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ABSTRACT9

Computational cost of robust-based design optimization methods may be very high. Evaluation10

of new procedures for the management of uncertainty with application to hybrid rocket engines is11

here carried out. Two newly developed procedures are presented (hybrid algorithm and iterated12

local search) and their performance are compared to those of two previously developed procedures13

(genetic algorithm and particle swarm optimization). A liquid-oxygen/paraffin-based fuel hybrid14

rocket engine which powers the third stage of a Vega-like launcher is considered. The conditions15

at third-stage ignition are assigned and a proper set of parameters are used to define the engine16

design and compute the payload mass. Uncertainties in the regression rate are taken into account.17

An indirect trajectory optimization approach is used to determine a mission specific objective18

function, which takes into account both the payload mass and the ability of the rocket to reach19

the required final orbit despite uncertainties. Results show that, for this kind of problems, particle20

swarm optimization and iterated local search outperform the genetic algorithm, but the use of a21

local search operator may slightly improve its performance.22

INTRODUCTION23

Hybrid Rocket Engines (HREs) gathermany positive features from both Liquid Rocket Engines24
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(LREs) and Solid Rocket Motors (SRMs). HREs performance are close to semi-cryo or25

storable LREs while they are cheaper than SRMs. HREs are also safer and more environmentally26

friendly than both LREs and SRMs. Thus, the development of HREs is the focus of a great number27

of research programs worldwide. A large number of applications are being studied, including28

micro gravity platforms, hypersonic accelerators, small satellites, upper stage for small launchers,29

launchers from Mars, Moon landers, debris removals and commercial space flights (Casalino and30

Pastrone 2008; Jens et al. 2016; Dornheim 2004; Casalino and Pastrone 2012; Karp et al. 2016). In31

HREs only one propellant (i.e. the liquid one) flow can be controlled. Therefore, only one of thrust32

and mixture ratio can be freely set. This typical behavior requires a proper multidisciplinary design33

optimization approach, which should include a coupled optimization of the propulsion system34

and trajectory. Moreover, uncertainties may cause severe deviation of the performance from the35

nominal one, so that the expected mission could be not accomplished. For example, regression rate36

plays a role in the design and operation in HREs (Pastrone 2012), and even small uncertainty in37

its determination may jeopardize vehicle performance and threaten seriously the mission (Casalino38

and Pastrone 2015). In order to reduce the sensitivity of the engine performance to uncertainties,39

a robust-based design approach can be used. Different definitions of robust design can be found in40

literature (Taguchi et al. 2000; Suh 2001; Box and Fung 1993), but, anyway, they generally share a41

common background. In the present article the basic concept of ”robustness” can be summarized42

as ”the capability of the system to grant a fixed level of performance” (i.e. to match mission43

goals), ”minimizing the effect of uncertainties in the design parameters without eliminating their44

causes” (Taguchi et al. 2000; Park et al. 2006). Robust-based design optimization may be a very45

demanding task, since the computational cost grows exponentially with the number of uncertain46

quantities taken into account. Then, the selection of fast and reliable procedures is, not only47

strongly advisable but, in most cases, necessary. Two new robust-based design procedures are here48

proposed and compared to two other available algorithms, namely a Genetic Algorithm (GA) and a49

Particle Swarm Optimization (PSO). The purpose is to develop and compare algorithms based on50

different principles, aiming at the reduction of the computational effort. In the first new procedure,51
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called Hybrid Algorithm (HA), the performance of GA is enhanced by means of a local search52

operator. The second new proposed procedure is an Iterated Local Search algorithm (ILS). Both53

of these procedures exploit Taguchi’s robust design approach. The design of an upper stage is here54

considered. Previous studies highlighted that HREs are a viable option for small and/or low-cost55

launchers and they can grant a very good margin of payload improvement (Casalino et al. 2014).56

Different propellant combinationswere considered for the case study of a hybrid rocket engine upper57

stage suitable for the replacement of Vega launcher third and fourth stages (Isakowitz et al. 2004)58

and a deterministic optimization was carried out. The optimization aim was the maximization of59

the payload inserted into a reference orbit. In subsequent studies, a robust design optimization was60

performed considering one propellant combination, i.e. hydrogen-peroxide/ polyethylene; throat61

erosion was neglected to simplify the problem. Results showed that robustness in the design could62

be achieved with a small payload reduction which is necessary to ensure mission goals matching63

(Casalino and Pastrone 2016). For the present work the same application is considered, adopting64

a Liquid OXygen (LOX)/wax propellant combination due to its promising performance (Cantwell65

et al. 2010). Only uncertainties on the classical regression rate correlation are taken into account.66

Nozzle throat erosion is regarded from a deterministic point of view (uncertainties in erosion67

parameters are here neglected). A combined procedure is used (Casalino and Pastrone 2005a): an68

indirect method optimizes the trajectory for each combination of engine parameters (Casalino et al.69

1999; Casalino and Pastrone 2005b; Casalino and Pastrone 2013) which, in turn, are selected by a70

proper robust optimization method. In all optimization runs, the objective function is evaluated as71

a linear combination of payload (that is not affected by uncertainty) and an index that quantifies the72

effective reaching of the target orbit, based on the average performance under uncertainty. Many73

optimization runs are carried out at fixed computational cost (in terms of number of objective74

function evaluations NFE , equal to 4000, i.e. NFE,max = 4000). In the following sections, first of all75

the authors sum up the main features of grain geometry, ballistic model and indirect optimization76

procedure. Then they describe the algorithms used in the robust optimization of engine model77

parameters. Finally, the authors compare numerical results of the different optimization methods78
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used, making our conclusions.79

