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Abstract: Proximity beacons are small, low-power devices capable of transmitting information
at a limited distance via Bluetooth low energy protocol. These beacons are typically used to
broadcast small amounts of location-dependent data (e.g., advertisements) or to detect nearby objects.
However, researchers have shown that beacons can also be used for indoor localization converting
the received signal strength indication (RSSI) to distance information. In this work, we study the
effectiveness of proximity beacons for accurately locating objects within a manufacturing plant by
performing extensive experiments in a real industrial environment. To this purpose, we compare
localization algorithms based either on trilateration or environment fingerprinting combined with
a machine-learning based regressor (k-nearest neighbors, support-vector machines, or multi-layer
perceptron). Each algorithm is analyzed in two different types of industrial environments. For
each environment, various configurations are explored, where a configuration is characterized by
the number of beacons per square meter and the density of fingerprint points. In addition, the
fingerprinting approach is based on a preliminary site characterization; it may lead to location errors
in the presence of environment variations (e.g., movements of large objects). For this reason, the
robustness of fingerprinting algorithms against such variations is also assessed. Our results show
that fingerprint solutions outperform trilateration, showing also a good resilience to environmental
variations. Given the similar error obtained by all three fingerprint approaches, we conclude that
k-NN is the preferable algorithm due to its simple deployment and low number of hyper-parameters.

Keywords: smart industry; industry 4.0; bluetooth low energy; indoor location;
trilateration; fingerprint

1. Introduction

In recent years, similarly to what is happening in cities and public spaces, smart and connected
objects are increasingly being deployed also in industrial environments. One of the effects of the
development of this so-called smart industry (also known as Industry 4.0) is an increase in the
number and type of automated vehicles that move in industrial environments. In this context, indoor
localization systems become important to improve logistics effectiveness and productiveness. In many
industrial sectors, the quick and automatic localization of goods (components, instruments, partial
assemblies, etc.) in large environments would provide a critical production speed up. For instance,
a critical problem in the automotive industry is the quick localization of partially assembled vehicles
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which are temporarily removed from the pipeline and placed in large warehouses, e.g., while waiting
for the availability of some of the parts required for their completion.

In literature, several existing technologies like global positioning system (GPS) [1], Wi-Fi [2], and
Bluetooth [3] are adapted to provide indoor localization services in domestic environments. While
GPS performance indoor is poor [1], Wi-Fi and Bluetooth show promising results, with the latter being
particularly interesting due to its low cost and energy consumption features [4].

The use of Wi-Fi for indoor positioning is well established and is known to provide errors in the
order of few meters [5]. However, the requirements in terms of topological distribution, number of
Wi-Fi access points associated with the costs and power consumption make this solution unfeasible
without a consistent retrofitting which is often undesirable in existing industrial plants (e.g., make
power outlets available at deployment points).

Bluetooth low-energy (BLE) uses the same frequency of Wi-Fi (2.4 GHz) but is designed as a short
range energy-efficient communication protocol, allowing compatible devices to communicate through
short messages with minimal overhead [6]. Thanks to these features, BLE-compatible devices can
transmit periodic messages for years within a single cycle of a small form-factor battery [7], thus being
perfectly suited for easy installation in any environment.

BLE-based localization is typically performed by installing a set of proximity beacons (i.e., BLE
transmitters) at known locations. Receivers extract the RSSI (which is a proxy of the distance from the
sender) from the nearest beacons and use these values to predict their own position [8].

In general, BLE-based localization algorithms can be split in two categories: distance-based
and fingerprinting-based [9]. Distance-based algorithms directly translate RSSI values into position
coordinates for the object being localized. These methods require that at least three RSSI measurements
from nearby beacons are available, and apply either trilateration or min-max to transform these
measurements into position estimates [10]. In contrast, fingerprinting-based algorithms exploit a
vector of RSSI measurements in known fingerprint positions to create a so-called reference fingerprint
map (RFM). Then, a machine-learning regressor is fed with the RFM data to build an association rule
between new RSSI measurements and their corresponding position estimates [11].

Although these techniques have been proven effective in domestic settings, smart industry
environments pose several new challenges that need to be addressed: the areas where objects have
to be localized are much larger than in the domestic case, and they constitute a harsh environment
for BLE-based localization, due to the presence of large metal objects (robots, carts, etc.) causing
signal interference, multi-path propagation and shadowing. Despite the vast literature on BLE-based
localization, very few works perform detailed comparisons between different algorithms under the
same experimental conditions (i.e., target environment, type and number of beacons and receivers,
etc.). In particular, to the best of our knowledge, no one focuses on applying these methods in real
industrial environments.

