higher reduction in the volume fraction of retained
austenite was obtained by DCT, followed by SCT. A larger amount of fine precipitations of carbides
was observed after DCT. The combination of retained austenite reduction and the distribution of the
carbide precipitation resulted in a hardness improvement.

Akhbarizadeh and Javadpour investigated the effect of the as-quenched vacancies on the carbides
formation in the microstructure of 1.2080 tool steel after DCT [49]. The effect of the vacancies as
potential sites for carbon atoms’ jumping during DCT was clarified by using an electric current. It has
been noticed that the as-quenched vacancies play a significant role in the carbide formation during DCT
by providing appropriate sites for the carbon atoms’ jumping, which results in a hardness improvement.
The authors concluded that these carbon atoms provide some appropriate places for carbide nucleation
during the tempering.

A comprehensive investigation has been conducted to study the microstructural and mechanical
properties alteration of ultrafine-grained tungsten carbide–cobalt WC–12Co cemented carbide subjected
to DCT. The phase transformation of the binder phase Co and the hardness over a wide range of
temperatures was studied using thermal analysis and selective electrolytic corrosion technology as
shown in Figure 4. In contrast to previous studies [50], the precipitated tiny second-phase particles could
not be observed in the Co binder phase due to magnification limits associated with scanning electron
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microscopy (SEM). X-ray diffraction (XRD) analysis revealed that DCT promotes transformation
of ε-Co, and there is no influence on the crystal structure of tungsten carbide (WC) particles and
consequently, this improves the hardness and bending strength of the cemented carbides [51].
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Figure 4. The effect of soaking time on hardness variation of the ultrafine-grained WC–12Co cemented
carbide [51].

A comparative investigation between CHT, SCT, and DCT was conducted to evaluate
microstructural variation and hardness of AISI 440C bearing steel [52]. A higher rate of retained
austenite transformation into martensite was achieved by DCT and a lower volume fraction of
martensite was traced by CHT, while DCT samples showed higher hardness.

Xie et al. investigated the influence of DCT on the microstructure and mechanical properties of
WC−11Co cemented carbides with different carbon contents [53]. DCT has a nonsignificant effect
on phase composition. The amount of η-phase was increased as compared to untreated samples. It
was observed that DCT refines the WC grains into triangular prisms with rounded edges, without
size alteration, through the spheroidization process. In addition, the phase transformation of the Co
phase from α-Co (FCC crystal structure) to ε-Co (HCP crystal structure) was observed after DCT, with
reduction of W solubility in the binder (Co). It was highlighted that DCT improved the hardness
and bending strength of the alloys, but there was no remarkable impact on the density and cobalt
magnetic performance.

Yuan et al. studied the microstructural alteration and mechanical properties of commercially pure
zirconium after DCT execution [54]. The DCT reoriented grain is much closer to the (0 0 0 1) basal
plane and encouraged a higher grain boundary misorientation and dislocation density. Therefore,
the higher fraction of grain boundary misorientation provides more obstacles against the dislocation
movement, increasing the material resistance against plastic deformation and improving the hardness.
Furthermore, the basal planes are associated with a higher hardness in comparison to the prism planes.

Pérez and Belzunce conducted an observation to examine the influences of DCT on the mechanical
properties of H3 tool steel [55]. DCT lessens the retained austenite content in H13 steel, but there is
a minimum innate content which cannot be transformed by heat treatment. The H3 steel hardness
decreased, as the carbide precipitation and carbon content of the martensite reduced.

Mohan et al. examined the SCT impact on the microstructure and mechanical properties of
Al7075-T6 [56]. Static mechanical properties such as hardness, yield strength, and ultimate tensile
strength were improved. Precipitation, better distribution of second-phase particles, and higher
dislocation density were observed using electron back scattered diffraction (EBSD) after DCT treatment
in comparison to untreated specimens, as illustrated in Figure 5. It was highlighted that the hardness
and stiffness improvements are the consequence of precipitation hardening and high dislocation
density. Fatigue limit has been improved due to striations becoming denser in the cryo-treated alloy.
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cryogenic treatment (SCT) sample [56].

A set of subzero treatments (SZTs) were conducted on aluminum 2024, to study microstructure,
hardness, and tensile and fatigue strength [57]. SZTs were performed at −60 ◦C (held for 10 h) and at
−196 ◦C (held for 4 h). As the grain size and formed nanoparticles in the microstructure are refined by
applying SZTs, elongation, yield strength, hardness, and tensile strength were improved. In contrast,
due to microcrack formation in the SZTs, the fatigue limit was reduced under both treatment protocols.

An investigation was designed to examine the effects of the amount of particle refinement and
different subzero and ageing processes on the hardness of Al7075 [58]. A smaller atomic distance, refined
particle shape, and uniform microstructure were observed after treatments. In addition, the refined
microstructure encourages higher friction against dislocation movement, and thus higher hardness.

The current literature survey has a broad consensus about the fact that CT provokes the
microstructure alteration and consequent changes in the mechanical properties as summarized
by Table 1. In the case of steels, performing a complete treatment process, comprising of austenitization,
quenching, cryo-treatment, and tempering, would promote a more refined microstructure and improved
mechanical properties. Austenitizing and quenching transform some austenite and primary carbides
into martensitic phases. Tempering encourages transition carbides by means of the transformation of
supersaturated carbon to form carbides. This contribution relieves microstresses in the martensitic
structure and prevents crack nucleation. The effects of CT on steels can be attributed to some important
changes in the microstructure that affect the hardness:

• Transformation of retained austenite to martensite can be boosted under vacuum conditions.
However, complete transformation cannot be achieved after cryo-treatment as some untempered
martensite, characterized by needle-like regions and some volume fraction of retained austenite,
has been observed. In this stage, tempering would assist in ameliorating the transformation of
retained austenite to martensite and refining the martensitic structure to obtain better hardness;

• Higher volume fraction of fine carbides within the martensite matrix reinforces the martensitic
structure and improves hardness;

• Homogeneous distribution of carbides, and a good decoration of the martensite matrix with small
size carbide particles, provides more resistance against the dislocation migration within the matrix
and plastic deformation;

• Martensite and austenite lattice contractions, along with the uniform distribution of refined
carbide particles, encourages carbon atoms diffusion and new carbide nucleation, which results in
a higher volume fraction of carbides, especially during tempering, and consequently improves
the material hardness;

• Soaking time and temperature, as well as tempering rate, have a prime importance in
improving hardness.
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Table 1. Summary of literature data devoted to studying the effects of cryo-treatment on microstructure
and hardness.

First Author,
[#]

Cryogenic
Treatment

Rival
Treatment Material Microstructure Alteration Outcome

Amini [34] DCT N.A. 1.2080 tool steel
Elimination of retained austenite,

increment of carbide particles
density

Hardness improvement
was obtained.

Zhirafar [40] DCT N.A. AISI 4340 Austenite transformation into
martensite

Hardness and fatigue limit
were improved.

Vimal [41] DCT followed
with tempering N.A. En 31 bearing

steel

Austenite to martensite
transformation coupled with
higher volume fraction of fine

carbides

Hardness improvement

Harish [42] SCT and DCT N.A. En 31 bearing
steel

Distribution of medium size
spheroidized carbide particles

and exitance of retained austenite
even after DCT and SCT

Higher hardness obtained
after DCT followed by SCT

Li [43] DCT Quenching and
tempering

Die steel
(Cr8Mo2SiV)

Martensite and austenite lattice
contraction and homogeneous

carbide distribution

Higher hardness obtained
by DCT

Jeleńkowski
[44]

Quenching+
DCT+

tempering
N.A. HS6-5-2

Obtained martensite with
lamellar-lenticular structure, and

internally twinned, with very
high density of dislocations as

well as homogeneous distribution
of spherical carbides

Hardness improvement

Senthilkumar
[45] SCT and DCT N.A. 4140 steel

Reduction in lattice defects after
DCT and residual stress relief in
comparison to quenching+ SCT

Hardness improvement
and residual stress

releasement

Mehtedi [46] DCT N.A. X30 CrMoN 15
1 steel

transformation of the retained
austenite to martensite and
homogeneous decoration of

martensitic matrix by refined
carbides particles

Higher hardness was
recorded.

Candane [48] SCT and DCT CHT AISI M35 HSS

Higher reduction in volume
fraction of retained austenite was

obtained by DCT followed by
SCT.

Better hardness obtained
by DCT followed by SCT

Akhbarizadeh
[49]

DCT+
tempering N.A. 1.2080 tool steel Carbon atoms segregation and

carbide nucleation Hardness improvement

SreeramaReddy
[50] DCT N.A.

WC–12Co
cemented

carbide
Transformation of ε-Co

Improvement of hardness
and bending strength of

cemented

Idayan [52] SCT and DC CHT AISI 440C
bearing steel

Higher rate of retained austenite
transformation into martensite

was achieved by DCT followed by
SCT

Higher hardness was
obtained by DCT.

Xie [53] DCT N.A.
WC−11Co
cemented
carbides

DCT refines WC grains into
triangular prism with round edges

without size alteration through
the spheroidization process

DCT improved hardness
and bending strength of

the alloys.