NUMERICAL MODELS80

Grain Geometry and Ballistic Model81

LOX/wax is here considered as propellant combination for HREs design. Cryogenic LOX is82

stored in liquid phase in a tank and injected into the combustion chamber during operation. Wax is83

stored in solid phase as a cylindrical grain in the combustion chamber. Paraffin-based fuels, such84

as wax, present an unstable melt liquid layer that causes the entrainment of droplets into the gas85

stream (Karabeyoglu et al. 2002). This mechanism strongly increases the fuel mass transfer rate86

into the flame zone where combustion takes place through diffusive mixing of oxidizer and fuel87

coming from the grain. For this reason, regression rate is relatively large and a single circular port88

can be adopted for the fuel grain while classical fuels would require a multi-port grain design to89

avoid excessive length to diameter ratio, L/D (Casalino and Pastrone 2016). The geometry of the90

circular-port grain is defined by the grain outer radius Rg, the web thickness w, and the grain length91

Lb. The initial inner radius, i.e. the port radius before ignition, results to be Ri = Rg − w. For92

any given burning distance y (0 ≤ y ≤ w) the burning perimeter P and the port area Ap can be93

evaluated:94

P = 2π (Ri + y) (1)95

96

Ap = π (Ri + y)2 (2)97

The authors use an approximate relation between chamber head-end pressure p1 and chamber98

nozzle-stagnation pressure pc to take into account pressure losses inside the combustion chamber99

(Barrere et al. 1960):100

p1 =

[
1 + 0.2

(
Ath

Ap

)2
]

pc (3)101

where Ath is the throat area. The regression rate is assumed to be uniform along the port axis and102

the combustion of the lateral end is neglected. Its value is determined by the oxidizer mass flow103
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rate ÛmO and grain geometry:104

Ûy = a ( ÛmO/Ap)
n (4)105

In the present work a and n are assumed to be uncertain parameters. Their reference nominal values106

are a = 9.1 · 10−5 m2n+1sn−1kg−n and n = 0.69 when the International System of Units is used107

(Karabeyoglu et al. 2002). The hydraulic resistance Z in the oxidizer flow path from the tank to the108

combustion chamber determines the oxidizer flow rate. Under the assumption of incompressible109

turbulent flow:110

ÛmO =
√
(pt − p1)/Z (5)111

where pt is the oxidizer tank pressure. The authors assume a constant value of Z during the112

operation. One can obtain fuel mass flow ÛmF as:113

ÛmF = ρF ÛyAb = ρF ÛyLbP (6)114

where ρF is the fuel grain density, Ab is the burning area. The relative contribution of lateral end115

to combustion at the beginning of the burn
(

Ale

Ab

)
%
can be computed by means of Eq. (7) and will116

be checked "a posteriori" for optimal solutions.117

(
Ale

Ab

)
%
=
(Ri + Rg)w

2Ri Lb
· 100 (7)118

The mixture ratio α can be computed as:119

α =
ÛmO

ÛmF
∝ Ûm1−n

O An
p/Ab (8)120

An isentropic expansion in the nozzle is assumed, and the chamber nozzle-stagnation pressure pc121

is determined by:122

pc =
( ÛmO + ÛmF)c∗

Ath
(9)123
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A chamber pressure of 106 Pa is used in performance evaluation of the propellant combination as124

a function of the mixture ratio α. Even though the actual pressure in the combustion chamber125

can span over a wide range during engine operations, the error is small for chamber pressures126

and mixture ratios considered in this article. The authors assume frozen equilibrium expansion:127

exhaust gas composition is kept constant throughout the nozzle and equal to combustion chamber128

one. The conservative assumption of frozen equilibrium expansion is adopted to account for the129

low combustion efficiency of HREs. Moreover a 0.96c∗-efficiency (Sutton and Biblarz 2001) is130

introduced. In order to compute accurately and quickly the proper values as the mixture ratio131

changes during operation, the authors embed in the code third-degree polynomial curves, fitting132

the characteristic velocity and specific heat ratio, in the code (Mc Bride et al. 1994). A partially133

regulated feed system is considered with two operational modes: a first phase with constant tank134

pressure, maintained by means of helium flowing from an auxiliary tank, and a second Blow-Down135

(BD) phase.136

The initial ullage volume
(
Vg

)
i is assumed to be 3% of the oxidizer volume. In this way one137

can obtain a stable regulator response when the out flow starts (Brown 1992). Two additional138

parameters are needed: the auxiliary gas tank volume Va and the initial pressurizing gas pressure139

pa. The first is conveniently replaced by the exhausted oxidizer mass at the beginning of the BD140

phase (mO)BD and the latter is fixed at pa = 2.00 · 107 Pa (Casalino and Pastrone 2010). During141

the first operational mode pt = (pt)i whereas during the BD phase pt is calculated assuming an142

isentropic expansion of the pressurizing gas in the oxidizer tank:143

pt = (pt)i

[
(Vg)BD

Vg

]γg
(10)144

where the gas volume in the tank Vg =
(
Vg

)
i + mO/ρO depends on the oxidizer mass mO that has145

been exhausted,
(
Vg

)
BD =

(
Vg

)
i + (mO)BD /ρO and γg is the specific heat ratio of the pressurizing146
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gas. Thrust coefficient CF can be evaluated as:147

CF = 0.98


√√√√√√√ 2γ2

γ − 1

(
2

γ + 1

) γ + 1
γ − 1

1 −
(

pe

pc

) γ − 1
γ

 + E
pe

pc

 − E
p0
pc

(11)148

where a 0.98 correction factor is introduced to modify the vacuum thrust coefficient of a 1-D149

isentropic expansion to the exit pressure pe with constant heat ratio γ (Sutton and Biblarz 2001).150