In this work, we perform such comparison considering two real industrial settings (i.e., a shed and
a workshop). We evaluate the effectiveness of several state-of-the-art algorithms (both distance-based
and fingerprinting-based) under varying experimental parameters, changing the number of installed
beacons and the density of the RFM. Moreover, we assess the robustness of fingerprint-based
algorithms to variations in the environment and to random noise.

Our goal is to assess the feasibility of indoor localization in industrial environments using
commercial off-the-shelf BLE transmitters and receivers, due to their low cost, ready availability and
ease of installation and usage. The experiments performed are consequently tailored for this target,
and are based on commercial devices and protocols currently available in the market.

Similarly, the goal of this paper is to test the effectiveness of state-of-the-art localization algorithms
for BLE localization in an industrial scenario. Therefore, we do not aim at designing a new specialized
algorithm for this task, and we just optimize the hyper-parameters of existing solutions to the best
values for our target.
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Our results confirm that fingerprinting-based methods reduce the positioning error compared to
distance-based methods, even in an industrial setting. However, we could not identify a clear winner
among the three fingerprinting-based algorithms considered in our experiments, as they all perform
similarly both in terms of positioning error and of computational complexity. Therefore, we base our
final selection on simplicity and flexibility, which leads us to choose k-NN, as explained below.

The rest of this paper is organized as follows. Section 2 reviews relevant literature solutions.
Section 3 presents the localization algorithms analyzed in this study and Section 4 discusses the
experimental results. Finally, Section 5 offers our concluding remarks.

2. Background and Related Work

Indoor localization methods based on the received signal strength indication (RSSI) from BLE
devices have become mainstream thanks to their low cost, wide coverage, and simple hardware
required. In comparison, more accurate alternatives such as those based on the angle of arrival (AOA)
or on the time of arrival (TOA) require significantly more expensive hardware, since they rely either
on an array of BLE antennas or on a very accurate synchronization between the transmitter and
receiver [12].

The RSSI is a measurement of the power present in a received radio signal. It is typically
computed as the ratio between the received signal power and the transmission power, which is a
known value set by manufacturer, and attached to each packet sent by the beacons [13]. As mentioned
above, RSSI is generally used for two types of localization methods: distance-based methods [10] and
fingerprint-based methods [14]. While the former try to directly convert RSSI values to distances,
the latter use a RFM to build a model that associates new RSSI measurements to a position.

The two main distance-based methods are trilateration [11] and min-max [15]. Both convert RSSI
values to distances between beacon and localized device using the quadratic decay law of power
with respect to distance. Trilateration determines the location of an object combining measurements
from three spatially-separated known locations (beacons). The position of the device is obtained as
the intersection of the three circumferences having the location of one beacon as the center and the
computed distance as radius [10]. The min-max algorithm constructs a square bounding box around
each beacon using its known coordinates as center and two times the distance from the target as side
length of the box. Next, the intersection of three boxes is computed selecting the min-max coordinates.
This approach is computationally simpler than trilateration, but it is also more prone to errors.

In both cases, the error obtained by distance-based methods is influenced by the number of
installed beacons and in particular by their density (number of beacons per square meter). Moreover,
trilateration and min-max are influenced by multi-paths and fading. Multi-paths are propagation
phenomena that occur when radio signals reach the receiving antenna by two or more paths. Multi-path
propagation causes constructive or destructive interference and phase shifting of the signal, which in
turn can vary the measured RSSI. Fading is a more generic variation of the attenuation rate of a signal
due to obstacles, frequency disturbances or obstacles, which can result in a loss of signal power.

Several works use distance-based positioning with BLE beacons in various domestic or public
environments. In [16], the authors use trilateration in a hall of 7 m × 5 m where the maximum
distance from the beacons to the target is less than 9 m. Despite the small size of the environment,
their experiments using three beacons produce an average error of 2.766 m. In [17], the authors
optimize the trilateration algorithm applying a Kalman filter to reduce noise in the RSSI. Park et al. [18]
calculate the distance using the RSSI and then they refine the result applying two Kalman filters
to reduce the error. Using six beacons in a polygonal living room (8.5 m × 13 m), they obtain an
average error of 1.77 m. In [19], the authors use the min-max algorithm to obtain the object position
in three environments: a classroom and two construction sites. The classroom has size 7 m × 6.4
m and the distance between beacons varies from 3 m to 4.8 m; the average error obtained is 1.55 m.
The two construction sites have the same size (6.3 m × 5.1 m) and are tested with six and three beacons
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respectively, positioned with a spacing ranging from 1 m to 3.4 m; the average errors obtained are 1.22
m and 2.58 m.