Yuan [54] DCT N.A. Pure zirconium DCT reoriented grain is much
closer to (0 0 0 1) basal plane

Increment in material
resistance against plastic

deformation and
improving the hardness

Pérez [55] DCT N.A. H3 tool steel Reduction in retained austenite
content

H3 steel hardness
decreased, as carbide

precipitation and carbon
content of the martensite

reduced.

Mohan [56] DCT N.A. Al7075-T6
Precipitation, better distribution
of second-phase particles, and

higher dislocation density

Hardness and fatigue limit
improved.

Nazarian [57] SCT and DCT N.A. Al2024
Grain size and formed

nanoparticles in microstructure
were refined.

Hardness and fatigue limit
were reduced as formation

of microcracks.

Taşkesen [58] DCT N.A. Al7075
Smaller atomic distance, refined

particle shape and uniform
microstructure

DCT encouraged higher
friction against dislocation

movement and higher
hardness.
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Cemented carbides after CT undergo some changes within the microstructure, which bring better
mechanical properties. Transformation of the binder phase Co from α-Co to ε-Co, an increment of the
η-phase volume fraction, and a reshaping of the WC grains without size reduction, are the effects of
DCT which improves the bending strength and hardness.

In the case of titanium alloys, DCT imposes an alteration in the volume fraction, size and
morphology of the α and β phases and improves hardness.

4. Effects of CT on Microstructure Alteration and Wear Resistance

Enhancement of the wear resistance of loaded components with relative motion is a promising
approach to improve efficiency and durability for a wide range of machine elements in tribo-systems.
CT would be a reliable option to improve wear resistance of components via material microstructure
modifications. Therefore, this section highlights the achievements of previous studies to share
the technical synthesis with an emphasis on correlation between microstructural variations and
wear behavior.

Thakur et al. compared the impacts of three different post-treatments on tungsten carbide–cobalt
inserts’ microhardness and microstructural alteration [59]. The effects of controlled cryo-treatment,
heating and forced air cooling, and heating and quenching of WC–Co in an oil bath have been
investigated. A slight increment of microhardness was obtained by CT and the higher microhardness
was measured by the other treatments. A wear resistance improvement after controlled CT was
detected due to the densification of the cobalt metal binder which holds the carbide particles firmly.

The effect of austenitizing time in DCT on the wear resistance of D6 tool steel was measured
using a pin-on-disk wear test [60]. By increasing the austenitization time from 10 to 50 min, grain size
experienced an increment of 122%. It was observed that the diffraction intensities of the martensite
increased, while the volume fraction of austenite decreased, which implies that the prior austenite grain
size does not affect the retained austenite volume fraction after DCT. After conducting hardness tests, it
was concluded that the austenitizing time plays an important role on microstructure homogenization,
which encourages higher wear resistance.

Dhokey and Nirbhavne conducted a comparative study to evaluate conventional quenching,
tempering, and intermediated CT, and their effects on the wear resistance of D3 tool steel [61]. A huge
segregation of carbides of massive size was observed after conventional quenching, but tempering
encouraged the reduction in carbide size, and CT resulted in a higher volume fraction of fine carbides
and their nucleation during ramp up. Development of fine carbides after CT improves the wear
resistance against sliding wear, which could be attributed to the formation of nanosized η-carbides.

A set of treatments were proposed to study the effect of microstructural alteration on wear behavior
of D6 tool steel [62]. SCT at −63 ◦C and DCT at −185 ◦C were carried out to examine the effects of
treatment types, soaking time, and stabilization. Wear tests were conducted applying pin-on-disk wear
tests using different loads and sliding speeds. It was observed that CT improved the wear resistance
by means of reducing the amount of retained austenite. However, DCT became more efficient in
comparison to SCT, as it encouraged a more homogenized carbide distribution and elimination of the
retained austenite. The longer the treatment time, the higher the wear resistance and hardness as more
retained austenite was transformed into martensite.

Das et al. tried to correlate the soaking time and wear behavior of AISI D2 to find the optimum
soaking duration in the range of 0 to 132 h, and a cryogenic temperature of 77 K [63]. Figure 6
demonstrates the effect of soaking temperature on wear resistance of AISI D2 specimens subjected
to different loads. The results provide evidence that there is a strong correlation between soaking
time and the precipitation behavior of secondary carbides. Wear behavior of the cryo-treated AISI
D2 samples is affected by the volume fraction of secondary carbide particles within the matrix. The
optimum time of around 36 h for the soaking zone of the considered material was recommended.
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Straffelini et al. optimized the wear resistance of stamping tools applicable to the automotive
industry [64]. The effects of three treatments were examined: coating by thin ceramic film (AlCrN)
using physical vapor deposition (PVD), a tool produced by hard metal, and two DCT treated HSS
(high-speed steel). DCT improves the wear resistance of the tool as a result of the precipitation of
ultrafine carbide particles.

The influence of DCT parameters, soaking time, and temperature on the tribological performance
of powder–metallurgy (PM) high-speed steel were investigated by means of abrasive wear resistance
and resistance to galling under dry sliding conditions [65]. It was observed that a higher austenitizing
temperature leads to a smaller amount of undissolved eutectic carbides of small size. The longer
treatment time results in a fine microstructure. It was concluded that the austenitizing temperature is a
more significant player in comparison to the soaking time.

Wang et al. studied the effect of DCT on the microstructure and abrasion resistance of a high
chromium cast iron [66]. It was observed that the volume fraction of secondary carbides increased after
the destabilization treatment combined with DCT. Cryo-treatment resulted in the transformation of the
abundant retained austenite into martensite and finer secondary carbide precipitated formation, which
are the main contributors to wear resistance improvement. Figure 7 compares the volume fraction
of retained austenite after air cooling and cryo-treatment following the destabilization treatment.
Therefore, a higher volume fraction of carbide content provides more interface with the matrix, which
promotes obstacles against dislocations and enhances the wear resistance.

The effects of DCT parameters, including austenitizing temperature, ramp down, soaking time,
ramp up, and tempering temperature, on AISI D2 wear behavior have been examined using the
Taguchi method [67]. It was observed that complete transformation of retained austenite to martensite
cannot be achieved during ramp down, but the greatest transformation was achieved during soaking
time and was affected by soaking temperature.

Das et al. studied the advantages of cooling temperature during subzero treatment on AISI D2
steel wear resistance [12,68]. Wear behavior was evaluated by estimating specific wear rates and
conducting detailed characterizations of the worn surfaces, wear debris, and subsurfaces using SEM
coupled with X-ray. Figure 8 compares the effects of treatment processes, CHT, and subzero treatments
(CT, SCT, and DCT) on the volume fraction of different phases within the matrix. It was observed
that the lower the temperature of subzero treatment, the higher the wear resistance. RA reduction in
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retained austenite volume fraction and the simultaneous increment in the amount of secondary carbide
particles at lower temperature improved the wear resistance.
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Cajner et al. studied the influence of DCT on standard PM S390 MC high speed steels [69].
The effects of DCT on impact and fracture toughness, erosion wear resistance, and microstructure were
examined. DCT brought some advantages, such as remarkable improvement of wear resistance due to
the presence of η-carbides, however a significant change in toughness was not recorded.

The effects of DCT on microstructure, creep, and wear resistance of AZ91 magnesium alloy
have been examined [70]. Alteration of β precipitates distribution, the coexistence of dissolved tiny
laminar β particles, and coarse divorced eutectic β phase, were observed as results of DCT. It was
highlighted that the creep behavior of the alloy, which is affected by the stability of the near grain
boundary microstructure, was improved. Wear resistance was enhanced after DCT as consequences of
the internal microstructure stabilization and the formation of a new morphology of β particles.

Sogalad and Udupa conducted an investigation to evaluate the DCT impact on the load bearing
capacity of fitted pairs (En8 steel) interference [71]. Different soaking times were applied to the pins sunk
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in liquid nitrogen and ice. In addition, the bushes were heated to be assembled with the pin without
external pressure. Stronger joints were obtained after DCT due to an improvement of the hardness
and wear resistance as a consequence of the austenitic transformation to martensite. The improved
wear resistance of the pins is attributed to fine carbide formation with a tight lattice structure due to
DCT impact. The load carrying capacity of the bearing was improved after cryo-treatment due to a
transformation of the retained austenite to freshly formed martensite and the distribution of η-carbides,
which fill the microvoids present in the matrix, making it much denser and more uniform.

Akhbarizadeh et al. applied an external magnetic field during DCT to evaluate wear behavior of
1.2080 tool steel [72]. It was observed that DCT reduces the volume fraction of retained austenite and
encourages the uniform distribution of carbide particles within the matrix, and consequently, enhances
the wear resistance. Surprisingly, the magnetic fields had the reverse effects and reduced the number
of carbides, with a nonuniform distribution, which worsened the wear resistance.