The term related to the atmospheric pressure p0 is always small since the third stage always flies at151

high altitude. Mass flow rate at ignition (i.e. at t=0) can be found as:152

( Ûmp)i = (1 + αi)( ÛmF)i =
1 + αi

αi
( ÛmO)i (12)153

Initial throat area (Ath)i and initial port area
(
Ap

)
i are then determined:154

(Ath)i =
( Ûmp)i

(pc)ic∗i
; (Ap)i =

(Ath)i

J
(13)155

where the initial throat area to port area ratio J is set equal to 0.5. Nozzle throat erosion is here156

considered. The authors use Bartz’s method (Ellis 1975; Casalino et al. 2014) to model the157

dependence of the rate of throat erosion Ûs on throat radius Rth and chamber pressure pc:158

Ûs = Ûsre f

(
pc

pc,re f

)0.8 (
Rth,re f

Rth

)0.2
(14)159

Rth and E values are computed by integrating Eq. 14. The authors adopt Ûsre f = 0.1 mm/s obtained160

from Computational Fluid Dynamics (CFD) analysis on the ablation of a carbon/carbon nozzle for161

LOX/wax HREs (Bianchi and Nasuti 2013). Our model does not consider erosion along the nozzle,162

thus obtaining a greater reduction of E and a conservative solution. The authors do not take into163

account eroded mass, either for thrust augmentation or for rocket mass reduction.164
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Trajectory Optimization165

Once engine design parameters have been defined, the orbit insertion trajectory is optimized166

by means of an indirect procedure, aiming to maximize the insertion orbit (Casalino et al. 1999;167

Casalino and Pastrone 2013). The authors consider a point mass rocket for the trajectory optimiza-168

tion. The derivative of position r (radius, latitude and longitude), velocity v (radial, eastward and169

northward components) and rocket mass M are provided by state equations. In a vectorial form170

one has:171

dr
dt
= v

dv
dt
= g +

F − D

m
dM
dt
= −

|F |

c∗CF
(15)172

The authors assume an inverse-square gravity field:173

g = −
GM⊕
| |r3 | |

r (16)174

where G is the gravitational constant and M⊕ is Earth mass. Density and pressure evaluation are175

computed by means of an interpolation of the standard atmosphere as a function of the rocket176

altitude. The authors choose to write equations of motion in a non-dimensional form to improve the177

integration numerical accuracy. Indirect optimization procedure details are here only summarized178

and can be found in the references (Casalino and Pastrone 2005a). An adjoint variable is associated179

to each equation; Euler-Lagrange equations, algebraic equations that determine the control variables180

(i.e., the thrust direction), and the boundary conditions for optimality (which also implicitly define181

the engine switching times) are provided by the theory of optimal control. A procedure based on182

Newton’s method is used to solve the multi-point boundary value problem which arises. Details183

can be found in the references (Colasurdo and Pastrone 1994). Tentative values are initially chosen184

for the problem unknowns and progressively modified to fulfill the boundary conditions. The time185

lengths of each phase, the initial values of five adjoint variables (the variable corresponding to186

longitude is null, the one corresponding to the mass is fixed at one, as the problem is homogeneous187

in the adjoint variables, which can therefore be arbitrarily scaled) are the unknown parameters.188

Moreover, the overall oxidizer mass and the grain radius are additional unknowns.189
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Constraints (dynamic pressure, heat flux, acceleration) are not explicitly imposed during the190

trajectory optimization but are checked ”a posteriori”. However a constraint that forces horizontal191

flight at the end of the first burn is added to prevent the rocket from reentering the lower layers of192

the atmosphere (where the heat flux would become larger). An additional unknown (the adjoint193

variable corresponding to the horizontal velocity component has a free discontinuity at the end of194

the first burn) is introduced in the trajectory optimization procedure.195

In the present case, the authors consider a hybrid rocket engine suitable for the replacement196

of third (solid) and fourth (liquid) stage of the Vega launcher (Isakowitz et al. 2004). First and197

second stage performance and exhausted masses are given, and the conditions at the ignition of the198

third stage, consistent with a launch from Kourou, are assigned: altitude h = 86.88 km, latitude199

φ = 9.11°, velocity components in the radial, northward and eastward directions ur = 0.142 km/s,200

vn = 0.230 km/s, we = 4.146 km/s, respectively, total mass 14,522 kg and fairing mass 540 kg201

(Casalino and Pastrone 2016). Target final orbit is specified by assigning altitude, eccentricity and202

inclination (700 km, zero and 90 deg. respectively). The longitude of the ascending node is left203

free and the fairing is assumed to be jettisoned during the first burn, when the free molecular heat204

flux reaches 1135 W/m2.205

Robust Design Model206

Robust optimization problem can be formally cast as (Park et al. 2006):207

find b ∈ Rn

to maximize Φavg (b, p)

subject to g j (b, p + zp) 6 0, j = 1, ..., r

and to bL 6 b 6 bU

(17)208

where b is the design variables vector, p is the uncertain variables vector, zp is the noise vector209

of p, g j is the j-th inequality constraint, bL and bU are the lower and upper boundary of the210

design variables, respectively. In the present approach the initial mass of the upper-stage is given at211
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ignition, and the payload weight is determined once the propulsion system is defined. Combustion212

chamber, nozzle, tanks, rocket casing and propellant sliver masses are evaluated by means of213

suitable assumptions and approximations, whereas feed systemsmasses are neglected. Details about214

propulsion system mass evaluation can be found in the references and are here only summarized215

(Casalino and Pastrone 2010). A 6 mm insulating liner, with a density equal to solid fuel one, and216

aluminumalloy cylindricalwall are used in the combustion chamber. Aluminumcylindrical oxidizer217

tank diameter is fixed at 1.9 m, equal to the diameter of Vega’s third stage, and the pressurizing gas218

is contained in a spherical aluminum tank. The wall thickness of tanks and combustion chamber are219

determined to withstand internal pressure during engine operation, assuming a 1.25 safety factor.220