Fingerprinting refers to the type of algorithms that estimate the location of an object exploiting
previously recorded data at known positions. Therefore, RSSI-based location fingerprinting requires
a preliminary set-up stage. An inspection of the environment is performed to select reasonable data
collection points to create the RFM. The coordinates of these points and the corresponding RSSI
values from nearby beacons are collected. Then, these data are used to build a model that associates
a new RSSI measurement to its corresponding location. Several types of models, typically based on
machine-learning are considered in literature. Therefore, fingerprinting allows for partially accounting
for multi-paths and fading due to fixed (not moving) elements of the environment, as these effects are
measured also in the “training” RFM data.

In [20], the authors use the k-nearest neighbors (k-NN) algorithm with k = 8 and different number
of fingerprints points in a living room of 6.66 m × 5.36 m. With a RFM of 50 points, they obtain an
average localization error of 1.03 m, while with an RFM of just eight points they obtain an average
error of 1.91 m. Dierna and Machì in [21] an experiment with 31 beacons in a museum of 670 m2

using two different sampling densities to create the RFM and a k-NN model with k = 3. In a first
experiment, the density is varied from 0.7 reference points per square meter in museum halls to one
point every four square meters in the courtyard (224 total RFM points). The authors also experiment
with averaging RSSI measurements over multiple samples, obtaining an error that varies from 1.72 m
(1 sample) to 1.28 m (10 samples). Then, the authors try to increase the RFM sampling density in
proximity of structural points, obtaining 239 total points and reducing the error to 1.70 m (without
averaging). In [22], authors develop an Iterative Weighted k-NN (IW-kNN) for fingerprinting-based
localization. They select k = 4 and use 10 beacons in a test room of 18.8 m × 12.6 m, obtaining an
average error of 2.52 m. In [23], the author propose a k-NN with k = 1 in an small office room. Using
20 beacons and an RFM of 120 points, the average error obtained is 1.9 m.

Other studies map the localization problem to a regression or classification using support vector
machines (SVM) or neural networks (multi-layer perceptrons—MLPs). In [24], the authors test different
configurations of a Multi-Layer Perceptrons in two different locations, a room of 4 m × 4 m and a 36
m-long corridor. In the test room, they use four beacons and 16 RFM points, obtaining an average
error of 2.48 m. In the test corridor, nine beacons and 36 RFM points yield an average error of 1.25
m. In [25], the authors use an SVM in a living room of 3.53 m × 8.09 m divided in six zones, with
two beacons placed in the middle of the room, equidistant from the walls. A set of RSSI values are
taken in different zones of the room and out of it to test the algorithm. The SVM shows an accuracy of
88.54% in classifying the zone.

Both distance-based and fingerprint-based localization algorithms can be applied either directly
on the raw RSSI values measured at the receiver, or after extracting some higher-level features by
aggregating or processing those raw values. Table 1 summarizes the feature extraction methods
adopted in the relevant literature works on this problem.

As shown in the table, many works [4,5,9,12,17,19,25–29] do not perform any feature extraction
and work directly on raw RSSI data. Another common solution [10,11,14,18,21,23] is to use as feature
the average of RSSI measures over a short interval of time (from a few seconds to some minutes) for
noise rejection. Other authors [15,22] also use the average RSSI over a time window, but remove outliers
before computing it. Mazan et al. [24] use the RSSI sample maximum rather than the average, while
Grzechca et al. [16] consider several different summary statistics as possible features for localization
(sample average, median, etc.). Eventually, however, they determine that the average/moving average
is the feature that yields the best results. Lastly, Daniş et al. [20] store the entire histogram of RSSI
measurements over a time interval, where each bin of the histogram could be considered as a different
feature. However, they do not use these features to perform localization. Rather, they use them to
generate a dense RFM from a sparse one.
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According to literature [27], there are many factors affecting the accuracy of BLE-based localization.
When a receiver moves through the environment, the RSSI signal can vary abruptly due to the presence
of walls and objects. The signal can penetrate differently through different materials and interact
with objects as it moves along different paths through the environment. Furthermore, fingerprinting
schemes require regular review to ensure the accuracy of the map. If environmental changes (e.g.,
movements of large objects) occur, fingerprinting methods performances can degrade drastically. More
specifically, the positions of furniture elements, the density of people and even the positions of walls
and partitions can influence the measurements. In [28], the authors analyze the problem of multi-paths
and possible mitigation schemes when the beacon signals are transmitted using different frequencies
(2402 MHz, 2426 MHz, and 2480 MHz). They also verify that positioning accuracy increases with the
number of beacons measured in each fingerprint point, up to a threshold of around 6–8, beyond which
there is no quantifiable improvement.

Table 1. Summary table including relevant works on indoor localization based on Bluetooth low-energy
(BLE) received signal strength indication (RSSI) and the corresponding feature extraction methods.