Siva et al. investigated the effects of DCT execution on the wear resistance of 100Cr6 bearing
steel [73]. Significant improvement of wear resistance after DCT was obtained in comparison to
conventionally treated specimens (Figure 9) which was attributed to the alteration of the retained
austenite into martensite and the precipitation and distribution of the carbides within the microstructure.
DSC revealed that the increment of martensite destabilization by triggering carbon clusterization and
carbide precipitation resulted in an improvement of wear resistance and hardness.
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Xu et al. evaluated high performance tool steels’ (AISI H13) microstructural alteration prior to and
after CT using XRD and synchrotron microdiffraction [74]. The execution of DCT results in diffusion of
excess carbon out of the martensite phase and martensitic unit cell shrinkage. Besides these changes,
cryogenically treated samples received homogeneous martensite structure. It has been highlighted that
a considerable degree of disorder, resulting from rapid cryogenic cooling, encourages microstresses
discharge during tempering, which improves wear resistance.

Arockia, Jaswin, and Mohan carried out an observation to optimize the CT with the aim
of improving wear resistance, hardness, and tensile strength of E52 valve steel by applying the
Grey–Taguchi method [75]. Different combinations of cooling rate, soaking temperature, soaking
period, and tempering temperature were considered to execute the DCT. Significant alteration of the
retained austenite to martensite and an increment of the fine secondary carbide precipitation were
obtained in optimized DCT specimens. Therefore, an improvement of hardness and wear resistance
was achieved as a consequence of the aforementioned effects.

Li et al. conducted a set of experimental observations to study the tribological performance of
tool steel subjected to DCT [76]. It was highlighted that the segregation of carbon atoms to nearby
dislocations, and the interaction produced between themselves and the dislocations, encouraged the
formation of carbon clusters. These carbon clusters act as nuclei to form carbide particles during
subsequent tempering, and consequently improve wear behavior.
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The effects of DCT on the microstructural alteration and wear behavior (abrasion characteristics)
of H13 tool steel have been observed [77]. It was highlighted that the lower the temperature, the higher
the amount of transformed retained austenite to martensite, resulting in smaller and more uniform
distributions of martensite laths. Furthermore, DCT promotes the precipitation of more homogeneous
and very fine carbide particles. The joint effects of these microstructural variations improved the wear
properties of the H13 tool steel.

Senthilkumar and Rajendran examined the effects of DCT on the wear resistance of En19 steel [78].
Three different types of heat treatment were performed. The influences of DCT, SCT, and CHT were
investigated through dry sliding wear testing. X-ray observation revealed that the precipitation of fine
carbides and the transformation of retained austenite into martensite, during DCT and SCT, improved
the wear resistance in comparison to CHT. It was highlighted that a higher wear resistance and lower
friction coefficient have been obtained by DCT.

Jaswin et al. evaluated the effects of SCT and DCT on the microstructure and wear resistance of
X45Cr9Si3 and X53Cr22Mn9Ni4N valve steels [79]. The alterations were compared to conventionally
heat-treated specimens. SEM analysis reveals that the full elimination of the retained austenite is
not achievable even after performing SCT and DCT, but a reduction in the retained austenite was
observed as a consequence of CTs. It was highlighted that the formation of fine carbides dispersed in
the tempered martensite structure is the main contributor to improved wear resistance, followed by
the retained austenite transformation.

Li et al. carried out a set of experimental trials to evaluate DCT effects on internal friction behaviors
in the process of tempering [80]. Wear resistance improvement was observed due to greater carbide
precipitation after DCT by means of applying internal friction. This is because as the carbon atoms
move towards the dislocations, strong interaction is generated between interstitial carbon atoms and
among them with a time dependent strain field of dislocations. The generation of carbon atom clusters
adjacent to the dislocations under DCT, inspires carbide formation which subsequently results in wear
resistance improvement.

Amini et al. investigated the effects of stabilization, tempering, and DCT on the mechanical
properties of 80CrMo12 5 tool steel [81]. Elimination of the retained austenite and a higher amount
and finer distribution of carbide, as a consequence of DCT, dramatically improved the wear resistance.
Ultimate tensile strength increased and a reduction in specimen toughness were also observed. It was
concluded that DCT treatment should be done immediately after quenching to obtain the highest wear
resistance and hardness.

Gill et al. conducted a set of trials to examine the effects of DCT on the mechanical and
microstructural alteration of AISI M2 HSS [82]. It was proved that complete transformation of austenite
into martensite cannot be achieved by DCT, however some advantages, such as higher precipitation of
small carbides, an increment of their volume fraction, and uniform distribution of the carbides, have
been obtained after DCT followed by SCT, as shown in Figure 10. Wear resistance improvement was
observed due to the aforementioned DCT and SCT effects.
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Sri Siva et al. applied the Taguchi method and Gray relational analysis to optimize the DCT
processes to be executed on 100Cr6 bearing steel [83]. Dimensional stability, wear resistance, and
hardness were selected as the indicators to examine the effect of cooling rate, soaking temperature, and
duration, as well as tempering temperature, to be proposed for optimization. It was highlighted that
the precipitation of the fine carbides and the transformation of the retained austenite to martensite are
the main contributors to the improvement of hardness, wear resistance, and dimensional stability.

Isothermal martensitic transformation at temperatures below −100 ◦C during DCT was studied as
a physical mechanism that has a significant contribution to mechanical properties improvement [84].
Steel X153CrMoV12 was selected on which to conduct the observations. Findings revealed that the joint
effects of low temperature martensitic transformation and plastic deformation play a remarkable role
in the subsequent carbide precipitation, which improved the mechanical properties such as abrasive
wear resistance and hardness. Low-temperature isothermal martensitic transformation, as a result
of unbalanced volumes of the martensite and retained austenite, leads to plastic deformation which
encourages the refining of primary and secondary carbides and consequently, improves hardness.

A study was designed to determine the effects of influential variables on the correlation between
treatment parameters and mechanical properties of AISI D2 steel subjected to distinct categories of
SZTs viz. cold, SCT, and DCT [85]. The effects of the treatment process were examined by means of
the number of different phases and stereological parameters of the secondary carbide (SC) particles.
It was highlighted that a reduction in the retained austenite, and at the same time, an increment of SCs
by subzero treatment, resulted in an improvement of bulk hardness and microhardness with a minor
fracture toughness loss, and a remarkable improvement in wear resistance.

The effects of DCT on D2 tool steel wear resistance have been studied by means of pin-on-disk
tests using steel and tungsten carbide pins [86]. Microstructural alteration and wear mechanism were
evaluated using SEM and XRD. Wear behavior was improved due to the formation of fine carbides
with the size varying from micron to nanoscale. In addition, a higher amount of carbide content
and homogeneous carbide distribution were observed after DCT treatment. Adhesive wear was the
predominant mechanism under different observational set-ups (load, sliding speed, and pin material).

Das and Ray studied the mechanism of wear resistance improvement by applying DCT [87].
It was highlighted that DCT eliminates retained austenite and encourages the formation of secondary
carbides and consequently enhanced the wear resistance of AISI D2 steel.

Podgornik et al. reported that DCT improved the abrasive wear resistance and better galling
properties of powder–metallurgy (PM) high-speed steel, as a result of a finer needle-like martensitic
microstructure formation which provides a lower average friction coefficient, while applying longer
soaking time [88].

The effects of different soaking and tempering times during DCT of 45WCrV7 tool steel have been
studied [89]. Maximum hardness was obtained by increasing either the soaking time or tempering
time, as these two encouraged the higher transformation rate of retained austenite into martensite, in
addition to a larger volume fraction of carbides with a homogenous distribution and uniform size.
It was proved by another investigation that the joint effect of soaking and tempering times is the most
influential parameter to enhance hardness and consequently, wear resistance [90].

An AZ91 magnesium alloy was subjected to DCT and the microstructural alteration was examined
using OM and SEM [91]. Hardness and wear tests were performed to evaluate the effects of DCT
and microstructural changes as a consequence of the treatment. DCT improves hardness and wear
resistance of AZ91 by structure contraction, in which aluminum atoms in the β phase jump adjacent
to the defects as new Mg17Al12 precipitates during ageing. As the expansion coefficient of α and
β phase are different at a lower temperature, this difference is associated with different shrinkage
values. As consequence of these different shrinkage values, dislocations and microvoids are generated
on the boundary of the α and β phase that provide appropriate places for aluminum atoms to jump
during DCT.
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An investigation has been conducted to determine the impact of DCT on AISI 52100 bearing steel
wear resistance [92]. Significant microstructural alteration and consequently higher wear resistance
were obtained by DCT execution. Uniform carbide distribution and homogeneous particle size along
the formation of new small size carbides were obtained after DCT, which resulted in higher wear
resistance. Better hardness was achieved due to the redistribution of chromium carbides and the
austenite to martensite transformation. It was highlighted that the soaking time is the most important
process parameter to obtain a uniform carbide distribution, fine and homogeneous particle size, and
better mechanical properties. Figure 11 provides evidence that until a certain duration of soaking time
(12 to 36 h), positive effects on carbide particle size and distribution can be observed, but surprisingly,
the opposite effects can be seen for a longer holding time.
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The effects of different treatments on AISI D3, as-received, CH treated without tempering, and
DC treated without tempering were evaluated [93]. Uniform distribution of primary and secondary
chromium carbides with smaller sizes were promoted by CHT and DCT. The highest hardness was
obtained by DCT followed by CHT and consequently better tribological performance was achieved
by DCT.