In addition, a 1-mm-thick cylindrical aluminum casing encapsulates the HRE. A 45 deg convergent221

and a 20 deg divergent nozzle, with an ablative layer, is considered. The hydraulic resistance Z222

is evaluated in order to have pt/pc = 2.5 at ignition in nominal condition, and six parameters are223

required to define the propulsion system according to the proposed model. The chosen engine224

design parameters are: the grain outer radius Rg, the web thickness w, the fuel grain length Lb,225

the final exhausted oxidizer mass (mO) f , the exhausted oxidizer mass at the beginning of the BD226

phase (mO)BD and the nozzle area ratio Ei. Therefore b =
[
Rg,w, Lb, (mO) f , (mO)BD , Ei

]
. Upper227

and lower boundary of the design variables are shown in Table 1. The choice of lower and upper228

boundaries for the engine design parameters is done according to requirements relative to the present229

application (e.g. 2Rg lower than outer Vega diameter) and on the basis of user knowledge and past230

experience (i.e. reduce the range to improve computational speed, without allowing the optimal231

solution to be on the edges of or outside the design space). Uncertain parameters are the regression232

rate coefficients a and n, i.e. p = [a, n]. The authors take into account uncertainties assigning233

three different levels for each uncertain variables: ai · 105 = 9, 9.1, 9.2 m2n+1sn−1kg−n for i = 1, 2, 3,234

respectively, and n j = 0.68, 0.69, 0.7 for j = 1, 2, 3, respectively. The altitude of the attained orbit235

hi j is evaluated for each of the nine possible couples ai, n j . Since two objectives are relevant (i.e.236

payload µ and altitude h) the authors adopt an ε-constraint approach (Haimes et al. 1971) to find237

the Pareto front of robust solutions. Only average performance is considered here. The average238
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constraint violation ∆avg =
∑

i j pi p j maxi j(0, h∗ − hi j) is considered. A binomial distribution is239

assumed giving p1 = p3 = 0.25 and p2 = 0.5. The average altitude is then havg = h∗ − ∆avg and240

the objective function can be computed as:241

Φavg = µ − k max(0, ε − havg) (18)242

The authors select k = 20 kg/km to force the average altitude at ε . Only the case ε = h∗ = 700 km243

(that is the most demanding in terms of robustness) is here considered.244

Hence, design parameters and uncertain parameters, alongside with optimal ascent trajectory,245

that is optimized by an indirect procedure, determine the value of the robust performance index.246

The research of the optimal robust design (i.e. the optimal choice of the design parameters of b247

that maximizes the value of Φavg despite the presence of uncertainties in p) is then performed by248

means of one of the procedures described in the following section.249

ROBUST OPTIMIZATION PROCEDURES250

Evolutionary Algorithms: GA and PSO251

Two previously developed procedures, namely a GA and a PSO, are used as reference. GA and252

PSO are both optimization procedures belonging to the class of Evolutionary Algorithms (EAs),253

that look for an optimal solution in a prescribed search space. GAs apply the biological principle254

of survival of the fittest in a population of potential solutions called individuals. Basic steps of255

GAs are shown in Fig. 1. After proper initialization of population, a selection is performed. Then256

individuals are bred together using operators (such as crossover and mutation) borrowed from257

natural genetics. The process is iterated and makes the population evolve generation by generation258

and individuals, which are better suited for the environment, are found (Goldberg 1997; Goldberg259

and Deb 1991).260

PSO is a stochastic optimization technique. It is inspired by the social behavior showed by flock261

of birds and school of fishes (Kennedy and Eberhart 1995; Eberhart and Kennedy 1995). Unlike262

GA, PSO has no operators that drive the search. Solutions, here called particles, fly through the263
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problem space by following the optimum particle (i.e. the alpha-member of the flock or school).264

The motion of each particle is driven by cognitive and social acceleration and their position and265

speed are updated at each iteration. Basic steps of PSO are shown in Fig. 2. In most cases PSO266

tends to converge to global optimal solutions quicker than GA due to its unique information-sharing267

mechanism (Sentinella and Casalino 2009).268

In the present article the maximum number of objective function evaluation is fixed (NFE,max =269

4000) for all the algorithms. EAs settings are presented in Table 2 and Table 3 for GA and PSO270

respectively. Additional details about GA and PSO implementation and tuning can be found in the271

references (Sentinella and Casalino 2009; Sentinella 2008).272

Hybrid Algorithm273

The first new procedure is a Hybrid algorithm (HA). Hybrid Algorithms combine EAs with274

some kind of Local Search Operators (LSOs). EAs excel at exploring solutions space but they are275

pretty slow to converge to the global optimal solution. LSOs, instead, are able to push quickly a276

solution to its local optimum but can not explore wide areas of the solution space due to their lack277

of hill-climbing capabilities.278

In this work the authors use the aforementionedGA coupledwith a brand new crossover operator279

which implements Taguchi’s parameter design method. Parameter design method (also knows as280

Taguchi’s robust design method) was initially developed in the 1980s to improve Japanese mass281

production and then, it was broadly applied to engineering design problems (Taguchi et al. 2000).282

The new crossover operator here proposed is an improvement of the one proposed by T.K. Liu and283

J.H. Chou (Liu and Chou 2004). The basic GA, introduced in the previous subsection, features a284

starting population of NI individuals randomly generated, a probability distribution-based crossover285

(Deb Crossover Operator, DCO), a fixed percentage mutation operators and a tournament selection286

operator. Elitism principle is used to avoid the loss of information through generations (Sentinella287

and Casalino 2009). In our new procedure a Taguchi’s Crossover Operator (TCO) generates288