Authors Feature Extraction

Varshney et al. [4] None/Not Mentioned

Chintalapudi et al. [5] None/Not Mentioned

Čabarkapa et al. [9] None/Not Mentioned

Er Rida et al. [10] Sample Average

Kriz et al. [11] Sample Average

Cho et al. [12] None/Not Mentioned

Subhan et al. [14] Sample Average

Palumbo et al. [15] Sample Average (removing outliers)

Rattanalert et al. [26] None/Not Mentioned

Grzechca et al. [16] Sample Average, Moving Average, Sample Median, etc.

Ibrahim et al. [17] None/Not Mentioned

Park et al. [18] Sample Average

Luo et al. [19] None/Not Mentioned

Daniş et al. [20] Entire Histogram

Dierna et al. [21] Sample Average

Peng et al. [22] Sample Average (removing outliers)

Larsson [23] Sample Average

Mazan et al. [24] Sample Maximum

Rodríguez-Damián et al. [25] None/Not Mentioned

Faragher et al. [27] None/Not Mentioned

Faragher et al. [28] None/Not Mentioned

Bailey et al. [29] None/Not Mentioned

As mentioned in Section 1, while all these factors are relevant even in the case of a domestic
or public space, their impact is expected to increase in an industrial scenario, due to the larger size
of environments and the abundance of reflecting materials such as metal. However, none of the
aforementioned papers compared different BLE-based localization algorithms in the context of a Smart
Industry application, which is exactly the main contribution of this work.
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3. Localization Algorithms

In this work, we considered one distance-based algorithm (Trilateration) and three
fingerprint-based algorithms (k-NN, SVM, MLP). These algorithms have been selected as those that
provide the most consistent results across different types environments in literature (see Section 2).
All considered fingerprint-based algorithms could be used for either classification or regression.
The former solution could be used when the goal is simply to identify the area (e.g., room) where
the target object is located, whereas the latter approach is needed to obtain precise coordinates.
Consequently, we use all three fingerprint-based algorithms in regression mode. In the following,
we describe each algorithm in detail, focusing in particular on the hyper-parameters settings used in
our experiments.

The trilateration algorithm (see Figure 1) is a sophisticated version of triangulation which
calculates the distance from the target object directly, rather than indirectly through the angles.
Data from a single beacon provide a general location of a point within a circle area. Adding data
from a second beacon allows for reducing the plausible area to the overlap region of two circles, while
adding data from a third beacon reduces it to a point. In the figure, U is the known distance between
beacon 1 (B1) and beacon 2 (B2), while Vx and Vy are the coordinates of beacon 3 (B3) with respect to B1.
The radii of the three circles, obtained from RSSI measurements are r1, r2, and r3. With this notation,
the coordinates of the object P in a 2D space are calculated using the following equations:

V2 = V2
x + V2

y ,

x =
r2

1 − r2
2 + U2

2U
,

y =
r2

1 − r2
3 + V2 − 2Vxx

2Vy
.

OBJECT

𝐵2

𝐵1

𝐵3

𝑟3

𝑟1

𝑟2

y

x
(U, 0)

(0, 0)

(𝑉𝑥, 𝑉𝑦)

(x, y)

PV

Figure 1. Trilateration algorithm for object localization using three beacons B1, B2, and B3.

The k-Nearest Neighbors algorithm (k-NN) is a non-parametric supervised learning method that
can be used for both regression and classification [29]. When k-NN is used for regression, the output of
the algorithm is the property value of the object (i.e., its position) calculated as a weighted average of
the values of its k nearest neighbors, where k is the main hyper-parameter of the algorithm. K-NN does
not require a proper training, as it just requires storing the RSSI values and corresponding coordinates
for the training data. At inference time, the k nearest neighbors of a new sample are simply identified
evaluating a distance metric between its RSSI measurements and those of all training data.
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In our work, we tested different values of k and selected the one that yielded the lowest median
error on the test data set. We obtained that the optimal value of k did not depend on the density of
beacons present in the environment. However, our tests only included either three or four beacons in
two different environments, hence the optimal value may change in a different scenario. Nonetheless,
finding the best value of k is a straightforward process if the number of test points is not extremely
large, since this is the only hyper-parameter of the algorithm. The value of k used in our experiments
is reported in Section 4.1.

The multi-layer perceptron (MLP) is a type of feed-forward artificial neural network used in
supervised regression and classification tasks [30]. As shown in Figure 2, an MLP consists typically
of three or more layers of neurons: (i) an input layer, (ii) an output layer, and one or (iii) more
hidden layers. MLPs are trained using backpropagation and exploit nonlinear activation functions
(rectified linear unit—ReLU or sigmoid functions) in the hidden and output layers to learn complex
input/output relationships.