Microstructure and wear properties of dies are essential parameters that affect the product quality
and production costs. Therefore, the effects of treatment processes on the microstructure and wear
resistance of AISI H13 hot-worked tool steel as the most common material in die production, have been
examined [94]. Different treatment processes, conventional, DCT, and DCT plus tempering (DCTT),
were considered and executed. It was noted that DCT encourages a homogeneous distribution of fine
carbide particles in the martensite matrix and improves the wear resistance, but better wear resistance
is obtained by DCT due to the formation of finer carbides with a more uniform distribution. In addition,
tempering after DCT resulted in the precipitation of secondary carbides and improved their coherence
with the matrix.

Li et al. performed experimental trials to study the effects of DCT on high-vanadium alloy
steel microstructure and mechanical properties [95]. Enormous amounts of small secondary carbide
precipitation and microcracks at the carbide and matrix interfaces were observed after execution of
DCT. It was highlighted that the volume fraction of secondary carbides after DCT was found to be
three to five times larger than those obtained by CT. This increment in the volume fraction of secondary
carbides was found to be affected by the number of DCT cycles. In addition, DCT encourages the
finer carbide particle size with a homogenous distribution. The DC treated sample formed smaller
secondary spherical carbides. In contrast, as hardness decreases, toughness increases after DCT.
A slight improvement of abrasive wear resistance was obtained after DCT execution, due to a larger
amount of finer secondary carbide precipitation, which is affected by soaking time and the number
of cycles.

An investigation was aimed at studying the effects of DCT on fracture toughness, wear resistance,
and load-carrying capacity of cold-worked tool steel [96]. It was concluded that an improvement in
the mechanical properties was as a consequence of finer, needle-like martensite formation and retained
austenite transformation, combined with the plastic deformation of primary martensite. In addition,
any alteration of fracture toughness to working hardness influences the wear resistance of cold-worked
tool steel.

The effects of DCT and the correlation between microstructural alteration and wear behavior
of WC–Fe–Ni cemented carbides has been examined and discussed [38]. Selective electrolytic
corrosion technique was employed to study the phase composition and quantitative analysis of DCT.
Wear resistance improvement was observed after execution of DCT due to the martensite phase
transformation from γ-(Fe,Ni) to α-(Fe,Ni) and can be attributed to precipitation of W particles in the
binder phase. It was highlighted that soaking time is the most important contributor to transformation
of the binder phase from γ to α.

Li et al. applied DoE (Design of Experiment) orthogonal design to evaluate the effects
of cryogenic-ageing circular treatment (CACT) on articles reinforced in-situ aluminum matrix
composites [97]. Different combinations of cooling rate, soaking time and circular index as process
variables were set. Al–Zn–Mg–Cu wrought aluminum reinforced by alumina particles, was selected
as the host material to execute CACT. SEM analysis revealed that increasing the precipitation of Si
phases improved the load carrying capacity of the metal matrix and consequently, the wear resistance.
Hardness was reduced as a consequence of a reduction in the unstable but hard needle-like η’ (Zn2Mg)
phase and an increment of the stable lamellar h (Zn2Mg) phase with low hardness.

In many mechanical applications, especially in automotive and aerospace engineering, as the
components are reciprocating or rotating at relative speed to each other, wear resistance improvement
is of paramount importance. The benefits of CT and its effects on the enhancement of wear resistance
have been investigated and discussed in the analyzed literature as summarized by Table 2. However,
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the mechanisms responsible for the wear resistance improvement by DCT and SCT, in terms of
microstructural alteration, are yet to be clarified. Therefore, the impacts of microstructural variation
after CT on the wear resistance of steels can be summarized as below to correlate the wear behavior
with microstructural alteration:

• Transformation of retained austenite to martensite, which is counted as a contributor to improve
microhardness and enhancement of wear resistance to comply with it;

• Higher volume fraction of fine, and a homogeneous distribution of, carbide particles within the
matrix resist against the dislocation movements and plastic deformation;

• Segregation of carbides and the formation of η-carbides improves the resistance against sliding
wear as they reinforce the martensitic structure;

• Secondary carbide precipitation, especially during tempering;
• DCT is more efficient to enhance the wear resistance in comparison to SCT as it encourages a more

uniform distribution of fine carbides and the elimination of retained austenite; soaking time and
soaking temperature are the most effective process parameters.

In the case of cemented carbides, DCT enlarges grain size as a consequence of carbide grain
contiguity and the dominant effect of the carbide phase, improving thermal conductivity and
consequently, wear resistance. In addition, distribution of η-phase carbide within the structure
empowers the bond between the carbide and binder, which brings higher wear resistance.

Table 2. Summary of the literature data devoted to studying the effects of cryo-treatment on
microstructure and wear resistance.

First Author,
[#]

Cryogenic
Treatment Rival Treatment Material Microstructure Alteration Outcome

Thakur [59] DCT N.A. Tungsten
carbide–cobalt

Densification of the cobalt
metal binder

Wear resistance
has been

improved.

Akhbarizadeh
[60,62,72] SCT and DCT N.A. D6 tool steel and

1.2080 tool steel

Higher volume of
homogenized carbide

distribution and elimination
of the retained austenite

DCT homogenizes
microstructure

which encourages
higher wear
resistance

Dhokey [61] DCT Quenching and
tempering D3 tool steel

Higher volume fraction of fine
carbides and their nucleation

during ramp up

Wear resistance
improvement.

Das
[63,68,85,87] SCT and DCT DHT AISI D2

Reduction in retained
austenite and higher volume

fraction of secondary carbides

Wear behavior is
proportional to

secondary
carbides

morphology. DCT
is most effective

treatment.

Straffelini [64] DCT AlCrN PVD
coating and Stamping tools Precipitation of ultrafine

carbide particles
Wear behavior
was improved.

Podgornik
[65,88,97] DCT N.A.

Powder–metallurgic
(PM) high-speed steel
and Cold-work tool

steel

Homogenous microstructure,
finer needles like martensite

formation and retained
austenite elimination

Abrasive wear
resistance has

been enhanced.

Wang [66] DCT N.A. High chromium cast
iron

Transformation of abundant
retained austenite into
martensite and finer
secondary carbide

precipitation

Wear resistance
improvement was

recorded.

Oppenkowski
[67] DCT N.A. AISI D2 Transformation of retained

austenite into martensite

Transformation of
retained austenite

to martensite is
affected by

soaking time and
temperature.

Cajner [69] DCT N.A. PM S390 MC high
speed steels

Fine η-carbides formed within
the matrix.

Wear behavior
was improved.
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Table 2. Cont.

First Author,
[#]

Cryogenic
Treatment Rival Treatment Material Microstructure Alteration Outcome

Asl [70] DCT N.A. Magnesium alloy
AZ91

Alteration of β precipitates
distribution, coexistence of

dissolved tiny laminar β
particles and coarse divorced

eutectic β phase

Wear resistance
was enhanced.

Sogalad [71] DCT N.A. En8 steel
Transformation of retained
austenite to martensite and

distribution of fine η-carbides

Wear resistance
and load carrying

capacity were
improved.

Siva [73] DCT CHT 100Cr6 bearing steel

Martensite destabilization by
triggering carbon

clusterization and carbide
precipitation

Wear resistance
and hardness

were improved.

Xu [74] DCT N.A. AISI H13 Homogeneous martensite Wear resistance
was enhanced.

Arockia Jaswin
[75] DCT N.A. E52 valve steel

Transformation of retained
austenite to martensite and

increase in the amount of fine
secondary carbide

precipitation

Wear behavior
was ameliorated.

Li [76] DCT +
tempering N.A. Tool steel

Precipitation of carbide
particle and carbon

segregation nearby dislocation
and carbon cluster formation

Improvement of
wear resistance

was highlighted.

Koneshlou [77] DCT N.A. H13 tool steel

Uniform distribution of
martensite laths and

transformation of retained
austenite to martensite

Wear properties
has been

improved.

Senthilkumar
[78] SCT and DCT CHT En19 steel

Precipitation of fine carbides
and transformation of retained

austenite into martensite

Higher wear
resistance was
obtained after

DCT followed by
SCT.

Jaswin [79] SCT and DCT CHT X53Cr22Mn9Ni4N
valve steels

Elimination of the retained
austenite and formation of

fine carbides

Wear resistance
was improved.

Li [80] DCT N.A. Cold work die steel
Carbon atoms segregation and

generation of strong
interaction with dislocations

Wear resistance
improvement

Amini [81,86] DCT N.A. 80CrMo12 5 tool steel,
D2 tool steel

Elimination of retained
austenite, higher amount, and

fine distribution of carbide

Wear resistance
and ultimate

tensile strength
were improved.

Gill [82] SCT and DCT N.A. AISI M2 HSS
Transformation of austenite
into martensite and higher

precipitation of small carbides

Wear behavior
was ameliorated.

