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Abstract: The prediction results of high-performance concrete compressive 

strength (HPCCS) based on machine learning methods are seriously 

influenced by input variables and model parameters. This study proposes a 

method with two stages to select proper variables, simplify parameter 

settings, and predict HPCCS. The appropriate variables are selected in 

the first stage by measuring their importance based on random forest, and 

then are optimized to predict HPCCS in the second stage. The results show 

that the proposed method was effective for input variable optimization, 

and could return better predictions than that without variable 

optimization, provided that the parameters are set within a reasonable 

range. Compared with previous models, the proposed method shows a strong 

generalization capacity for HPCCS prediction. We find that the prediction 

performance of the model is better when the input variables are expressed 

as absolute mass, and the model performers well when the actual 

compressive strength of HPC is high. 

 

 

 

 



Dear Editor, 

Thank you for your attention. 

In this study, a method was proposed to optimize input variables, simplify parameter 

determination, and predict HPCCS.  Some interesting conclusion can be drawn: 

1) The effect of variable forms on HPCCS prediction was compared, and it was found that 

input variables in the form of either relative mass or absolute mass have little effect on 

prediction. We suggested the use of the absolute mass of HPC components as input variables 

to predict HPCCS.  

2) The proposed method is effective for optimizing input variables. The model built by the 

proposed method shows a stronger generalization capacity than that built without input 

variable optimization.  

3) Random forest exhibits excellent performance for HPCCS prediction even with default 

parameter settings, which was confirmed by a comparison with previously published models. 

Moreover, we confirmed that the prediction of HPCCS is insensitive to parameter settings as 

long as they are set within a reasonable range.  

4) In terms of computing expense, we recommend using fewer trees and candidate variables 

for the predictions. 

5) The model built by the proposed method was inclined to overestimate the compressive 

strength of samples with actual strengths of less than 30 MPa, but it could accurately predict 

the compressive strength of samples with actual strengths greater than 30 MPa. 

 

Thank you and best regards. 

 

Sincerely yours, 

 

Xu Jie 
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Dear Reviewers, 

Thank you for your useful comments and suggestions on our manuscript. We have 

modified the manuscript accordingly, and detailed corrections are listed below point 

by point: 

Reviewers’ comments: 

Reviewer #1 

This paper presets a very simple analytical study, which is certainly not of a 

suitable standard for a journal article. The study lacks the depth and scientific 

rigor, and its original contribution is extremely limited.  

Answer：Yes, this paper seems presents a very simply analytical study based on an 

open dataset for research, but the work is quite meaningful. The main contribution of 

this paper can be surmised as three points, which are: 1) This study proposes a 

two-stage method based on random forest algorithm, which simplifies the work of 

feature engineering and improves the performance of machine learning algorithm on 

the high-performance concrete compressive strength prediction task; 2) We have 

experimentally proved that the random forest algorithm can achieve better prediction 

performance in the high-performance concrete compressive strength prediction task 

even when training with the default parameter settings; 3）Through comparative 

experiments, we find that the absolute mass of concrete components is more suitable 

than the relative mass of concrete components as the input variable of the model.  

    There are many similar publications in the related area, and all these publications 

can be divided into two directions. On one side, researchers apply the same method to 

different datasets, such as using neural network algorithm to predict the compressive 

strength of concrete with different components. A serious problem is that researchers 

cannot guarantee the quality of their datasets, whether in terms of the number of 

samples or the range of variables in the datasets, which leads to the application of 

their research results is strictly limited. On the other hand, researchers use different 

algorithms to compare the prediction performance of different algorithms on the same 

dataset. For example, researchers may use neural network, decision tree and support 

vector machines to build the compressive strength models of high-performance 

*Detailed Response to Reviewers



concrete. 

For the first direction, it is inevitably for the researchers to design input variables 

and tune model parameters. The proposed method in this study can evaluate the 

importance of variables and select the suitable variables for modeling, which 

simplifies the work of variable design. The result listed in Table 2 in the revised 

manuscript shows that random forest work well under default parameter settings.  

Table 2 Prediction performance of the 10 models 

Model  R MAE (MPa) RMSE (MPa) MAPE (%) SI 

a-1 0.9623 3.3350 4.6650 12.0640 0.6591 

a-2 0.9625 3.4065 4.7203 13.2777 0.9367 

a-3 0.9637 3.2577 4.5281 12.2165 0.4289 

a-4 0.9655 3.1055 4.4339 11.7850 0.0595 

a-5 0.9662 3.1703 4.4455 11.8262 0.0974 

b-1 0.9613 3.2228 4.6267 12.1511 0.5976 

b-2 0.9655 3.3147 4.5432 12.5760 0.4464 

b-3 0.9644 3.2078 4.4967 12.0204 0.2925 

b-4 0.9622 3.1975 4.5481 11.7889 0.4073 

b-5 0.9627 3.2150 4.6044 11.6018 0.4173 

 

For the second direction, the researchers still need to select the optimal 

parameters. The result listed in Table 4 in this study shows that the random forest 

algorithm achieves the optimal value in many evaluation indicators after parameters 

optimization. 

Table 4 Statistical results for the number of samples in each subgroup, group and the corresponding 

proportion. 