OUTPUT
(X, Y) 

COORDINATES

RSSI BEACON 1

HIDDEN LAYER

INPUT LAYER OUTPUT LAYER

PERCEPTRON

RSSI BEACON 2

RSSI BEACON 3

Figure 2. Multi-layer perceptron (MLP) schematic model.

In our work, the number of neurons in the input layer is equal to the number of beacons whose
RSSI measurements are recorded (which varies among different environments and experiments),
while the number of output neurons is fixed to 2, i.e., the predicted (x, y) coordinates of the target
object. Concerning the hidden layers, we tried different combinations of number of layers and neurons.
The exact type and number of layers used in our experiments are reported in Section 4.1.

Lastly, support–vector machines (SVM) can also be used for supervised classification and
regression [30]. When used for regression, SVMs are more properly called support–vector regressors
(SVRs) and are trained to predict the output variables with a given margin of tolerance, called ε. In its
basic form, the SVR training algorithm finds a hyperplane that maximizes the number of samples that
fall within the margin (see Figure 3). In practice, this is a transformation of the type:

p = wr + b, (1)

where r is the vector of RSSI values measured from the beacons, p is the corresponding vector of
coordinates (x, y) of the object, and w and b are a matrix and a vector of weights, which are optimized
to maximize the number of training samples that fall within the margin. Nonlinear relationships are
dealt with by projecting the input variables using a kernel function. For instance, the common Radial
Basis Function (RBF) kernel transforms the input r onto:

K(r− r′) = exp(−γ‖r− r′‖2), (2)

where γ is a hyper-parameter used to optimize the hyperplane and ‖r− r′‖2 is the squared Euclidean
distance between two input samples (r and r′).
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For a sufficiently complex problem, some data will inevitably fall outside of the tolerance margin
(see Figure 3). SVR training tries to minimize the total distance of these points from the margin (ξ)
including a penalization term C ∑ ξ to the objective function. The hyper-parameter C is used to weigh
the importance of these outliers.

ε

p

ξ

r

𝒑 = 𝑤𝒓 + 𝑏

LINEAR SVR

Figure 3. Support–vector regressor (SVR) example for a two-dimensional problem, using a linear kernel.

In our work, we used a grid search to find the best combination of hyper-parameters for an SVR.
Specifically, we varied the kernel function, the kernel coefficient γ (only when using a RBF kernel),
the boundary limit ε and the penalty parameter C. We considered linear and RBF kernels, whereas γ

was varied in the interval [0.01–0.08], ε in [0.02–0.08], and C in [1–100]. The exact kernel functions and
the optimal values of the parameters found in our experiments are reported in Section 4.1.

4. Results and Discussion

4.1. Experimental Setup

In our experimental setup, we used up to four beacons as BLE transmitters. As mentioned in
Section 1, we wanted to focus on off-the-shelf BLE-based devices that could be bought on the market
today at a low cost to implement indoor localization in industrial environments. Specifically, we
selected Estimote beacons [31] because of their low cost and long battery lifetime. These devices
adopt the Apple proprietary “iBeacon” protocol [32] to broadcast information packets over BLE.
Each packet includes a universally unique identifier (UUID) of the beacon and an indication of the
nominal transmitted power at 1 m from the device, which is needed to convert RSSI measurements
into distances.

As a target device to be localized, we used a Raspberry Pi 3 B (quad-core ARM A-53@1.2 GHz)
with its on-board Bluetooth receiver. All localization algorithms have been implemented in Python
using the sklearn package [33]. In order to improve the correlation between the measurements collected
when building the RFM and those exploited to localize the device, the Raspberry Pi has been used for
both tasks. The localization algorithms described in Section 3 have been compared in two industrial
environments:

• Environment A is an industrial shed of 100 m2, with a 9 m high ceiling. The walls are partly
masonry partly metal, with a doorway of 4 m2 on a side. The area is partially occupied by pallets
and building materials of different types.

• Environment B is an industrial workshop of 288 m2 with a 10 m high ceiling. The area contains
electronic and mechanics equipment, computers, and metal structures and was continuously in
use by workers during our experiments. The walls are partly masonry partly glass.

Beacons have been positioned as equidistant as possible from each other, given the restrictions
caused by obstacles in the two environments. When using four beacons, the minimum distance between
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them was≈3.9 m and≈7.7 m for Environment A and Environment B, respectively. Notice that a simple
localization method based on proximity (i.e., one that simply detects the area of the environment
based on the beacon that generates the strongest RSSI) would incur an error that is always greater than
half of these distances (i.e., >1.85 m and >3.85 m respectively for the two Environments). Therefore,
these half-distances represent a sort of lower bound on the acceptable performance of any localization
algorithm that exploits more than one beacon, such as trilateration and fingerprint-based ones.