Sri Siva [83] DCT N.A. 100Cr6 bearing steel

Precipitation of the fine
carbides and transformation
of the retained austenite to

martensite

Wear resistance,
hardness, and
dimensional
stability were

improved.

Gavriljuk [84] DCT N.A. Steel X153CrMoV12 Refining of primary and
secondary carbides

Abrasive wear
resistance and
hardness were

enhanced.

Amini [91] DCT N.A. AZ91 magnesium alloy
Aluminum atoms in the β
phase jump adjacent to the

defects

Wear and
hardness were

improved.

Gunes [92] DCT N.A. AISI 52100

Uniform carbide distribution,
refinement of particle size and

redistribution of chromium
carbides

Higher wear
resistance was

obtained.

Khun [93] DCT CHT AISI D3
Uniform distribution of
primary and secondary

chromium carbides

Higher wear
behavior and

hardness were
recorded.
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Table 2. Cont.

First Author,
[#]

Cryogenic
Treatment Rival Treatment Material Microstructure Alteration Outcome

Çiçek [94] DCT and DCTT N.A. AISI H13 Finer carbides size and
distribution

Wear resistance
was improved.

Tempering after
DCT resulted in
precipitation of

secondary
carbides.

Li [95] DCT N.A. High-vanadium alloy
steel

Finer carbide particles size
with homogenous distribution

Higher abrasive
wear resistance
was obtained.

Li [97] DCT N.A. Al–Zn–Mg–Cu
wrought aluminum

Precipitation of Si phases and
reduction in unstable but hard
needle-like η’ (Zn2Mg) phase

Wear performance
and hardness

were improved.

5. Effects of DCT on Microstructure and Mechanical Properties

In this section, the effect of CT on fatigue strength, tensile toughness, thermal conductivity, and
durability, as well as residual stresses relief, will be addressed and discussed.

Bensely et al. conducted an experimental investigation to gain insight into fatigue and fracture
behavior of carburized EN 353 steel subjected to CT [98]. Rotating bending fatigue tests were carried
out to study the influences of SCT and DCT. It was highlighted that due to the presence of higher
retained austenite and fine carbides, SCT treated specimens showed better fatigue life in contrast to
DCT and conventionally treated specimens. A 71% improvement in fatigue life was observed via SCT
and DCT.

Baldissera and Delprete studied the effect of DCT on tensile properties, fatigue life, and corrosion
resistance of AISI 302 stainless steel in both hardened and solubilized states [99,100]. Although no
significant effects on tensile strength were observed, changes in hardness and in elastic modulus were
detected as far as significant increases in fatigue life for the solubilized material only. The fatigue
fracture surface analysis pointed out that small secondary cracks for the treated material have been
observed that could have acted as energy absorber with respect to the cyclic loading. The absence of
significant effects from DCT applied to hardened AISI 302 was confirmed following an experimental
investigation by Baldissera et al., where the same material was additionally subjected to CrN coating
through Physical Vapour Deposition (PVD) [101].

The same authors carried out experimental investigations to assess the effects of DCT on
18NiCrMo5 carburized steel [102,103]. Two levels of temperature and soaking time were considered.
In addition, the influence of the sequence among case hardening, tempering, and DCT was studied.
Performing DCT before tempering produced a significant increase in hardness (+2.4 HRC), while
pre-tempering DCT resulted in a remarkable enhancement of UTS (Ultimate tensile strength) (+11%).
The most interesting result was observed in terms of scatter reduction of fatigue data, leading to a
drastic increase in the fatigue limit at higher reliability levels (+25% considering a failure probability of
0.3%). In a subsequent study, the authors applied the Tanaka–Mura model for fatigue crack nucleation
to the above experimental results through Maximum Likelihood Estimation (MLE), obtaining further
insight on the potential causes of the observed improvements [104]. The conclusion was to address
further investigations towards the effect of DCT on the specific fracture energy and, in agreement with
most of the literature, on the dimensional and statistical characterization of subgrain precipitate fields.

Bouzada et al. evaluated microstructural alterations due to DCT of a heat-treated 7075
aluminum alloy [105]. Higher compressive residual stresses and slight changes in static mechanical
properties (yield strength, tensile strength, and hardness) were observed after treatment. Accretion of
submicrometric particles near and at the grain boundaries was detected. The combined effect of these
microstructural changes improved the stress corrosion cracking and durability of 7075 aluminum.

The joint properties of 4 mm-thick 2219-T87 alloy produced by tungsten inert gas welding
(TIG) and friction stir welding (FSW) at room temperature and DCT temperature (−196 ◦C) were
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examined. FSW presents better welding properties due to the preservation of the working structures
and homogenous chemical compositions. A uniform and coherent microstructure obtained by DCT
in the form of grain-boundary strengthening, substructure strengthening, and ageing precipitation
strengthening is the main reason for the mechanical properties alteration [106].

The effect of microstructural alteration after DCT execution on tensile toughness in medium
carbon-low alloy tool steel has been examined [107]. It was highlighted that the amount of secondary
carbides is proportional to the soaking time. As soaking time increases, there was a constant increment
of secondary carbides until a certain duration because after this point secondary carbide density is
reduced. Tensile toughness was increased by simultaneously extending both the tempering duration
and soaking time.

The combined effects of postweld heat treatment and low-temperature ageing treatment with and
without DCT on friction-stir-welded joints of 2024-T351 aluminum alloys were examined [29]. It was
observed that joint elongation increases with an improvement in tensile strength. Pre-DCT promotes
the redissolution or dispersed precipitation of the unstable phases in the as-welded joints.

The effects of DCT on the fatigue behavior of 1.2542 tool steel have been examined [108]. It has
been highlighted that nonsignificant changes in fatigue life were observed and both specimens were
free of retained austenite. However, specimens that experienced DCT contained more secondary
carbides with uniform distribution.

The effects of DCT on mechanical properties of induction hardened En 8 steel were measured,
with the treatment carried out at −196 ◦C for 24 h [109]. A remarkable improvement of the ultimate
tensile strength was observed as DCT increased the compressive residual stress of steel. SEM analysis
provided evidence that the martensite structure was formed after DCT.

Araghchi et al. applied a combination of prior treatments, CT, and ageing (reheating by oil at
180 ◦C) on 2024 aluminum [110]. Application of this treatment cycle resulted in a reduction of residual
stress by 250%. The concerned treatment encouraged the formation of large needle-like S´ precipitates
with different orientation, which improved matrix hardness and reduced the residual stresses. It
reported that S´ phase preferentially precipitated on dislocations.

An investigation was conducted to examine the effects of DCT, prior and after ageing, on
microstructural evolution, microhardness, and tensile property variations of TB8 metastable β titanium
alloy [111]. It was observed that conventional solution treatment followed by DCT resulted in a higher
degree of super-cooling and internal stress through lattice shrinkage, which fosters the formation of
needle-like α phase in the martensite matrix and furnishes a higher fraction of α phase during ageing
treatment. The aforementioned microstructure alterations, as well as refinement and homogenization of
lath-like α precipitates, improved the microhardness and tensile strength while reducing the elongation.

Subzero treatment was carried out on EN 1.4418 steel to evaluate the sensitivity of reverted
austenite to temperature [112]. It was highlighted that impact toughness is a time dependent variable
of temperature and it is directly affected by the volume fraction of austenite. Reverted austenite
appears to be stable at room temperature and at elevated temperature (immersing in boiling N2), but
in moderate temperature it can be partially transformed.

In general, according to the above literature survey, as summarized by Table 3, some important
microstructural alterations due to CT and their effects on the mechanical properties are correlated with
each other as follows:

• Residual stresses can be imposed by external or internal sources to the materials. Residual stresses
due to external sources can be introduced and developed during manufacturing processes such as
nonuniform plastic deformation under cold working, shot peening, hammering, grinding, or by
welding due to thermal shocks. Some residual stresses are due to defects in the crystal structure
of the materials, with the most common defects being in the form of vacancies, dislocations,
and stacking faults. Residual stresses would cause creep failure, fatigue, and stress corrosion
cracking in sensitive materials. The higher transformation of retained austenite to martensite at
lower temperatures induces compressive residual stress, which is beneficial for wear resistance
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improvement and fatigue behavior. Precipitation of the carbides in DCT and SCT followed by
tempering is the main contributor to residual stresses reduction;

• Fatigue life improvement due to CT is attributed to distribution of fine carbide particles and
reduction of residual stresses. Moreover, the subgrain carbide distribution can play an important
role by affecting the statistical dispersion of the fatigue behavior, with a significant impact at high
reliability levels, which is the most interesting in many structural component applications;

• Fracture toughness after DCT reduced the transformation of retained austenite to martensite. DCT
improves hardness and reduces fracture toughness. Therefore, it is essential to control the fracture
toughness to avoid the risk of microcracking, especially in the case where mechanical components
are sliding under the influence of a load in tribo-systems;

• Formation of martensite and the elimination of retained austenite, along with the precipitation of
fine carbide, are the main contributors to the enhancement of ultimate tensile and yield strength.