Actual strength 

(MPa) 

Percentage error 

(%) 

Number of samples 

in subgroup 

Number of samples 

in group 

Proportion 

(%) 

 

[0,30] 

(-∞,-10) 174  

2018 

8.62 

[-10,10] 902 44.70 

(10,+∞) 942 46.68 

 

[30,82.6] 

(-∞,-10) 467  

3132 

14.91 

[-10,10] 2416 77.14 

(10,+∞) 249 7.95 

 

[0,82.6] 

(-∞,-10) 641  

5150 

12.45 

[-10,10] 3318 64.43 

(10,+∞) 1191 23.12 

 

Furthermore, by comparing the effect of input variable representations on model 



performance, we find that the model performs well when the input variables are 

represented as absolute mass forms rather than relative mass forms. Therefore, we 

recommend using the absolute mass of concrete components to establish the concrete 

compressive strength model.  

 

Reviewer #2 

In the manuscript entitled, "A generalized method to predict the compressive 

strength of high performance concrete by improved random forest algorithm" 

authors have done interesting work, nicely planned and well description of the 

content in the current version of manuscript. In this manuscript, authors 

successfully used a method with two stages based on random forest (RF) to 

optimize the input variables, simplify parameter determination to predict 

high-performance concrete compressive strength (HPCCS) and conclude that 

optimized RF model works better than other models. But before acceptance in 

this reputed Journal, I have few minor suggestions: 

(1) Describe the Bagging techniques in detail.  

Answer：Thanks for high evaluation of this manuscript. The authors reintroduce the 

bagging method in section 2.1.1 in the revised manuscript. The bagging method can 

be divided into two parts: bootstrap and aggregation. In the first part, the authors 

introduce how to generate a new dataset, that is, to sample from the original dataset 

with playback, ensuring that the size of the new dataset is the same as that of the 

original dataset. The authors also explain why about 36.8% of the samples in the 

original dataset do not appear in the new dataset. 

   The second part is the aggregation operation. For regression tasks, the average 

method is usually used, that is, the output of multiple predictors is averaged to get the 

final output. The way to generate the predictor, introduced in section in 2.1.3 in the 

revised manuscript, does not belong to bagging method. 

 

(2) Figure 1 and 2 is not readable, please improve the quality of the figures. 

Answer： Figures 1 and 2 have been improved with high quality in the revised 

manuscript and also listed below. 



 

Fig. 1. Schematic of random forest generation and prediction 

 

Fig. 2. Flowchart of the proposed method 



(3) The authors collected the dataset from researches published between 1998 

and 2014, why they didn't used new resources? 

Answer：The dataset used in this research is a famous open source dataset, which is 

often used in the research of concrete compressive strength prediction. The dataset 

can be downloaded from http://archive.ics.uci.edu/ml/.  

In order to ensure the comparability of the experimental results, we only 

collected data from researches using the same dataset with us. In recent years, there 

have been many researches on the prediction of concrete compressive strength, but we 

have not found research after 2014 using this dataset in high-level journals. That is 

why we collected the dataset from researches published between 1998 and 2014. 

 

 (4) In Table 2 and 6, what is the significance of the bold values? 

Answer：The significance of the bold values in Tables 2 and 6 means “The best result 

for each performance measure is given in bold type”. We have explained the meaning 

of bold values in Table 2 in line 297 and the meaning of bold values in Table 6 in line 

355-357 in the revised manuscript.  

 

(5) Rewrite the Abstract in another way with summarization of all the finding. 

Answer：The abstract has been improved with summarization of all the finding 

according to the suggestion in the revised manuscript. As it is shown below:  

Abstract.  The prediction results of high-performance concrete compressive strength 

(HPCCS) based on machine learning methods are seriously influenced by input 

variables and model parameters. This study proposes a method with two stages to 

select proper variables, simplify parameter settings, and predict HPCCS. The 

appropriate variables are selected in the first stage by measuring their importance 

based on random forest, and then are optimized to predict HPCCS in the second stage. 

The results show that the proposed method was effective for input variable 

optimization, and could return better predictions than that without variable 

optimization, provided that the parameters are set within a reasonable range. 

Compared with previous models, the proposed method shows a strong generalization 

http://archive.ics.uci.edu/ml/


capacity for HPCCS prediction. We find that the prediction performance of the model 

is better when the input variables are expressed as absolute mass, and the model 

performers well when the actual compressive strength of HPC is high. 

  

(6) Please add some recent literature (2018, 2019) in the manuscript. 

Answer：Thanks and three related recent literatures were added in the revised 

manuscript. Two articles listed below on the application of high-performance concrete 

published in 2019 has been added in the revised manuscript.  

Wetzel, A and Middendorf, B. (2019). "Influence of silica fume on properties of fresh and 

hardened ultra-high performance concrete based on alkali-activated slag. " CEMENT 

CONCRETE COMP 100: 53-59. 

Zhu, H., Wang, Z. J., Xu, J. and Han, Q. H. (2019). "Microporous structures and compressive 

strength of high-performance rubber concrete with internal curing agent." CONSTR BUILD 

MATER 215: 128-134. 

The thrid article listed below on predicting the high performance concrete 

compressive strength by using machine learning method has been added in the revised 

manuscript. 

Bui, DK., Nguyen, T., Chou, J.-S., Nguyen-Xuan, H., and Ngo, TD. (2018). "A modified 

firefly algorithm-artificial neural network expert system for predicting compressive and 

tensile strength of high-performance concrete. " CONSTR BUILD MATER 180: 320-333. 

 

Reviewer #3 

(1) The study is about using "Random Forest" computational method in 

predicting the strength of high-performance concrete strength. I believe that this 

typical paper is best submitted to the journal addressing computing or 

computational method for engineering application. Hence, I will suggest to the 

editor to encourage them to submit the paper to another journal of relevance. 