Fingerprint methods have been tested with different densities of points in the RFM. Specifically,
for both environments, we considered three grids of equidistant points with a distance between
adjacent points of 0.5 m, 1 m and 2 m, respectively. RFM points have been collected whenever the
corresponding location was not obstructed by furniture or other obstacles. This gave us a total of 192
RSSI values for training and 31 for testing in Environment A, while, in Environment B, we measured
293 RSSI points for training and 50 for testing.

In accordance with many literature papers on indoor localization using BLE
RSSI [10,11,14–16,18,21–23], we used a simple yet effective “feature extraction” method. Specifically,
rather than using raw RSSI measurements to perform localization, we averaged the measurements
over an interval of time to partially filter noise. For training measurements, we averaged the RSSI
over intervals of 1 min. Testing measurements have been performed for intervals of 20 s to avoid
increasing too much the time required to obtain an estimate of the position. In both training and
testing measurements, the Raspberry Pi was randomly oriented, to simulate a realistic localization
scenario. The ground truth positions of training and testing points have been measured using a
professional meter.

For the k-NN algorithm, we tested different values of k and we obtained the best performance
using k = 3. For the MLP, the lowest error was obtained with a model including three hidden layers
composed of 8, 8, and 6 neurons, respectively, and using ReLU activation functions. For the SVR,
the lowest median localization error was obtained with the RBF kernel, γ = 0.01, ε = 0.02 and C = 1.

4.2. Trilateration

The error box plots for the trilateration algorithm, computed on all test points are reported in
Figure 4 for both environments.

3 beacon (1/33) 4 beacon (1/25) 3 beacon (1/103) 4 beacon (1/77)
Number of beacons (Density of beacons [1/m2])

0

5

10

15

20

Er
ro

r [
m

]

Environment A
Environment B

Figure 4. Error box plots for the trilateration algorithm. The x-axis reports the number and the
corresponding density of the beacons in the environment.



Electronics 2020, 9, 44 10 of 17

As shown in the graph, we performed measurements with either three or four beacons installed in
each of the two environments, resulting in different beacons’ densities. In the case with four beacons,
trilateration has been performed using the three strongest RSSI measurements at a given point.

As expected, the localization error is influenced by the density of beacons in the area, but the
impact is minimal and the trends are not straightforward. In Environment A with four beacons
covering an area of 25 m2 each, we obtain a median error of 3.3 m and an interquartile range (IQR)
of 2.0 m. With only three beacons covering an area of 33 m2 each, the error median and IQR are
practically unchanged, but the two extremes of the IQR are slightly shifted towards larger errors.
For Environment B, the error clearly increases due to its wider area. For this environment, 4 beacons
cover an area of 77 m2 each, obtaining a median error of 5.4 m and a IQR of 8.0 m. As for Environment
A, when using only three beacons (each covering an area of 103 m2), the error median is practically
identical, and surprisingly the IQR decreases to 6.7 m. However, the difference is not so significant, so
also in this case the two results can be considered substantially equivalent.

Such large errors are clearly unacceptable for most indoor localization tasks, and clearly show the
limits of simple RSSI-based distance algorithms. In fact, the median errors obtained with trilateration
are significantly larger than the minimum half-distance between beacons (reported in Section 4.1),
showing that this method does not reduce the error compared to a simple proximity-based localization.
This is probably due to the fact that RSSI measurement precision is strongly affected by external noise
sources, shadowing effects and multi-paths, which are particularly relevant in industrial environments.
The fact that the RSSI is measured with a random device orientation also worsens the results.

Moreover, the results in Figure 4 show that increasing the density of beacons does not yield
significant improvements to the localization accuracy. Of course, if these experiments were to be
extended to a much higher number of beacons (e.g., >10), trilateration could indeed perform better.
However, having such a high density of BLE devices would be unlikely in an industrial context, which
is characterized by large environments and where the positioning of beacons is not always easy due
to the obstructions caused by industrial machinery, etc. Moreover, the experiments of Section 4.3
show that fingerprint methods can significantly reduce the median error without resorting to a larger
number of beacons, hence providing a lower cost solution.

For all these reasons, we conclude that the trilateration algorithm is not suitable for this type of
environment and that a fingerprint method is indeed necessary.

4.3. Fingerprint Methods

Table 2 reports the median error and the corresponding IQR for the three fingerprinting algorithms
considered in this work. Errors are reported for both environments and refer to the case where 4
beacons are installed and the RFM measurements are collected every 0.5 m.

Table 2. Median error and interquartile range (IQR) of fingerprint-based methods in Environment A
and Environment B using four beacons and a fingerprint grid with one measurement every 0.5 m.