Table 3. Summary of literature data devoted to study the effects of cryo-treatment on microstructure
and mechanical properties.

First Author,
[#]

Cryogenic
Treatment

Rival
Treatment Material Microstructure Alteration Outcome

Bensely [98] SCT and DCT N.A. EN 353
Higher volume fraction of
retained austenite and fine

carbides

SCT treated specimens
show better fatigue life
in contrast to DCT and

CHT.

Baldissera
[99–101] DCT CrN coating

through PVD AISI 302 Formation of microsecondary
cracks on surface

Tensile strength and
fatigue life significantly

improved.

Baldissera
[102–104] DCT N.A. 18NiCrMo5

carburized steel N.A.
Hardness (+2.4 HRC)
and UTS (+11%) were

improved.

Bouzada [105] DCT N.A. 7075 aluminum
alloy

Accretion of submicrometric
particles near and at the grain

boundaries

Yield strength, tensile
strength and hardness

were ameliorated

Lei [106] DCT N.A. 2219-T87

Uniform grain-boundary
strengthening, substructure

strengthening, and aging
precipitation strengthening

Better weldability
obtained.

Vahdat [107] DCT N.A.
Medium

carbon-low
alloy tool steel

Formation of secondary carbides Tensile toughness
increased.

Niaki [108] DCT N.A. 1.2542 tool steel
Elimination of retained austenite

and uniform distribution of
secondary carbides

Nonsignificant changes
in fatigue life were

recorded.

Senthilkumar
[109] DCT N.A. En 8 steel Uniform martensite structure

Significant improvement
of ultimate tensile

strength was traced.

Araghchi [110] DCT N.A. 2024 aluminum
Formation of large needle-like S´

precipitates with different
orientation

Reduction of residual
stress by 250% and

hardness increase have
been reported.

Gu [111] DCT N.A.
TB8 metastable
β titanium

alloy

High volume fraction of
needle-like α phase in martensite

matrix

Microhardness and
tensile strength were

improved.

Nießen [112] DCT N.A. EN 1.4418 steel Stabilization of reverted austenite

Impact toughness is a
time dependent variable
on temperature, and it is

directly affected by
volume fraction of

austenite.

6. Cryogenic Application in Manufacturing Engineering

Cryogenic treatment induces significant effects on engineering components and improves the
mechanical properties through microstructural alteration. A major portion of manufacturing cost
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is contributed by tooling cost involving tool replacement and resharpening, material scrap, and
production line interruption [113]. Improving cutting tool durability and workpiece machinability
provides evidence to consider cryogenic treatment as a potential way to take a step toward sustainable
manufacturing and clean production. In addition, in such applications where wear resistance is of
paramount importance, such as tribo-systems and transportation applications, cryogenic treatment can
improve the system reliability. In this context, to improve productivity, it is essential to develop tools
with the capability to withstand higher cutting speeds and feed rates during machining. To achieve
this goal, tool performance and machinability improvement of workpiece materials are of prime
importance, especially in the case of hard to cut materials, as they are most in demand to operate
under severe conditions [114,115]. Therefore, this section is devoted to addressing the application of
cryogenic treatment in machining processes.

Yong et al. investigated the effects of cryogenic treatment on the cutting performance of tungsten
carbide (G10E) during milling of ASSAB 760 medium carbon steel with and without the presence of
coolant. The cryo-treated tool showed a better performance especially during wet milling, as DCT
improves the thermal conductivity of the tool and promotes higher heat transfer at the tool/chip
interface temperatures [116].

The effects of CT on wear resistance and tool life of M2 HSS drills during high speed dry
drilling of normalized CK40 carbon were measured. The performance of three different tools,
untreated, cryo-treated, and cryo-treated followed by tempering were examined. The findings revealed
that cryo-treated drills showed better wear resistance to diffusion wear due to the formation of a
higher volume fraction of fine and homogeneous carbide particles in the matrix as demonstrated by
Figure 12 [117].
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Figure 12. SEM images of drills after drilling of 30 holes: (a) nontreated drill and (b) cryo-treated with
tempering drill [117].

Tool wear and power consumption were considered as indicators to evaluate coated carbide inserts
subjected to CT during turning of AISI/SAE 80-55-06 SG iron. Cryo-treated inserts provided better
performance due to a reduction of the η-phase (carbide) effect on the hardness and wear resistance
by CT, as it promotes a uniform distribution of refined carbide particles and their denser and more
coherent bonding with the matrix. Figure 13 shows flank and crater wear of cryo-treated (a and c) and
untreated (b and d) cutting tools at a cutting speed of 250 m/min, feed rate of 0.1 mm/rev, and depth of
cut 0.8 mm [118].
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Figure 13. Flank and crater wear of cryo-treated (a,b) and non-treated (b,d) inserts [118].

SreeramaReddy et al. examined the effects of DCT on tungsten carbide cutting tool inserts
performance during machining of C45 steel [119]. Cutting tool flank wear, cutting force, and surface
roughness were set as indicators to evaluate the machinability of C45 and deep cryogenic treated
tungsten carbide inserts. The cutting tool durability after DCT was improved as the hardness increased
in comparison to untreated inserts. A better surface was obtained using a DCT treated tool as the
wear resistance of the insert was increased and a negligible alteration in the cutting edge geometry
was observed (Figure 14). An increment in the carbide grain size after DCT increased the thermal
conductivity of the cemented carbide as a result of an increase in carbide grain contiguity and the
dominant effect of the carbide phase. This impact reduces the tool tip temperature and improves its
resistance against the erosion.

The machinability of coated tungsten carbide tool inserts of ISO P-40 exposed to DCT has been
examined in terms of wear resistance, cutting force, and surface roughness [120]. Turning was carried
out on AISI 1040 steel using untreated and cryo-treated (−176 ◦C) cutting tools. DCT improves the
thermal conductivity of the insert and the cutting zone temperature is dissipated by the chips and
consequently encourages lesser tool wear. Higher thermal conductivity of the cutting tool plays an
important role at higher cutting speeds. This results in massive seizure through the chips and enables
the discontinuous chips, which improves tool life by reducing the adhesive wear rate of cutting edges
leading to better surface finish [121].
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Sundaram et al. applied DCT to improve the mechanical and electrical properties of copper tool
electrodes, while electrical discharge machining (EDM) of Be–Cu. A higher material removal rate
(MRR) was obtained by the cryo-treated electrodes due to an improvement of electrical conductivity,
but the impact on the electrode wear rate (EWR) was marginal [122].

Cryogenically treated copper electrodes were employed to study the effect of DCT during the
electrical discharge drilling (EDD) of Ti-6246. Hole quality in terms of surface roughness and overcut
was examined to compare cryo-treated copper electrode performance with the as-received one. MRR
and EWR produced surface finish, and the hole quality using cryo-treated electrodes was significantly
improved [123].

Gill et al. conducted an experimental investigation to examine the effects of SCT and DCT on
tungsten carbide inserts (P25) during dry turning of hot-rolled annealed steel stock (C-65). Maximum
flank wear (ISO 3685-1993) and surface roughness were considered as criteria to determine the turning
performance. Longer durability was recorded for the DCT insert followed by SCT tools as compared
to untreated ones. Cryogenic treatment causes higher precipitation of η-phase carbides within the
matrix and enhances the carbide tool life [124].

The performance of cubic boron nitride (CBN) inserts in terms of flank wear, surface finish, white
layer formation, and microhardness were compared against cryo-treated coated/uncoated carbide
cutting tools during dry turning of hardened AISI H11 steel. The surface roughness produced by
cryo-treated inserts were comparable with that generated by CBN tools. In addition, cryogenically
treated inserts provide longer tool life with a 16–23% improvement [125].

Longer tool life and 35% reduction in surface roughness (Ra) were reported using cryo-treated
AISI M2 tools during drilling of mild steel C45 as results of wear resistance improvement, and a
reduction in the anisotropy of the tool. Cryogenic temperature and soaking time were the most
influential parameters, respectively [126].

The performance of cryogenically treated M35 HSS under dry drilling of stainless steels has been
investigated. Better wear resistance and longer tool life were obtained due to the transformation of
retained austenite to martensite, higher volume fraction, and more homogenous distribution of carbide
particles [127].

Experimental trials were conducted to evaluate the performance of cryo-treated copper electrodes
and machining EDM using a dielectric mixed with graphite powder additive while machining Inconel
718. MRR and EWR were improved using the cryo-treated copper electrode, due to the formation of hard
carbide compounds on the electrode caused by the migration of carbon from the decomposed dielectric
fluid and refinement of the grains, which improved the electrical and thermal conductivity [128].
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The addition of metal powder in the dielectric improved the machining efficiency by making discharge
breakdown easier and enlarging the discharge gap [129].

The effects of CT on surface residual stresses of ground carbide surfaces after grinding using
diamond abrasive wheel were examined. Thermal residual stresses were induced due to thermal
mismatch between the WC and the Co phase. A 20% reduction in residual stresses after CT execution
was observed due to the cracking and plastic deformation in the WC grains [130].