Answer：The research in this manuscript seems suitable to the journal addressing 

computing or computational method for engineering application, while it is also one 

of the main scope of CBM. The authors have found the corresponding articles (listed 



below) using machine learning algorithms to predict the compressive strength of 

concrete and similar topics were published in CBM, and some of them are cited in our 

manuscript. 

Ayaz, Y., Kocamaz, A. F. and Karakoç, M. B. (2015). "Modeling of compressive 

strength and UPV of high-volume mineral-admixtured concrete using rule-based M5 

rule and tree model M5P classifiers." CONSTR BUILD MATER 94: 235-240. 

Behnood, A., Behnood, V., Modiri Gharehveran, M. and Alyamac, K. E. (2017). 

"Prediction of the compressive strength of normal and high-performance concretes 

using M5P model tree algorithm." CONSTR BUILD MATER 142: 199-207. 

Chithra, S., Kumar, S. R. R. S., Chinnaraju, K. and Alfin Ashmita, F. (2016). "A 

comparative study on the compressive strength prediction models for High 

Performance Concrete containing nano silica and copper slag using regression 

analysis and Artificial Neural Networks." CONSTR BUILD MATER 114: 528-535. 

Chou, J.-S. and Pham, A.-D. (2013). "Enhanced artificial intelligence for ensemble 

approach to predicting high performance concrete compressive strength." CONSTR 

BUILD MATER 49: 554-563. 

Chou, J.-S., Tsai, C.-F., Pham, A.-D. and Lu, Y.-H. (2014). "Machine learning in 

concrete strength simulations: Multi-nation data analytics." CONSTR BUILD MATER 

73: 771-780. 

Kalman Šipoš, T., Miličević, I. and Siddique, R. (2017). "Model for mix design of 

brick aggregate concrete based on neural network modelling." CONSTR BUILD 

MATER 148: 757-769. 

Qi, C., Fourie, A. and Chen, Q. (2018). "Neural network and particle swarm 

optimization for predicting the unconfined compressive strength of cemented paste 

backfill." CONSTR BUILD MATER 159: 473-478. 

Safarzadegan Gilan, S., Bahrami Jovein, H. and Ramezanianpour, A. A. (2012). 

"Hybrid support vector regression – Particle swarm optimization for prediction of 

compressive strength and RCPT of concretes containing metakaolin." CONSTR 

BUILD MATER 34: 321-329. 

Sonebi, M., Cevik, A., Grünewald, S. and Walraven, J. (2016). "Modelling the fresh 

properties of self-compacting concrete using support vector machine approach." 

CONSTR BUILD MATER 106: 55-64. 

Othman, H., Marzouk, H. and Sherif, M. (2019). "Effects of variations in compressive 



strength and fibre content on dynamic properties of ultra-high performance 

fibre-reinforced concrete. " CONSTR BUILD MATER 195: 547-556. 

Emamian, Seyed Ali and Eskandari-Naddaf, Hamid. (2019). "Effect of porosity on 

predicting compressive and flexural strength of cement mortar containing micro and 

nano-silica by ANN and GEP. " CONSTR BUILD MATER 218: 8-27. 

 

In this case, the topic of this manuscript is just in the scope of the CBM, and our 

manuscript can be published in CBM journal. By the way, the English language, 

grammar, punctuation, spelling, and overall style has been edited throughout the 

manuscript by the qualified native English speaking. 

 

The manuscript has been resubmitted to your journal. We look forward to your 

positive response. 

 

Sincerely, 

 

Jie XU 

 



Highlights. 

 An improved random forest method was proposed to predict HPCCS 

 Appropriate features for modeling can be obtained by this method 

 Satisfactory results with default parameter settings can be obtained 

 It performs well when the input variables in absolute mass form 

 The prediction accuracy is superior to that of other methods 
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on machine learning methods are seriously influenced by input variables and model parameters. This 16 

study proposes a method with two stages to select proper variables, simplify parameter settings, and 17 

predict HPCCS. The appropriate variables are selected in the first stage by measuring their importance 18 

based on random forest, and then are optimized to predict HPCCS in the second stage. The results 19 

show that the proposed method was effective for input variable optimization, and could return better 20 

predictions than that without variable optimization, provided that the parameters are set within a 21 

reasonable range. Compared with previous models, the proposed method shows a strong generalization 22 

capacity for HPCCS prediction. We find that the prediction performance of the model is better when 23 

the input variables are expressed as absolute mass, and the model performers well when the actual 24 

compressive strength of HPC is high. 25 

 26 

Keywords:  Random forest; High-performance concrete; Compressive strength; Input variable 27 
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1. Introduction  30 
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 31 

In recent years, the application of high-performance concrete (HPC) has increased markedly in 32 

the construction industry (Lim et al. 2004, Chiew et al. 2017, Wetzel and Middendorf. 2019, Zhu 33 

et al. 2019). HPC has many attractive advantages, such as sufficient workability, high strength, 34 

and excellent durability. However, chemical admixtures and additional supplementary 35 

cementitious materials such as fly ash, blast-furnace slag, silica fume, and superplasticizer are 36 

usually necessary to make HPC (Chang et al. 1996, Yeh 1998, Bharatkumar et al. 2001, Lim et al. 37 

2004), which can pose a challenge for accurately predicting the compressive strength of HPC. 38 