NTG enhanced offspring which replace the same number of individuals generated by DCO. The289

enhancing procedure is based on a 2-level 1-step Taguchi’s parameter design method. A pseudo290
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code for this new TCO can be written as follows:291

1. evaluation of the objective function for each of the NI individuals;292

2. ranking of the NI individuals based on the values of their objective functions;293

3. selection of the best 2NTG individuals;294

4. random coupling of best 2NTG individuals (NTG couples, each one made of A and B parents);295

5. implementation of Taguchi’s 2-level 1-step parameter design method to each couple:296

(a) level 1 assignment to A-parent’s parameters and level 2 to B-parent’s parameters;297

(b) execution of experimental tests prescribed by suitable orthogonal arrays;298

(c) computation of the mean effect of each level of each parameter;299

(d) selection of the level with the greater mean effect for each parameter;300

6. enhanced offspring random replacement in the DCO generated population.301

In the prescribed tests, uncertain model parameters (i.e. a and n) are taken into account in objective302

function evaluation, as previously detailed. The newTCO is different fromLiu andChou’s crossover303

operator because they selected randomly the individuals to perform Taguchi’s enhancing procedure,304

while the authors select the better ones after a ranking phase. Basic steps of our HA are shown305

in Fig. 3: starting random population is initialized and a tournament selection operator is applied.306

Then the crossover phase starts with the subsequent use of DCO and TCO (see the pseudo code307

for the details about our TCO). In the end, mass mutation and selection operator are employed308

and a new generation is created. This process is iterated until the maximum number of function309

evaluation is reached. In the present article, the authors use NI = 40 in the GA. Tuning procedure310

of the TCO (see Fig. 4) shows that the selection of a proper value for NTG is crucial. Lower311

and higher values show poor performance, slowing down the basic GA used in the hybridization312

process. Intermediate values of NTG seems to be able to boost GA convergence capability without313

slowing down too much the optimization process. Thus the authors set NTG = 5 in our TCO.314
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The HRE design parameters are 6 and the suitable orthogonal 2-level array is L8, shown in315

Figure 5. It requires to execute nT = 8 tests to obtain an enhanced offspring. The computational316

effort for the execution of a single generation of the HA is:317

NFE,G = NI + nT · NTG (19)318

where NFE,G indicates the number of function evaluation performed for each generation. Note that319

for the original GA:320

NFE,G = NI = 40 (20)321

Hence, setting NTG = 5 in the TCO, the computational cost per generation of theHA is exactly twice322

the GA one. The maximum number of objective function evaluation is fixed (NFE,max = 4000) and323

thus the number of generation is equal to 50 (NG = 50) for the HA. HA settings are summarized in324

Table 4 for the sake of clarity.325

Iterated Local Search326

The second new proposed procedure is a meta-heuristic procedure called Iterated Local Search327

(ILS). Key features of ILS are the use of a specific local search procedure and a solution perturbation328

criteria (Lourenco et al. 2002). Basic steps of our ILS are shown in Fig. 6 and the relative pseudo-329

code can be written as follows:330

1. find an initial solution s0 (for instance from previous optimization works on the same prob-331

lem);332

2. apply a local search procedure to s0 to find the local optimal solution s∗;333

3. apply a perturbation criteria to s∗ to obtain the perturbed solution s
′;334

4. apply a local search procedure to s
′ to find the new optimal solution s∗

′;335

5. apply an acceptance criterion to the new optimal solution s∗
′ (i.e. s∗

′ performance improved336

s∗ ones);337
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6. repeat steps 3-5 until a termination condition is reached (i.e. NFE performed equal to338

NFE,max).339

ILS is different from the aforementioned EAs because it is not a population-based optimization340

algorithm. In EAs population is randomly initialized at each generation and thus many objective341

function evaluation are ”wasted” on bad individuals while the algorithm explores the design space.342

The authors develop ILS with the scope to capitalize on each single objective function evaluation343

using an efficient local search procedure, since the evaluation of the problem specific objective344

function is really expensive in terms of computational time. On the other hand, EAs are not345

influenced by the selection of the initial tentative solution because they do not require it at all. The346

effectiveness of an optimization procedure strongly depends on the problem to be optimized itself,347

but both EAs and ILS have promising features. The authors implement ILS in particular to compare348

its capabilities, in the optimization of our HRE, with EAs. In addition, from an engineering point349

of view, it is generally better to have more than a single optimization tool available (i.e. PSO and350

ILS) when a new problem comes out.351

In the present work, the authors take advantage of Taguchi’sMulti-step 3-level parameter design352

Method (TMM) as a local search procedure. Moreover, the authors also develop a perturbation353

criteria that is driven at each iteration by the results of TMM. TMM is based on Taguchi’s robust354

design method (Taguchi et al. 2000; Yao et al. 2011; Park et al. 2006; Lee et al. 1996),355

whose core idea is that design parameters can be split into two groups: noise factors and control356

factors. Noise factors are parameters whose values are affected by uncertainties and variations that357

could be impossible or too costly to avoid. Control factors are, instead, design parameters whose358

values could be freely chosen by the designers. Taguchi’s parameter design method main tools359

were two orthogonal experimental arrays (called outer and inner arrays) that were used to assign360

discrete values (called levels) to each factor and perform experimental tests (i.e. objective function361

evaluation). Experimental tests results were then used to perform an ANalysis Of Means (ANOM)362

and an ANalysis Of VAriance (ANOVA) of the objective function values. In the end, ANOM and363

ANOVA prescribed the optimal level for each control factor that gave the best objective function364
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value and minimized the effect of the noise factors.365