A significant improvement of the cutting performance of cryo-treated M35 HSS during drilling of
AISI 316 austenitic stainless steel was observed in comparison to untreated drills. Tool life, surface
roughness, and hole quality were selected as criteria to assess the tool life. The improvements were
attributed to the transformation of retained austenite into martensite and a more homogeneous
distribution of carbides due to secondary carbide precipitation [131].

Kapoor et al. examined the performance of deep cryo-treated brass electrodes during EDM of
En-31. Significant improvement of the electrical conductivity and MRR after DCT was observed due to
refinement of grains and a reduction in microcavities [132]. It is worth mentioning that the electrical
conductivity is proportional to the thermal conductivity, therefore, the higher the electrical conductivity,
the higher the MRR [133,134].

Çiçek et al. examined the effect of CHT, CT, and CTT on the machinability of AISI H13, subjected
to turning using CC670 and CC650 ceramic inserts, in terms of tool wear, surface roughness, and
cutting force. A better surface quality for the CCT workpieces was obtained, followed by the CT and
CHT specimens. The cryo-tempering process reduces the workpiece hardness and encourages a lower
cutting force, tool wear, and surface roughness, due to the formation of higher volume fraction of fine
carbides [135].

The effects of DCT on the machining efficiency of microelectric discharge machining (MEDM)
of AISI 304, using copper, brass, and tungsten electrodes were evaluated. Lower EWR was obtained
using cryo-treated tungsten followed by the brass and copper electrodes with a reduction of 58%, 51%,
and 35%, respectively. A higher volume fraction of refined particles was observed within the brass
matrix after execution of DCT as compared to copper and tungsten. DCT increases average crystal size
of brass, copper, and tungsten by the value of 29%, 12%, and 4%, respectively, which results in the
enhancement of hardness and wear resistance [136].

The effects of different soaking times on durability (wear resistance) of deep cryogenic treated
AISI 316 austenitic stainless steel has been studied. Wear tests were conducted at different cutting
speeds with a constant feed rate and depth of cut under dry turning. An improvement of the wear
resistance of the cutting tool was observed. However, flank wear and crater wear were presented as a
result of new η-carbide particles in the microstructure formation and a uniform and homogeneous
distribution of small-sized carbide particles [137].

Mavi and Korkut examined the effect of CT on the performance of cemented carbide during
turning of Ti-6Al-4V. An increment of 22% of cryo-treated inserts was reported as a consequence of fine
and uniform distribution of carbide particles within the matrix. Higher thermal conductivity of the
cryo-treated inserts reduces cutting zone temperature and facilitates chip removal and consequently,
a lower cutting force and better surface roughness were obtained [138].

Three different grades of titanium alloy, Ti (grade two), Ti-6Al-4V (grade five), and Ti-5Al-2.5Sn
(grade six) subjected to SCT and DCT, were machined by EDM. Copper, copper–chromium, and
copper–tungsten electrodes were used to get a comprehensive insight into the cryogenic treatments
impact. Marginal improvement of MRR was observed [139].

The effects of DCT on the machinability and wear behavior of TiAlN coated tools under dry
turning of AISI 5140 have been studied [140]. These influences were examined by means of cutting
force, cutting zone temperature, surface texture, and the tool life. Strengthening of the TiAlN coating
on the tungsten carbide, improvement of substrate interfacial adhesion bonding, homogeneous carbide
distribution, higher hardness, and better thermal conductivity were obtained after DCT. Therefore,
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DCT coated inserts show better machinability in comparison to uncoated, conventionally treated
cutting tools.

Wear resistance and tool life of H13A tungsten carbide inserts subjected to DCT during turning
of AISI 1045 steel has been investigated. Deep cryo-treated H13A provided higher hardness, better
abrasive wear resistance, and lower toughness. DCT promotes a higher volume fraction of the cobalt
phase without swelling of the tungsten carbide grains and strengthens the bonding between the
tungsten carbide grains and the cobalt binder, which improves inserts corrosion resistance. It was
highlighted that built up edge (BUE) was the predominant mechanism of rake surface adhesion wear
of the cryo-treated inserts [141].

The effects of post treatment processes, cryogenic treatment, controlled heating, and oil quenching
on cutting performance of cemented tungsten carbide (K20) under turning of Inconel 718 superalloy
have been examined. Higher microhardness was obtained by oil quenched treatment following CT,
as the quenching increases the stresses imposed on the carbide phase (compressive stresses) and
the binder (tensile stresses) with decreasing cobalt content, which reduces ductility. In contrast, CT
tends to relieve the stresses induced during the sintering process that is used to produce carbide tools,
which improves the hardness in comparison to untreated inserts. In addition, CT encourages more
densification of the cobalt binder which is strongly bonded by tungsten carbides and improves wear
resistance and reduces cutting force [142].

The influences of different treatments on grindability of 9Mn2V using a grinding wheel (3SG80KV)
have been studied. Four treatment process were conducted: 1) quenching followed by oil cooling;
2) quenching followed by oil cooling and tempering; 3) quenching followed by oil cooling, CT, and
tempering; and 4) quenching followed by oil cooling, CT, and two times tempering. Cryogenic
treatment promotes the uniform distribution of martensite, a higher volume fraction of refined carbides,
and the transformed austenite to martensite. Carbide segregation occurred in all specimens but in
the last two treatments comprising CT, carbide segregation was improved after CT and tempering.
Machinability of two last samples was significantly improved due to higher volume fraction and
uniform distribution of secondary carbides. In addition, impact toughness improvement and residual
stresses relief on the workpieces surface due to CT and tempering, especially for the cryo-treated
sample followed by double tempering, were detected [143].

The cutting capabilities of M2 HSS drill subjected to CT, CTT, and TiAlN/TiN-coated were
evaluated while drilling Ti-6Al-4V under dry and wet conditions. Cryo-treated drills show higher wear
resistance as compared to untreated and TiAlN/TiN-coated. After CT execution, the tool microstructure
received finer carbide particles with a homogenous distribution, as well as a higher volume fraction of
martensite, which encourages longer tool life in comparison to untreated drills. Cryogenic treatment is
more cost effective than coating and brings fairly remarkable improvements [144].

Özbek et al. evaluated uncoated and deep cryo-treated tungsten carbide insert’s performance
while turning an austenitic stainless steel (AISI 316). Flank, notch, and crater wear were selected as
indicators to examine the tool life. A higher volume fraction of fine η-carbides after DCT execution,
improved the hardness and wear resistance. DCT encourages larger grain size and better thermal
conductivity which improved the flank wear by 34% and the crater wear by 53% [145].

Xu et al. examined the effects of DCT on the residual stresses and mechanical properties of electron
beam (EB)-welded Ti-6Al-4V (TC4) joints [146]. Soaking time influence was evaluated to determine an
optimum time. It was highlighted that a reduction in longitudinal and transversal residual stress (with
respect to welding direction) after DCT was different. It was observed that the hardness in the welded
area was higher than that in the base metal, and the average values of hardness increased with DCT
due to the alteration of quantity, size, and morphology of the α and β phases.

Khanna and Singh studied the impact of DCT on machining efficiency using a high chromium
cold alloy tool (D3) during WEDM (wire-cut electrical discharge machining). MRR was reduced by
5.6% after DCT due to an improvement of thermal conductivity as result of the transformation of
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retained austenite to martensite and the refinement of carbide particles, which promotes the heat flow
laterally across the line of the cut [147].

The machinability of the AISI D2 tool steel subjected to DCT during EDM using copper electrodes
has been investigated. Higher MRR (~18% enhancement), lower EWR, and surface roughness (26% and
11% improvement, respectively) were obtained after DCT as compared to untreated workpieces [148].

The performance of cutting inserts PVD AlTiN-coated (KC5525) and uncoated (K313) subjected to
the DCT during dry turning of Nimonic 90 alloy were investigated. DCT promotes the formation of
η-phase carbide particles and grain refinement which results in higher hardness and wear resistance.
In addition, DCT strengthens the coating and reduces the failure probability in comparison to coating
durability and damage of untreated inserts [149].

Khan et al. used cryo-treated K313 inserts during dry turning of CP-Ti grade two to evaluate the
effects of DCT on tool performance. DCT increased the microhardness, wear resistance, and improved
the chip formation phenomena such as chip compression ratio and friction coefficient. An increment of
η-phase carbides is to be recognized as the main contributor to these improvements [150].

Naveena et al. carried out experimental trials to evaluate cryogenically treated tungsten carbide
under drilling of AISI 304. Surface roughness using cryo-treated tools was reduced by 40% due to
the enhancement of wear resistance and cutting edge stability. DCT encouraged a 19% reduction
in average grain size of the α-phase and consequently, increased the hardness. Furthermore, DCT
reduced the volume fraction of β-phase Co which implied combination of cobalt with WC particles to
form η-phase carbides [151].

The research works devoted to examining the effects of CT on machinability of different materials
subjected to nonconventional and conventional manufacturing process have been tabulated by Tables 4
and 5, respectively.

Table 4. Literature data related applying cryogenic treatment in nonconventional manufacturing
process.