Standard compression tests can determine the actual compressive strength of HPC. However,  39 

this is a time-consuming, cumbersome, and costly method for determination of high-performance 40 

concrete compressive strength (HPCCS). The empirical formula employed generally introduces 41 

various regression coefficients to represent the effects of different added materials. As a result, the 42 

prediction ability of this empirical formula is doubtful, as the relationship between the 43 

compressive strength of HPC and its components is highly nonlinear. 44 

Emerging machine learning techniques provide an opportunity to predict HPCCS accurately. 45 

Many machine learning algorithms have been used to predict the compressive strength of HPC in 46 

the last two decades, including artificial neural network (Yeh 1998, Sebastiá et al. 2003, Chithra et 47 

al. 2016, Bui et al. 2018), support vector machine (Chou and Pham 2015, Sonebi et al. 2016), 48 

decision tree (Cheng et al. 2014, Ayaz et al. 2015, Behnood et al. 2017), and ensemble algorithm 49 

(Chou and Tsai 2012, Chou and Pham 2013, Erdal 2013, Erdal et al. 2013, Omran et al. 2016). 50 

These studies demonstrated that models based on machine learning algorithms can obtain better 51 

predictions than those based on regression analysis, and models based on an ensemble algorithm 52 

perform best if the base predictors were selected properly (Chou et al. 2014). 53 

However, determining the proper base predictors is not an easy task, and numerous 54 

experiments are necessary to acquire suitable predictors. Moreover, the influence of input 55 

variables and parameter settings on the prediction accuracy should also be considered.  56 

On one hand, the model prediction accuracy is related to the input variables and does not 57 

necessarily improve with increasing the number of input variables (Matin et al. 2017), and it may 58 

be influenced by the variable forms. For the prediction of HPCCS, there are no clear conclusions 59 

about what number of input variables and which form of these variables are appropriate. Most 60 

studies regarded the absolute mass of the HPC ingredients as input variables, while some studies 61 

used the relative mass of the HPC ingredients as input variables (Behnood et al. 2017, Kalman 62 

Šipoš et al. 2017).  63 

On the other hand, it is tedious work to determine the proper parameter settings, which have 64 

great influence on the model prediction accuracy. Manual tuning requires a great deal of time and 65 

attention. Some scholars have summed up some empirical formulas; however, the results of these 66 

empirical formulas are often different (Kalman Šipoš et al. 2017). The application of an 67 



optimization algorithm can assist in determining the appropriate parameter settings, which 68 

increases the complexity of the model (Safarzadegan Gilan et al. 2012, Chou and Pham 2015, Qi 69 

et al. 2018). 70 

Assuming that the number of combinations of base predictors, input variables, and parameter 71 

settings are a, b, and c, respectively, then the prediction accuracy of the abc models should be 72 

compared to obtain the model with the strongest generalization capacity. This study aims to 73 

establish a convenient but effective method to optimize input variables, simplify parameter 74 

determination, and predict HPCCS. 75 

Random forest (RF) is one of the most advanced ensemble algorithms, and has the attractive 76 

features of variable importance measures (VIMs), few model parameters, and robust resistance to 77 

overfitting (Breiman 2001, Auret and Aldrich 2012). As its name implies, the decision tree is the 78 

base predictor of RF. Models built using RF can return satisfactory results even with default 79 

parameter settings (Svetnik et al. 2004). Utilizing RF allows the number of combinations of base 80 

predictors and parameter settings to be reduced to one. Notable applications of RF can be found in 81 

the fields such as ecology (Krkač et al. 2016, Dubeau et al. 2017, Fu et al. 2017) and 82 

bioinformatics (Hanselmann et al. 2009, Schwarz et al. 2011, Boulesteix et al. 2012), but is has 83 

rarely been applied to concrete (Maghrebi et al. 2016, Mohamed et al. 2017, Ozcan et al. 2017, 84 

Rao 2017). Mohamed applied the RF algorithm to sustainable self-consolidating concrete 85 

compressive strength prediction (Mohamed et al. 2017). Ozcan et al. built a RF model to evaluate 86 

the effects of blast furnace slag and waste tire rubber powder on HPCCS (Ozcan et al. 2017). Rao 87 

used various algorithms to predict the compressive strength of HPC and found that the RF model 88 

had the best performance (Rao 2017).  89 

These previous studies all focused on the applicability of RF for HPCCS prediction, but did not 90 

mention that RF models can obtain precise predictions with no parameter tuning, which is 91 

emphasized and validated in this study. This study uses a RF model to predict HPCCS with default 92 

parameter settings, thereby avoiding model parameter tuning. Moreover, this study goes one step 93 

further than other recent studies by providing an efficient and understandable approach for 94 

optimizing model input variables for HPCCS prediction. The effects of the variable forms and 95 

quantity of variables on the model prediction are also considered. 96 

 97 

 98 

2. Methods 99 

 100 

Random forest is a combination of multiple decision trees in which each tree is built by a new 101 

training set sampled from the original training set based on the bagging method (Breiman 1996, 102 

Breiman 2001). The bagging method and classification and regression tree (CART) method are the 103 

basis of RF. Therefore, these two methods are first introduced, and then the concepts of RF are 104 



discussed. The proposed method optimizes the model input variables based on RF, which is 105 

introduced at the end. 106 

 107 

2.1. Machine learning techniques 108 

 109 

2.1.1 Bagging method  110 

 111 

The bagging method, also known as bootstrap aggregation method, is an ensemble technology 112 

of training S predictors separately by resampling S new datasets from the original dataset by 113 

sampling with playback. That is, duplicate data is allowed in the datasets trained by these models. 114 