In our original TMM this procedure is executed iteratively. Levels are assigned at each step366

according to an equally spaced experimental grid which discretized the design space. At each step367

the solution is pushed closer to the local optimal solution by ANOM and ANOVA. When a local368

optimal solution is reached, ILS kicks in and perturbs that solution according to the last ANOVA.369

Our idea is that control factors that show a smaller impact on objective function should be perturbed370

the most and vice versa. This perturbation criteria is used to enhance ILS hill-climbing capabilities371

and, hopefully, to drive the local search procedure to a global optimal solution. ILS settings are372

summarized in Table 5. The choice of the perturbation constant K (i.e. the maximum magnitude373

of the perturbation) is the most critical, as presented in Fig. 7. A small constant (i.e. K = 10) leads374

to poor hill-climbing capabilities while a large constant (i.e. K = 100) results in slowing down375

the algorithm moving the tentative solution too far away from feasible solutions at every restart of376

the local search procedure. After several tuning runs of the optimization procedure, the authors set377

K = 40. Each control parameter perturbation size depends on the product of the reciprocal of its378

ANOVA contribution, a random number in the range [0,1] and the perturbation buffer K . In this379

way the perturbation can span from zero to K discretization steps.380

The perturbation buffer B is defined as the number of iteration of the local search procedure,381

without solution improvement, that the ILS has to wait before the perturbation kicks in. In Fig. 8382

optimization runs, for different values of the buffer, are presented. One can notice that the higher383

is the value of B, the lower results to be the mean performance index. This behavior seems to be384

caused by searching loops among very similar solutions when the local search procedure reaches385

a local optimal point. Thus, B is set equal to one to minimize the waste of function evaluation386

inside these loops. Since the authors deal with 6 control factors with 3 levels each, L18 (Figure 9) is387

used as inner arrays for the TMM. Analogously, since 2 noise factors (i.e. regression rate classical388

formulation coefficients a, n) with 3 levels each are present, the authors use L9 (Figure 10) as outer389

arrays. The factors combinations, prescribed by L9, have been already taken into account in the390

objective function formulation as nine ai, n j couples used in the evaluation of hi j .391
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NUMERICAL RESULTS392

As described in the previous sections, a two-layer optimization is employed for trajectory and393

engine design: the indirect trajectory optimizationmaximizes the final mass given engine geometry,394

which, in turn, is optimized by means of a robust-based design approach. The authors repeat the395

optimization process five times using each robust-based procedure. Given NFE,max = 4000, the396

average run on a 3 GHz machine is 15 hours. Note that the final burn of the HRE has a very397

short duration and a limited influence on the rocket performance. Hence subsequent figures show398

only the first burn for the sake of simplicity. Table 7 shows a comparison between the best robust399

solutions and the relative design parameters values found out by each algorithm. Deterministic400

optimum design and performance is also reported as DET.401

Looking at the values of Rg, w and Lb for the optimized robust solutions, one can notice that402 (
Ale

Ab

)
%
≈ 10% (exact values are shown in Table 6). Nevertheless, the relative contribution of403

lateral end decreases from these values down to zero during the engine operation. Moreover the404

regression rate in the lateral end of the grain is actually smaller than cylindrical burning area one.405

Thus, the assumption about the negligible extent of the lateral end contribution to combustion,406

made in our model, results to be valid.407

Due to the large value for k in Eq. 18, the average height violation is forced to zero and Φ408

coincides with the payload for the robust designs. On the other hand, the deterministic design409

has the largest payload (2280.9 kg) but a large average height violation (171.8 km) too. From410

an objective function point of view ILS and PSO converge to optimum points characterized by411

Φavg ≈ 2070 kg while GA and HA provide worse solutions. These results confirm that PSO has412

better convergence capabilities than GA. Moreover ILS has a similar performance compared to413

PSO, since its optimum design point is comparable to PSO, and better than GA. However PSO and414

ILS solutions differ in terms of design parameters: the optimal values of some parameters are close415

to each other (Rg, w, (mO) f and (mO)BD) while others are quite different (Lb and E). This could416

suggest that PSO and ILS solutions maximize the objective function in different ways: PSO tries to417

reduce propellant consumption improving propulsion system performance (larger expansion ratio,418
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shorter grain, higher mixture ratio and ISP as shown in Fig. 11 and Fig. 12), while ILS tries to419

reduce engine dry mass (smaller expansion ratio and longer grain). Moreover the two optimum420

solutions (or at least one of them) seems to be only a locally optimal solutions. HA finds an421

optimum point which is better than the one found by GA, and quite close to the PSO and the ILS422

ones. Furthermore, one can notice, thanks to Fig. 13, that also the thrust histories are close to423

each other for PSO, ILS and HA, whereas GA exhibits an higher initial thrust level. Thus, GA424

performance results to be enhanced by the hybridization process (i.e. the use of TCO instead of425

standard crossover operators). The payload gain of the robust optimized solutions, with respect to426

the Vega launcher, is roughly equal to 600 kg. The main sources of performance improvement are427

a remarkable saving in the dry masses of the upper stages (only one HRE powered stage vs. two428

upper stages), slightly higher specific impulse and reduced ∆v losses.429

Looking at Table 7, one can notice that initial expansion ratios Ei of optimal solutions are much430

smaller than conventional ones for liquid-powered upper stages. This optimization strategy is due431

to the trade-off between the increase in nozzle performance and the reduction of its mass. Complex432

cooling systems for the nozzle, typical of LREs such as regenerative cooling, cannot be employed433

in HREs. Therefore, an ablative cooling is considered by the authors, similar to SRMs one, for the434

present test case. Ablative cooling is a simple and cheap solution (i.e. really suitable for HREs),435

but the resulting nozzle tends to be heavy and thus smaller expansion area ratios are preferred in436

the optimization process.437

Table 8 summarizes engine performance of the best solutions presented in Table 7. Looking438

at Fig. 11 one can notice that the mixture ratio shifting is limited, since α varies approximately439

between 2 and 2.5, whereas in Table 8 chamber pressure pc roughly varies from 4·105 Pa to 10·105
440