Method Environment A Environment B

SVM median = 1.40 m median = 3.52 m
IQR = 0.82 m IQR = 3.30 m

MLP median = 1.82 m median = 3.66 m
IQR = 1.02 m IQR = 2.85 m

k-NN median = 1.33 m median = 3.18 m
IQR = 1.21 m IQR = 3.37 m

These results clearly show that fingerprinting helps in improving localization accuracy
significantly, both in terms of median error and in terms of localization stability (i.e., IQR). SVM and
k-NN show similar performance, with k-NN achieving the lowest median error in both environments.
The MLP obtains the worst performance among the three tested algorithms. This is due to the low
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amount of training data available, which is typical for this application, where the amount of data
are limited by the number of site RSSI characterization recordings. In general, the error increases
for Environment B due to the lower density of beacons and to the presence of metal objects causing
disturbances in the signals.

4.3.1. Error Maps

Figures 5 and 6 show the map of the localization error of fingerprint algorithms for both
environments. The positions of the four beacons are represented by white diamonds in the figures.
The plots refer to the same experiment described in the previous Section (four beacons, one RFM
measurement every 0.5 m).

Interestingly, Figure 5 shows that the area with largest error (>3 m) for Environment A is towards
the left side of the room, where the wall is made of metal. Similarly, Figure 6 shows that SVM and MLP
obtain a larger error (>10 m) in the bottom-right area, where there is a doorway made of metal and
glass. k-NN seems to be less affected by the disturbances caused by these materials. In general, the map
highlights that k-NN obtains the most stable estimate across the area of the two environments. Table 3
reports the percentage of testing points whose error is lower than the minimum half-distance between
beacons (reported in Section 4.1). As shown, for both environments, more than half of the testing
points achieve a localization error that is smaller than the best result achievable with proximity-based
localization, thus proving the effectiveness of fingerprint-based methods.

(a) k-NN (b) MLP (c) SVM

Figure 5. Error map of the three fingerprint-based methods in Environment A.

(a) k-NN (b) MLP (c) SVM

Figure 6. Error map of the three fingerprint-based methods in Environment B.
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Table 3. Percentage of testing points lower than minimum half-distance between beacons.

Method Environment A [%] Environment B [%]

k-NN ≈ 67 ≈ 56

MLP ≈ 57 ≈ 56

SVM ≈ 77 ≈ 56

4.3.2. Impact of Beacons’ Density

Similarly to trilateration, we evaluated the impact of beacons density on the localization error in
fingerprinting algorithms. As before, we tried decreasing the number of beacons in each environment
from 4 to 3, leaving the density of the RFM grid unchanged (one measurement every 0.5 m). The results
of this experiment are reported in Figure 7.

3 beacon (1/33)
 environment A

4 beacon (1/25)
 environment A

3 beacon (1/103)
 environment B

4 beacon (1/77)
 environment B

Number of beacons (Density of beacons [1/m2])

0

2

4

6

8

10

12

Er
ro

r [
m

]

SVM
MLP
K-NN

Figure 7. Error box plots for the three fingerprinting algorithms with different beacon densities. Results
for a fingerprint grid with one measurement every 0.5 m.

As shown, the error trends for SVM and k-NN are similar, and it is difficult to identify a clear
winner. With either three or four beacons, SVM is slightly better than k-NN for Environment A,
and vice versa for Environment B. For all three algorithms, the impact of having a larger number of
beacons on the results is minimal. In general, the boxes identified by the IQR, as well as the “whiskers”
of the box plots tend to shift towards lower errors when the number of beacons increases from three
to four. However, the medians are often very similar and sometimes even increase. For instance,
the median error of the SVM reduces by 0.4 m when going from three to four beacons in Environment
A, but increases by 0.3 m in Environment B.

4.3.3. Impact of Fingerprint Grid Density

In fingerprint-based methods, the density of the grid map influences the performance of
localization. To this purpose, we keep the number of beacons to four and we increase the number of
RSSI measurements. In this section, we analyze the impact of this design parameter considering three
fingerprint grids’ densities (one measurement every 0.5 m, 1 m, and 2 m). Figures 8 and 9 show the
results of this analysis for the two environments using four beacons.

Reducing the number of fingerprint points tends to cause a slight increase in the median error,
in the values of the first and third quartiles, and in the length of the box plot whiskers. However, this is
not always true and in general the impact is not dramatic, showing that even a quite “sparse” RFM is
sufficient to obtain a decent localization accuracy. Once again, it is not easy to identify a clear winner
among the three fingerprint algorithms. For example, in the smallest environment, SVM shows the
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most stable results with a dense grid (IQR = 0.8 m), but when the distance between the points increases,
it is outperformed by k-NN (e.g., IQR = 1.1 m versus the 1.9 m of the SVM with one fingerprint point
every 2 m).
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Linear distance between measurements points [m]
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Figure 8. Error box plots for the three fingerprinting algorithms with different fingerprint grid densities
in Environment A.
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Figure 9. Error box plots for the three fingerprinting algorithms with different fingerprint grid densities
in Environment B.