This method consists of two steps: bootstrap and aggregation. In the first step, S new 115 

independent and identically distributed datasets are generated by resampling the original dataset 116 

randomly. The number of samples in each new dataset is the same as that in original dataset. This 117 

means that the sample of 36.8% in the original dataset will not appear in each new dataset as 118 

                                        
 

 
 

 
 

 

 
                            119 

(1) 120 

where n is the number of samples in original (new) dataset. In the second step, the new datasets 121 

are used to train the base predictors independently, and aggregation method is used to obtain the 122 

final results by averaging the predictions of each tree predictor (Breiman 1996).  123 

 124 

2.1.2 Classification and regression tree 125 

 126 

The classification and regression tree method was proposed to solve classification and 127 

regression problems (Breiman et al. 1984). The CART model is built by a recursive binary 128 

partitioning of the input space into several subspaces, and fitting a simple prediction model within 129 

each partition (Loh 2011), thus forming several nodes. The splitting criterion for each node except 130 

the leaf node is determined according to the purity of the resulting nodes. The mean squared error 131 

(MSE) around the mean response of the node is widely used as a measure of node purity for 132 

regression. The maximum gain in the MSE is used to select the splitting variable and the 133 

segmentation point of each node as follows:       134 
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                                      (4) 137 



where     is the number of samples in dataset S that reach the node; Si is the dataset resulting from 138 

splitting at the node, which falls into a subspace according to the given variable xj (j=1, 2, … , M) 139 

and segmentation  ; and yi is the response value of the ith sample in dataset S. 140 

The partitioning will continue until the total maximum MSE gain is reached. Once the tree has 141 

been built, the response of any sample can be predicted by following the path to the appropriate 142 

leaf node and averaging the responses in this node.  143 

 144 

2.1.3 Random forest 145 

 146 

Random forest is implemented based on bagging decision trees by employing random split 147 

selection (Breiman 2001). Fig.1 shows a schematic of the generation and prediction of the RF 148 

model. Each tree in the forest is built by a random training set, and each split within each tree is 149 

created based on a subset of input variables which are selected randomly (Grömping 2009). The 150 

introduction of this randomness increases the diversity of the trees. All of the trees in the forest are 151 

fully-grown binary trees.  152 

 153 

 

Fig. 1. Schematic of random forest generation and prediction 

 154 

Variable importance measures (VIMs) are an inherent product of RF. The basic concept of 155 

VIMs is that if an input variable, xj, has an impact on the response, the prediction accuracy of the 156 

model will decrease with permutation of the values of variable xj. As a result, the values of 157 

variables are permuted one at a time and the resulting reduction in prediction accuracy of the new 158 

model is evaluated; the greater the decrease in prediction accuracy, the stronger the association 159 



between the permuted variable and the response. Generally, reduction in MSE has been used as 160 

the evaluation index. In RF, the out-of-bag (OOB) samples are permuted to measure variable 161 

importance in order to avoid training new forests (Archer and Kimes 2008, Auret and Aldrich 162 

2012). For variable xj in tree i, the reduction in MSE can be calculated as follows: 163 

    
                   

    
 

    
                      (5) 164 

where     
  is the reduction in MSE of variable xj in tree i;        is the ith tree predictor 165 

depending on      , which indicates both bagged samples and random splits in tree i;     
 

     166 

represents variable xj in the OOB samples in       which is permuted. Averaging the results of 167 

all K tree predictors in the forest yields the final MSE reduction of variable xj: 168 

     
 

 
     

  
                                  (6) 169 

To express this more intuitively, the relative MSE reduction (RMR) of each variable was 170 

adopted to measure variable importance. The RMR of variable xj is expressed as: 171 

     
    

     
 
   

                                      (7) 172 

 173 

2.2 Proposed method 174 

 175 

The proposed method with two stages inherits the advantages of RF and can be utilized to 176 

optimize model input variables. A flowchart of the proposed method is shown in Fig. 2. 177 

In the first stage, candidate input variables are selected based on the VIMs of RF. Some 178 

frequently used independent variables are chosen as basic variables first, and then some 179 

non-independent variables are constructed based on these basic variables. Next, the basic variables 180 

are combined with the constructed variables to form a complex variable combination, and the 181 

importance of the input variables in this combination is measured. Finally, the constructed 182 

variables with low RMR values are eliminated. The remaining variables are the candidate input 183 

variables. We suggest eliminating the variables whose RMR is less than 50% of the average RMR. 184 

In the second stage, the input variables are optimized and the sample response is predicted. 185 

First, the remaining constructed variables are added to the combination of basic variable to form 186 

new combinations. These new combinations are then used build RF models. The prediction 187 

accuracy of the RF models built with different combinations are compared using the performance 188 

measures introduced in Section 3.3 to select the optimal model. The input variables of this optimal 189 

model are the optimal input variables. Meanwhile, optimal model predictions can be obtained.  190 

  191 



 

Fig. 2. Flowchart of the proposed method 

 192 

Note that the optimal input variables are for the RF model. However, the optimal input 193 

variables for other models can be obtained by replacing the RF model used in the second 194 

stage with the desired target model. The parameters of these other models may need to be 195 

tuned, which will increase the workload for input variable optimization. 196 

 197 

 198 

3. Materials and modeling setting  199 

 200 

3.1. Dataset 201 

 202 

The original dataset was collected by Yeh from 17 different sources, and contains 1030 203 

samples made with ordinary Portland cement and cured under normal conditions (Yeh 1998). This 204 

dataset can be downloaded from the UCI machine learning repository. All of the specimen types 205 

were converted into 15 cm cylinders through accepted methods. This dataset has been used to 206 

investigate HPCCS by many researchers and has proven to be robust (Yeh 1998, Chou et al. 2011, 207 