Pa, showing a wider range of variation. Thus, in the present case, the effect of mixture ratio shifting441

and chamber pressure variation on characteristic velocity c∗ and specific heat ratio γ is expected442

to be similar. The authors considered only the effect of α in the optimization process, neglecting443

chamber pressure one. However, both effects results to be small and thus no further computations444

of engine performance are required.445
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Looking at Table 8 one can notice that the maximum chamber pressure (pc)max is always equal446

to 10 ·105 Pa for all robust solutions, regardless of the optimization algorithm used. In the Robust447

Design Model subsection, hydraulic resistance Z is reported to be evaluated to grant pt/pc = 2.5.448

The authors adopted a gas-pressurized feed system in the present application, thus the maximum449

tank pressure is equal to the initial one, that is fixed to 25 ·105 Pa. Hence, the maximum chamber450

pressure (pc)max is always equal to 10 ·105 Pa.451

Table 9 shows mean and range of variation of the optimal objective function values distribution.452

One more time, PSO and ILS optimal solutions are close to each other, both in term of mean value453

and range of variation of the objective function of the optimum points. On the contrary, HA and454

GA optimum solutions exhibit a greater fluctuation around a worse mean objective function value.455

Low mean and high range of variation values of HA and GA solutions can be due to the coupling456

of their lower convergence speed with the common limitation of the number of function evaluation.457

Figure 14 shows a comparison of the performance index evolution for the best optimization run458

for each algorithm. From these curves one can notice that PSO, ILS and GA rate of improvement459

tends to be negligible after NFE = 3000 while it is still significant for HA. Hence HA could show460

a better behavior in longer (in terms of number of function evaluations) optimization runs. In the461

present article the authors fix the computational effort for all algorithms and therefore they do not462

examine in depth this aspect of HA.463

CONCLUSIONS464

An indirect trajectory optimization procedure has been coupled with different robust-based465

design methods to optimize a hybrid rocket engine. Two new robust-based design approaches based466

on different principles (i.e. HA and ILS) have been presented and their performance have been467

compared to those of two previously developed approaches: PSO and GA. The optimization of an468

upper stage of a Vega-like launcher has been considered. The optimization is performed for a given469

insertion orbit and lift-off weight. Regression rate uncertainties are taken into account. A linear470

combination of payload and average altitude has been used as mission specific performance index.471

The chosen index formulation forces the solution to nullify the spread of the orbit altitude, thus472
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assuring the required robustness. Performance of the four robust-based approaches are compared473

using a constant number of function evaluations. Several runs have been carried out for each of the474

considered procedures.475

One of the new procedures, i.e. the Iterated Local Search, is able to converge to optimumdesigns476

that have performance as good as the ones identified by the best population-based algorithm present477

in the comparison, i.e. the PSO. The difference of the payload for the best solutions of ILS and478

PSO is only 0.5 kg, i.e. about 0,02%. Considering the different runs, the spread of the payload is479

low. GA shows far worse solutions, both considering payload and results spread. Our comparison480

clearly shows that GA is not suitable for robust optimization of this kind of problems. The other481

new procedure, Hybrid Algorithm, is able to enhance GA performance. Nevertheless HA range482

of variation is remarkably high, pointing out that a better and coupled tuning of the chosen local483

search operator and basic GA is required to match PSO and ILS performance.484

Looking at the values of the design parameters, one can realize that PSO and ILS follow485

two different optimization strategies, resulting in very similar performance: PSO improves the486

propulsion system performance whereas ILS reduces engine dry mass. Nevertheless, at least one of487

the solutions is only a local optimum. An higher number of runs with a larger number of function488

evaluation should be required to establish the best robust design approach. On the other hand,489

from an engineering point of view, both the methods can provide a sufficiently robust design with490

a reasonable computation effort. ILS and PSO belong to two different class of optimizer allowing491

for a wider solution capability. In the present application, one run involves 4000 evaluations of the492

performance index and requires about 15 hours on a 3 GHz machine.Note that here uncertainty has493

been taken into account for only two parameters (i.e. coefficient a and exponent n in the regression494

rate correlation). If a larger number of uncertain parameters is considered, the computational495

time required for the optimization process may explode. For this reason, additional approximate496

approaches could be considered in future works to deal with the excessive computation effort of497

the coupled robust optimization procedure.498

NOTATION499
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The following symbols are used in this paper:500

Ab = burning surface area (m2);

Ap = port area (m2);

Ath = nozzle throat area (m2);

a = regression constant (m1+2n kg−n sn−1);

B = ILS perturbation buffer;

b = design variables vector;

bL = lower bound vector;

bU = upper bound vector;

CF = thrust coefficient;

c∗ = characteristic velocity (m/s);

D = drag vector (N);

D = rocket outer diameter (m);

E = nozzle area-ratio;

F = thrust vector (N);

F = thrust (N);

G = gravitational constant (Nm2/kg2);

g = gravity acceleration (m/s2);

g j (b) = j-th inequality constraint;

h = altitude (km);

h∗ = target altitude (km);

ISP = specific impulse (s);

J = initial throat area to port area ratio;

K = ILS perturbation constant;

k = linear combination constant (kg/km);

L = overall engine length (m);

Lb = fuel grain length (m);
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M = rocket mass (kg);

M⊕ = Earth mass (kg);

m = mass (kg);

N = number;

n = mass-flux exponent;