First Author, [#] Process Tool Material Workpiece
Material Key Findings

Sundaram [122] EDM Copper Be–Cu
Higher MRR due to electrical conductivity

improvement, and marginal effect on
electrode life

Gill [123] EDD Copper Ti-6246 DCT improves MRR, electrode life, and
surface finish.

Kumar [128] EDM Copper Inconel 718
MRR and EWR have been improved due
to formation of hard carbide compounds

on the electrode.

Kapoor [132] EDM Brass En-31

Improvement of electrical conductivity
and MRR after DCT has been achieved

due to refinement of grains and reduction
in microcavities.

Jafferson [136] MEDM Copper AISI 304

DCT encourages average crystal size of
brass, copper, and tungsten by the value of

29%, 12%, and 4%, respectively, which
result in enhancement of hardness and

wear resistance.

Kumar [139] EDM Copper and
Copper-Tungsten

Ti, Ti-6Al-4V, and
Ti-5Al-2.5Sn

Marginal improvement of MRR was
observed.

Xu [146] EB welding N.A. Ti-6Al-4V

Due to alteration of quantity, size, and
morphology of the α and β phases after

DCT, hardness in welded area was higher
than that in the base metal.

Khanna [147] WEDM N.A. AISI D3

Transformation of retained austenite to
martensite and refinement of carbide

particles after DCT execution, thermal
conductivity has been improved.

Goyal [148] EDM Copper AISI D2

Higher MRR (~18% enhancement), lower
EWR, and surface roughness (26% and
11% improvement, respectively) were

obtained after DCT.
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Table 5. Literature data related applying cryogenic treatment in conventional manufacturing process.

First Author, [#] Process Tool Material Workpiece
Material Key Findings

Yong [116] Milling Tungsten carbide
G10E ASSAB 760 DCT improves tool life as consequence of higher

heat transfer.

Firouzdor [117] Drilling M2 HSS CK40 Better wear resistance against diffusion wear.

Vadivel [118] Turning Coated carbide
inserts

AISI/SAE 80-55-06
SG

Higher hardness and better wear performance
due to uniform distribution and higher volume

fraction of refine carbides particles.

SreeramaReddy
[119] Turning Tungsten carbide C45 steel

Increment of carbide grain size after DCT
increased the thermal conductivity and reduced

cutting tool tip temperature.

Reddy [120] Turning ISO P-40 AISI 1040 Lower tool wear due to thermal conductivity
improvement after DCT has been observed.

Gill [124] Turning P25 C-65
Longer durability was recorded for DCT insert
followed by SCT due to higher precipitation of

η-phase carbides.

Dogra [125] Turning Cubic boron nitride
(CBN) AISI H11 16%–23% tool life improvement has been

reported.

Shirbhate [126] Drilling AISI M2 C45
Longer tool life and 35% reduction in surface

roughness (Ra) were reported after DCT
execution.

Çiçek [127] Drilling M35 HSS Stainless steels

Longer tool life was obtained due to
transformation of retained austenite to

martensite and homogenous distribution of
carbides particles.

Yuan [130] Grinding Diamond abrasive
wheel

Ultra-fine grade
cemented carbide

20% reduction in residual stresses after CT
execution were observed due to the cracking and

plastic deformation in the WC grains.

Çiçek [131] Drilling M35 HSS AISI 316
Transformation of retained austenite into

martensite and more homogeneous distribution
of carbides provided better tool performance.

Çiçek [135] Turning Ceramic Inserts AISI H13
DCT reduces tool wear and surface roughness as
result of higher volume fraction of fine carbides

formation.

Özbek [137] Turning Cemented carbide AISI 316 Tool life was improved due to homogeneous
distribution of small-sized carbide particles.

Mavi [138] Turning Cemented carbide Ti-6Al-4 V Tool life has been improved by 22% due to higher
thermal conductivity improvement.

He [140] Turning Tungsten carbide AISI 5140
DCT coated inserts were shown better

machinability in terms of cutting force, cutting
zone temperature, surface texture, and tool life.

Thornton [141] Turning H13A AISI 1045
Better corrosion resistance obtained due to
strengthen of carbide grains and the cobalt

binder.

Thakur [142] Turning K 20 Inconel 718
CT encourages more densification of the cobalt
binder which is strongly bonded by tungsten
carbides and improves tool wear resistance.

Dong [143] Grinding Grinding wheel
(3SG80KV) 9Mn2 V

Improvement and releasement of residual
stresses on the workpieces surface has been

improved.

Kivak [144] Drilling M2 HSS Ti-6Al-4 V
It was concluded that CT is more cost effective

than coating which brings remarkable
improvements.

Özbek [145] Turning Tungsten carbide AISI 316
Higher volume fraction of fine η-carbides after

DCT execution improves the hardness and wear
resistance.

Chetan [149] Turning KC5525 and K313 Nimonic 90
DCT strengthens the coating and reduces failure
probability in comparison to coating durability

and damage on untreated inserts

Khan [150] Turning K313 CP-Ti grade 2 DCT increases microhardness, wear resistance
and improves chip formation phenomenon.

Naveena [151] Drilling Tungsten Carbide AISI 304
DCT encourages 19% reduction in average grain
size of α-phase and consequently increases the

hardness and improves wear resistance.
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7. Conclusions

A literature survey has been conducted to focus on cryogenic treatments effects on microstructural
alteration and its correlation with material mechanical properties and manufacturability. Comparative
investigations have been made to evaluate the effects of CHT, SCT, and DCT on the microstructure
and mechanical property variations. The effects of important parameters and their interactions such
as austenitizing temperatures, ramp down, soaking time, and temperature, as well as ramp up, are
discussed. The review of the literature implies that the evaluation of microstructural variations due to
cryo-treatment and their interaction with mechanical properties is a complex phenomenon. Therefore,
these complexities of interactions of microstructural alteration and mechanical properties depend on
the adopted methods such as prior and supplementary treatments (austenitizing, quenching, and
tempering), influential parameters, and demanded accuracy.

A review of the literature and the synthesis of technical contributions indicates various ways
to execute cryogenic treatments. The important conclusions of this literature survey and the future
directions are suggested as follows:

• In almost all steels, elimination of retained austenite, the increment of carbide volume fraction with
homogenous distribution, and uniform size, as well as the formation of fine secondary carbide
precipitation, are the greatest contributor to hardness improvement after DCT. Microstructure
during SCT experiences these changes with a lower magnitude in comparison to DCT, but more
efficiently than CHT;

• Uniform carbide distribution and homogeneous particle size, along with the formation of new small
size carbides, have been obtained after DCT which result in higher wear resistance. Meanwhile,
the formation of η-carbide and a homogeneous distribution of the produced carbides are the
most important players in wear resistance improvement, rather than only the elimination of
retained austenite. In the case of CT of steels, to obtain better properties and to improve treatment
efficiency, it is recommended that austenizing, quenching, DCT, and tempering are carried out
one after another in a cycle;

• Homogenous distribution of secondary carbides and the transformation of retained austenite to
martensite after SCT and DCT improve fatigue strength and tensile toughness;

• Applying appropriate cooling temperature and soaking time causes substantial transformation of
the soft austenite into hard martensite and in addition, metallurgical alteration of the martensite
can be obtained;

• It is relevant to note that martensitic transformation never goes to completion after DCT, and
the retained austenite always exists in the structure of high-carbon martensite. However, further
tempering is suggested to boost the elimination of austenite and the formation of secondary
carbides within the martensite;

• DCT encourages the increment of carbide grain size and improves the thermal conductivity of
cemented carbide cutting tools. Therefore, as consequence of the increment in carbide grain
contiguity, and the dominant effect of the carbide phase, higher wear resistance, and better surface
roughness can be obtained;

• It is recommended to standardize the CT cycles including ramp down, soaking time and
temperature as well as ramp up and supplementary processes, to optimize the properties of each
specific material. Process qualification and standards would be drafted and validated for more
promising alloys;

• The effects of CT on different cutting tools needs to be clarified and standardized to improve the
performance of inserts in terms of wear, hardness, dimensional stability, and thermal conductivity.

• Special efforts are required to characterize the correlation between microstructural alterations and
wear mechanisms of cutting tools from different materials.
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Nomenclature

Conventional heat treatment CHT
Cryogenic treatment CT
Cryogenic treatment followed by tempering CTT
Cryogenic-ageing circular treatment CACT
Deep cryogenic treatment DCT
Deep cryogenic treatment pluse tempering DCTT
Differential scanning calorimetry DSC
Electron back scattered diffraction EBSD
Electrical discharge machining EDM
Electrode wear rate EWR
Electric discharge drilling EDD
Friction Stir Welding FSW
Microelectric discharge machining MEDM
Material removal rate MRR
Maximum Likelihood Estimation MLE
Optical microscopy OM
Subzero treatment SZT
Shallow cryogenic treatment SCT
Scanning electron microscopy SEM
Transmission electron microscopy TEM
Tungsten Inert Gas Welding TIG
Wire-cut electrical discharge machining WEDM
X-ray diffraction XRD
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