Chou and Tsai 2012, Chou and Pham 2013, Erdal 2013, Erdal et al. 2013, Chou et al. 2014). The 208 

variables in the original dataset are cement (C), blast furnace slag (BFS), fly ash (Fa), water (W), 209 

superplasticizer (SP), coarse aggregate (CA), fine aggregate (FA), age (Age), and concrete 210 

compressive strength (CCS). The first seven variables are independent input variables, while the 211 



CCS is the response variable. Statistical information about these variables can be found in the 212 

literature (Erdal 2013, Erdal et al. 2013). 213 

 214 

3.2. Input variable combinations  215 

 216 

According to the proposed method, all of the input variables in the original dataset were 217 

designated as basic variables, and five non-independent variables were constructed to form a 218 

complex variable combination. The constructed variables are W/B, BFS/W, Fa/W, CA/B and 219 

CA/FA, where W/B is the water–binder ratio. The ranges of these constructed variables are listed 220 

in Table 1. 221 

 222 

Table 1 Ranges of constructed variables 

Constructed 

variable 

Min  Max  Avg  Standard 

deviation 

W/B 0.235 0.900 0.469 0.127 

BFS/W 0 1.935 0.407 0.472 

Fa/W 0 1.346 0.313 0.376 

CA/B 1.284 5.625 2.521 0.680 

CA/FA 0.859 1.875 1.274 0.186 

 223 

The effect of variable forms on model prediction was considered in this study. Two groups of 224 

variable combinations were constructed: the absolute mass group (group A), and a relative mass 225 

group (group B). The basic variable combinations and complex variable combinations in group A 226 

are referred to as A-1 and A-2, respectively. The corresponding models are named a-1 and a-2, 227 

respectively. The variable combinations and models in group B are named similarly.  228 

 229 

3.3. Performance evaluation 230 

 231 

Four frequently used performance measures were selected, and a synthesis index was designed 232 

to evaluate the generalization capacity of the model. 233 

 234 

3.3.1. Linear correlation coefficient 235 

  
                

                            
                            (8) 236 

where y is the actual response,    is the predicted response, and n is the number of samples in the 237 

testing set. 238 

 239 



3.3.2. Mean absolute error 240 

    
 

 
                                           (9) 241 

 242 

3.3.3. Root mean squared error 243 

      
 

 
                                         (10) 244 

 245 

3.3.4. Mean absolute percentage error 246 

     
 

 
  

    

 
                                     (11) 247 

 248 

3.3.5. Synthesis index 249 

   
 

 
 

       

         
  

           

             

 
                               (12) 250 

where k is the number of performance measures, and      is the ith performance measure of the 251 

jth model except R. 252 

 253 

3.4. Modelling setting 254 

 255 

The number of trees in the forest, ntree, and the number of selected candidate variables when 256 

the node is splitting, mtry, are two essential parameters which need to be set in the random forest 257 

model. The default parameter settings of ntree and mtry were 500 and the minimum integer that is 258 

greater than     
 , respectively. To obtain precise measurements of variable importance, a large 259 

number of trees are needed (Grömping 2009). As a result, ntree was set to 1000 for the variable 260 

importance measurement. A total of 70 sets of parameter settings were constructed to verify the 261 

robustness of the RF model. The values of ntree range from 100 to 1000 in increments of 100, 262 

while mtry ranges from 3 to 9 with an increment of 1. Each dataset is divided into two subsets (i.e., 263 

the training set and the testing set). The training set consists of 927 samples selected randomly 264 

from the dataset, and the testing set contains the remaining 103 samples. Each RF model was run 265 

50 times, and the average was taken as the final result to limit bias due to the random sampling.  266 

 267 

 268 

4. Results and discussion  269 

 270 

4.1. Results of the first stage 271 

 272 



The results of the variable importance measures of a-2 are shown in Fig. 3a, and indicate that 273 

Age, W/B, cement content, and CA/B have the greatest influence on HPCCS, which is consistent 274 

with our cognition. Of these, Age has the most prominent influence with a RMR of 0.3, followed 275 

by W/B with a RMR of 0.25. The average RMR in this combination is approximately 0.08; thus, 276 

BFS/W, Fa/W, and CA/FA were eliminated because their RMR were all less than 0.02, or about 277 

one fourth of the average value.  278 

 279 

  

(a) a-2 (b) b-2 

Fig. 3. Results of VIMs (RMR) for combination a-2 and b-2 

The VIM results for model b-2 are shown in Fig. 3b, and are similar to those for model a-2. 280 

Therefore, variable selection results for group B are the same as for group A. It seems that variable 281 

forms have little effect on the result of VIMs.  282 

It was assumed that the compressive strength of HPC is affected by its components. This is 283 

why basic variables were not eliminated when selecting candidate variables, even though the RMR 284 

of some basic variables were relatively small.  285 

 286 

 287 

4.2. Results of the second stage 288 

 289 

4.2.1. New variable combinations  290 

 291 

In group A, three new variable combinations were constructed by adding W/B, CA/B, and W/B 292 

and CA/B to A-1 in turn, which are named A-3, A-4, and A-5, respectively. The construction of 293 

new combinations in group B was consistent with those in group A as the results of the VIMs for 294 

a-2 and b-2 were similar. 295 

 296 

4.2.2. Effect of variable combination on model prediction accuracy 297 



 298 

Table 2 summarizes the performance measurements for models built with different variable 299 

combinations. The best result for each performance measure is given in bold type. In group A, A-2 300 

was the most complex combination, which corresponded to the lowest model prediction accuracy. 301 