P = burning perimeter (m);

p = uncertain variables vector;

p = pressure (Pa);

Rg = grain outer radius (m);

Ri = grain initial inner radius (m);

Rth = throat radius (m);

r = position vector (m);

s = eroded distance (mm);

t = time (s);

ur = velocity component in the radial direction (km/s);

V = volume (m3);(
Vg

)
i = initial ullage volume (m3);

vn = velocity component in the northward direction (km/s);

v = velocity vector (m/s);

w = web thickness (m);

we = veocity component in the eastward direction (km/s);

y = burning distance (m);

Z = hydraulic resistance (1/(kg m));

zp = noise vector of p

α = mixture ratio;

γ = specific heat ratio;

∆ = altitude violation (m);
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ε = multi-objective constraint (km);

Λ = steps lengths;

µ = payload (kg);

ρ = density (kg/m3);

Φ = objective function (kg);

φ = latitude (deg);

Super scr i pt s

Û = time derivative;

Subscr i pt s

0 = ambient;

1 = combustion chamber at head-end;

a = auxiliary gas;

avg = average;

BD = beginning of blowdown phase;

c = combustion chamber at nozzle entrance;

e = nozzle exit;

F = fuel;

FE = objective function evaluations;

G = generations;

g = pressurizing gas;

I = individuals;

i = initial value;

le = lateral end;

max = maximum;

min = minimum;

O = oxidizer;

p = overall propellant (oxidizer + fuel);
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re f = reference;

stp = steps;

TG = Taguchi enhanced offspring;

t = oxidizer propellant tank;

vac = vacuum;
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TABLE 1. Design parameters ranges.

Boundary Rg w Lb (mO) f (mO)BD Ei

m m m kg kg -
bL 0.55 0.25 4.3 6971 3195 15
bU 0.60 0.35 4.5 7697 3631 20
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TABLE 2. GA settings.

Setting Value
Number of generations, NG 100
Number of individuals, NI 40
Dimension of individuals 6
Ranges of individuals bU − bL

Selection operator Tournament
Selection pressure 2.0
Crossover operator Deb Crossover

Mass mutation parameter 98%
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TABLE 3. PSO settings.

Setting Value
Number of generations, NG 100
Number of particles, NI 40
Dimension of particles 6
Ranges of particles bU − bL

PSO method 1-trelea type 1
Cognitive acceleration, C1 2.0
Social acceleration, C2 2.0

Check population method Saturation
End velocity weight 0.4
Linear varying factor 0.2

Maximum velocity, Vmax 0.25(bU − bL)

Mass mutation parameter 98%
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TABLE 4. HA settings.

Setting Value
Number of generations, NG 50
Number of individuals, NI 40

Number of enhanced offspring, NTG 5
Dimension of individuals 6
Ranges of individuals bU − bL

Selection operator Tournament
Selection pressure 2.0
Crossover operator DCO + TCO

Mass mutation parameter 98%
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TABLE 5. ILS settings.

Setting Value
Discretization steps, Nstp 100
Perturbation constant, K 40
Perturbation buffer, B 1
Dimension of solutions 6
Ranges of solutions bU − bL

Steps length, Λ (bU − bL) /Nstp
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TABLE 6. Lateral end contributions.

Solutions
(
Ale

Ab

)
%

-
DET 9.01%
PSO 10.08%
ILS 9.82%
HA 10.06%
GA 9.63%
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TABLE 7. DET, PSO, ILS, HA e GA results comparison.

Solutions Rg w Lb (mO) f (mO)BD Ei µ ∆avg Φavg

m m m kg kg - kg km kg

DET 0.585 0.276 4.430 7350 3269 15.00 2280.9 171.8 -1134.9
PSO 0.591 0.294 4.360 7403 3195 17.32 2069.8 0.0 2069.8
ILS 0.591 0.293 4.452 7372 3212 15.70 2069.3 0.0 2069.3
HA 0.589 0.295 4.404 7369 3318 18.18 2062.2 0.0 2062.2
GA 0.587 0.290 4.482 7391 3598 16.01 2049.8 0.0 2049.8
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TABLE 8. PSO, ILS, HA e GA engine performance comparison.

Solutions (Fvac)min (Fvac)max (ISP)avg Ûymin Ûymax αavg (pc)min (pc)max

kN kN s m/s m/s - Pa Pa
PSO 104.8 242.6 297.9 7.70·10−4 3.53·10−3 2.16 3.84 ·105 10.00·105

ILS 105.5 241.8 296.3 7.80·10−4 3.52·10−3 2.12 3.88·105 10.00·105

HA 107.5 237.7 298.7 7.90·10−4 3.51·10−3 2.13 4.00·105 10.00·105

GA 111.6 254.6 296.7 8.50·10−4 3.51·10−3 2.14 4.35·105 10.00·105
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TABLE 9. PSO, ILS, HA e GA mean results and ranges.

Solutions Mean Range
kg kg

PSO 2065.74 5.84
ILS 2065.81 6.69
HA 2047.17 26.89
GA 2036.08 22.07
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FIG. 1. GA: flow chart.
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FIG. 2. PSO: flow chart.
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FIG. 3. HA: flow chart.
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FIG. 4. Tuning of NTG.
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FIG. 5. L8 orthogonal arrays.
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FIG. 6. ILS: flow chart.
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FIG. 7. Tuning of perturbation constant K (with B = 1).
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FIG. 8. Tuning of perturbation buffer B (with K = 40).
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FIG. 9. L18 orthogonal arrays.
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FIG. 10. L9 orthogonal arrays.
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FIG. 11. Mixture ratio history.
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FIG. 12. ISP history.
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FIG. 13. Thrust history.
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FIG. 14. Mean performance index Φavg vs. number of function evaluation NFE .
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