4.3.4. Impact of Environmental Perturbations

In an industrial environment, movements of large objects and machines may occur. Thus, a good
localization algorithm should be resilient to environmental changes. This is clearly relevant especially
for fingerprint-based algorithms, since when something changes within the environment the fingerprint
data collected previously become obsolete and could lead to an incorrect positioning. Therefore, we
test the effect of changes in the environment on the three fingerprint algorithms, first by simulation
and then in the field.

The simulation is performed adding a zero mean Gaussian noise to the fingerprint RSSI values to
mimic the scenario in which a variation in the environment makes them obsolete. Figures 10 and 11
report the trends of the error box plots of the three algorithms as a function of the Gaussian standard
deviation σ.
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Figure 10. Error box plots for the three fingerprinting algorithms as a function of the standard deviation
of the Gaussian noise in Environment A.
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Figure 11. Error box plots for the three fingerprinting algorithms as a function of the standard deviation
of the Gaussian noise in Environment B.

The three algorithms show a similar trend when Gaussian noise is introduced, and once again it
is hard to state which algorithm performs better, since the differences in the box plots for a given value
of σ do not justify the choice of one algorithm over the other.

As a field experiment to test the influence of environmental perturbations, we introduce a large
item (a 4 m × 4 m vehicle emulating industrial operations) in Environment A, then perform the
localization without updating the RFM. The results obtained with the three algorithms in this scenario
are reported in Table 4.

As expected, the median error in the test points increases for all three algorithms compared to the
results of Table 2, but k-NN is slightly less affected by the perturbation than SVM and MLP, since its
median error only increases by 0.5 m.
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Table 4. Error median and IQR for the three fingerprinting based algorithms in Environment A after
adding a large object not present during the collection of the RFM.

Method Environment A

SVM median = 2.16 m
IRQ = 1.02 m

MLP median = 2.64 m
IRQ = 1.39 m

k-NN median = 1.83 m
IRQ = 2.02 m

5. Conclusions

In this paper, we have presented a study that compares state-of-the-art indoor localization
methods based on BLE in an industrial setting. Our results show that fingerprinting-based methods
are sharply better than distance-based ones. This is motivated by the fact that the latter are affected by
shadowing effects and reflections, which are particularly relevant in industrial environments, due to
the presence of large moving metal objects.

Vice versa, the three considered fingerprint algorithms achieve very similar localization errors and
show similar resilience to environmental variations and noise. Therefore, we argue that the selection
of the best algorithm should be based on other aspects than sheer localization accuracy.

Even computational complexity considerations do not help the selection, as all three algorithms
have a negligible time and memory complexity for the selected target device (the Raspberry Pi).
Specifically, given the relatively small size of the training data (and consequently of the prediction
models), we obtain that the inference execution time is <2 ms for all three algorithms, and the memory
occupation is <40 MB.

Therefore, the final selection of an algorithm should be done based on training complexity and
ease of adaptability, which directs the choice towards k-NN. In fact, this algorithm has a much simpler
set of hyper-parameters (consisting solely of the number of neighbors k) compared to both SVM and
MLP. This eases the deployment of a k-NN-based localization system in a new environment, as the
only tests that need to be performed are those to identify the optimal value of k. Both MLP and SVM
require a much more time-consuming parameter tuning for setting the number of layers, the number
of neurons in each layer and the activation functions in the former case, or the basis function and
values of γ, C and ε in the latter. Moreover, k-NN does not require an actual training phase, which
makes it more flexible for online adaptation. Specifically, whenever new or updated fingerprinting
measurements become available, it is sufficient to update the database of reference points used by
k-NN in order to obtain an updated location estimate. In contrast, such kind of update would require
re-training in the case of SVM and MLP.

Therefore, we conclude that k-NN is the most suitable algorithm for industrial scenarios.
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Bluetooth Low Energy BLE
Global Positioning System GPS
Interquartile Range IQR
Iterative Weighted k-Nearest Neighbor IW-kNN
k-Nearest Neighbors k-NN
Multilayer Perceptron MLP
Radial Basis Function RBF
Received Signal Strength Indication RSSI
Reference Fingerprint Map RFM
Rectified Linear Unit ReLU
Support-Vector Machines SVM
Support-Vector Regressor SVR
Universally Unique IDentifier UUID
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