The simplest combination, A-1, corresponded to the second lowest model prediction accuracy. 302 

This indicates that overabundant variables lead to poor prediction accuracy, as does a lack of key 303 

variables.  304 

The results for group B are similar to those for group A, implying that model prediction 305 

accuracy is insensitive to the variable forms. The prediction accuracy of the model can be 306 

improved by selecting appropriate variables. Fig. 4 shows a comparison of the predicted and actual 307 

values for each of the 10 models. The predicted values are very close to the corresponding actual 308 

values. 309 

Of the models, a-4 was the best model for minimizing MAE (3.1055), RMSE (4.4339), and SI 310 

(0.0595), and the second-best model for minimizing MAPE (11.7850) and maximizing R (0.9655). 311 

As a result, a-4 and A-4 were selected as the optimal model and the optimal variable combination, 312 

respectively. Table 3 summarizes a comparison of the performance measurements of a-1 and a-4. 313 

All of the performance measurements for a-4 are better than that of a-2 indicating that the 314 

proposed method was effective for improving model prediction accuracy. 315 

 316 

 317 

   

(a) a-1 (b) a-2 (c) a-3 

   

  

 



(d) a-4 (e) a-5  

      

   

(f) b-1 (g) b-2 (h) b-3 

   

  

 

(i) b-4 (j) b-5  

Fig. 4. Scatter plots of the predicted strength vs. the actual strength for the 10 models 

 318 

Table 2  Prediction performance of the 10 models 

Model  R MAE (MPa) RMSE (MPa) MAPE (%) SI 

a-1 0.9623 3.3350 4.6650 12.0640 0.6591 

a-2 0.9625 3.4065 4.7203 13.2777 0.9367 

a-3 0.9637 3.2577 4.5281 12.2165 0.4289 

a-4 0.9655 3.1055 4.4339 11.7850 0.0595 

a-5 0.9662 3.1703 4.4455 11.8262 0.0974 

b-1 0.9613 3.2228 4.6267 12.1511 0.5976 

b-2 0.9655 3.3147 4.5432 12.5760 0.4464 

b-3 0.9644 3.2078 4.4967 12.0204 0.2925 

b-4 0.9622 3.1975 4.5481 11.7889 0.4073 

b-5 0.9627 3.2150 4.6044 11.6018 0.4173 

 319 

Table 3  Comparison of performance measurements  for models a-1 and a-4 

Performance measure Model Improvement (%) 

a-1 a-4 



R 0.9623 0.9655 0.33 

MAE (MPa) 3.3350 3.1055 6.88 

RMSE (MPa) 4.6650 4.4339 4.95 

MAPE (%) 12.064 11.785 3.31 

 320 

4.2.3. Predictions of the optimal model 321 

 322 

Fig.5 illustrates a set of residuals and the percentage error distribution for model a-4; this set 323 

selected randomly from the 50 sets of results. With increasing actual strength, the residuals and 324 

percentage error gradually fluctuated within a narrow range, except for a few outlying points. The 325 

residuals and percentage error of samples with an actual strength of less than 30 MPa were usually 326 

positive and larger than those for samples with actual strengths of greater than 30 MPa, which can 327 

be seen clearly in the upper left corner of Fig. 5. This indicates that the model tended to 328 

overestimate the compressive strength of samples with responses of less than 30 MPa. 329 

The 50 sets of results were analyzed to obtain a more convincing conclusion. Each set was 330 

divided into two groups according to whether the response of sample was greater than 30 MPa, 331 

and each group was further divided into three subgroups based on the percentage error: greater 332 

than 10%, less than -10%, and between -10% and 10%. The percentage error distribution for each 333 

subgroup was counted, and the statistical results are summarized in Table 4. The results confirmed 334 

that this model has a tendency to overestimate the strength of samples with a strength less than 30 335 

MPa. Surprisingly, this model could accurately predict the compressive strength of samples with 336 

strengths of greater than 30 MPa.  337 

 338 

 

Fig. 5. Distribution of residuals and percentage error vs. actual strength for model a-4 

 339 



Table 4  Statistical results for the number of samples in each subgroup, group, and the corresponding 

proportion. 

Actual strength 

(MPa) 

Percentage error 

(%) 

Number of samples 

in subgroup 

Number of samples 

in group 

Proportion (%) 

 

[0,30] 

(-∞,-10) 174  

2018 

8.62 

[-10,10] 902 44.70 

(10,+∞) 942 46.68 

 

[30,82.6] 

(-∞,-10) 467  

3132 

14.91 

[-10,10] 2416 77.14 

(10,+∞) 249 7.95 

 

[0,82.6] 

(-∞,-10) 641  

5150 

12.45 

[-10,10] 3318 64.43 

(10,+∞) 1191 23.12 

 340 

4.3. Effect of parameter settings on predictions 341 

 342 

By verifying that the HPCCS prediction obtained with the random forest model is insensitive to 343 

parameter settings, the goal of simplifying the parameter determination can be achieved.  344 

In this section, the effects of parameter settings on HPCCS predictions are compared. Fig. 6 345 

shows the performance measurements for the models with different parameter settings. The 346 

maximum, minimum, and average values and the standard deviation for each performance 347 

measure are listed in Table 5. The results shown in Fig. 6 and Table 5 reflect that the prediction 348 

accuracy of each model is similar, and the parameter settings have little effect on model prediction 349 

accuracy as long as they are set within a reasonable range. In addition, these results confirm the 350 

robustness of the random forest algorithm for HPCCS prediction.  351 

 352 

  



  

Fig. 6. Performance measurements for the model with different parameter settings: a) R, b) MAE,  

c) RMSE, and d) MAPE 

 353 

Table 5  Statistical results of the performance measures 

Performance  

measure 

Max   Min  Avg   Standard  

deviation 

R  0.9671 0.9569 0.9628 0.0026 

MAE (MPa) 3.3060 3.0342 3.1777 0.0676 

RMSE (MPa) 4.7985 4.3251 4.5444 0.1073 

MAPE (%) 12.7796 10.8282 11.6245 0.4198 

 354 

 355 

4.4. Comparison with previous work  356 

 357 

Many scholars have proposed different models to predict HPCCS in recent years. Table 6 358 

summarizes some previously published models for HPCCS prediction. The best performance 359 

measurements from these models are given in bold type. The datasets used in these studies are 360 

derived from the same dataset collected by Yeh used in this study (Yeh 1998). All R
2
 reported in 361 

the previous studies were converted to R for convenient comparison. 362 

 363 

Table 6  Comparison with previously proposed models 

First 

author 

Year  Ref. Model  R MAE 

(MPa) 

RMSE 

(MPa) 

MAPE 

(%) 

Parameter 

tuning 

method 

Yeh 1998 (Yeh 

1998) 

ANNs 0.9602 N/A N/A N/A Hand tuning 

for ANNs LR 0.8826 N/A N/A N/A 

Chou 2011 (Chou et ANNs 0.9534 N/A 5.0302 10.90 Hand tuning 



al. 2011) SVM 0.9412 N/A 5.6192 12.77 

MART 0.9544 N/A 4.9489 13.89 

BRT 0.9436 N/A 5.5720 14.18 

Chou 2013 (Chou and 

Pham 

2013) 

ANNs 0.930 4.421 6.329 15.3 No tuning 

CART 0.840 6.815 9.703 24.1 

CHAID 0.861 6.088 8.983 20.7 

GENLIN 0.779 7.867 11.375 29.9 

SVMs 0.923 4.764 6.911 17.3 

Chou  2014 (Chou et 

al. 2014) 

MLP N/A 6.19 7.95 20.84 No tuning 

CART N/A 5.86 7.84 20.66 

SVM N/A 3.75 5.59 12.03 

Erdal 2013 (Erdal et 

al. 2013) 

ANNs 0.9533 4.18 5.57 N/A Hand tuning 

BANNs 0.9632 3.60 4.87 N/A 

GBANNs 0.9628 4.09 5.24 N/A 

WBANN

s 

0.9694 3.30 4.54 N/A 

WGBAN

Ns 

0.9711 4.83 5.75 N/A 

This 

study 

N/A N/A RF (a-4) 0.9655 3.1055 4.4339 11.79 No tuning 

RF (a-2) 0.9623 3.3350 4.6650 12.06 

 364 

Before input variable optimization, model a-1 in this study was the sixth best model for 365 

maximizing R, the third best model for minimizing MAPE, and the second-best model for 366 

minimizing MAE and RMSE. The optimized model (a-4) was the best model for minimizing MAE 367 

and RMSE, the second-best model for minimizing MAPE, and the third best model for 368 

maximizing R among these models. It is clear that the generalization capacity of the RF model was 369 

greatly improved after input variable optimization. 370 

 371 

 372 

5. Conclusions   373 

 374 

In this study, a method was proposed to optimize input variables, simplify parameter 375 

determination, and predict HPCCS. Unlike other studies aiming to develop advanced models to 376 

predict HPCCS or compare the generalization ability of different models for HPCCS prediction, 377 

this study attempts to improve the model generation efficiency and prediction accuracy. 378 

 Measuring the importance of input variables revealed that Age and W/B are the two 379 

variables that have the strongest influence on the HPCCS. The effect of variable forms on 380 



HPCCS prediction was compared, and it was found that input variables in the form of either 381 

relative mass or absolute mass have little effect on prediction. We suggested the use of the 382 

absolute mass of HPC components as input variables to predict HPCCS.  383 

 The quantity of input variables influences the prediction of HPCCS. The number of input 384 

variables in the two models with the lowest prediction accuracy are the largest and the smallest 385 

in groups A and B, respectively. The proposed method is effective for optimizing input 386 

variables. The model built by the proposed method shows a stronger generalization capacity 387 

than that built without input variable optimization. 388 

 Random forest exhibits excellent performance for HPCCS prediction even with default 389 

parameter settings, which was confirmed by a comparison with previously published models. 390 

Moreover, we confirmed that the prediction of HPCCS is insensitive to parameter settings as 391 

long as they are set within a reasonable range. In terms of computing expense, we recommend 392 

using fewer trees and candidate variables for the predictions. 393 

 In addition, the model built by the proposed method was inclined to overestimate the 394 

compressive strength of samples with actual strengths of less than 30 MPa, but it could 395 

accurately predict the compressive strength of samples with actual strengths greater than 30 396 

MPa. 397 

 398 
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