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Power transmission networks play an important role in smart girds. Fast and accurate faulty-equipment identi�cation is critical
for fault diagnosis of power systems; however, it is rather di�cult due to uncertain and incomplete fault alarm messages in fault
events. �is paper proposes a new fault diagnosis method of transmission networks in the framework of membrane computing.
We �rst propose a class of spiking neural P systems with self-updating rules (srSNPS) considering biological apoptosis mechanism
and its self-updating matrix reasoning algorithm. �e srSNPS, for the �rst time, e�ectively unitizes the attribute reduction ability
of rough sets and the apoptosis mechanism of biological neurons in a P system, where the apoptosis algorithm for condition
neurons is devised to delete redundant information in fault messages. �is simpli�es the complexity of the srSNPS model and
allows us to deal with the uncertainty and incompleteness of fault information in an objective way without using historical
statistics and expertise. �en, the srSNPS-based fault diagnosis method is proposed. It is composed of the transmission network
partition, the SNPS model establishment, the pulse value correction and computing, and the protection device behavior
evaluation, where the �rst two components can be �nished before failures to save diagnosis time. Finally, case studies based on the
IEEE 14- and IEEE 118-bus systems verify the e�ectiveness and superiority of the proposed method.

1. Introduction

Fast and accurate fault diagnosis is very important for power
system restoration after a serious blackout [1, 2]. �is �rst
requires the identi�cation of faulty equipment [3, 4]. To
identify faulty equipment, dispatchers should �rst analyze
the fault alarm messages received from the supervisory
control and data acquisition (SCADA) system according to
ancillary facilities and their operational experience. Fault

events in a power system can cause lots of fault alarm
messages, and parts of them may be redundant ones which
are not important with respect to the fault. Besides, pro-
tection devices may also fail leading to incomplete action
information. All these cases can increase the uncertainty and
incompleteness of fault alarm messages, making fault di-
agnosis more di�cult [4–7]. �erefore, improving the fault
information processing ability of fault diagnosis methods is
signi�cant for faulty equipment identi�cation.
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During the past three decades, several fault diagnosis
approaches have been developed, such as expert systems
(ESs) [8, 9], artificial neural networks (ANNs) [10–14],
Bayesian networks (BNs) [15–18], Petri nets (PNs)
[19–24], cause-effect networks (CENs) [2, 25], optimi-
zation methods (OMs) [26–30], fuzzy logic (FL)
[2, 4, 10, 19–21, 23], rough sets (RSs) [31–35], and spiking
neural P systems (SNPSs) [4, 36–38]. However, each above
approach has its limitations which are in detail analyzed in
[1, 2, 4–6]. In general, main shortcomings of these
methods include (1) strong reliance on a large amount of
historical data, such as BNs, PNs, ANNs, and SNPSs; (2)
strong dependence on expert experience, such as ESs,
BNs, PNs, and SNPSs; (3) poor interpretability of diag-
nosis results, such as ANNs, OMs, and CENs; (4) poor
topological adaptability, such as ANNs, OMs, and BNs;
(5) low fault tolerance, such as OMs and ANNs; and (6)
cannot be used independently and need to be combined
with other methods, such as the FL and RSs. 1erefore,
how to improve the above methods or put forward new
ones is the main issue in the corresponding engineering
domain.

Among these fault diagnosis methods, the SNPS is a
novel bio-inspired distributed parallel computing model,
which has powerful information processing and parallel
computing ability (most models have been verified to be
Turing equivalent [39, 40]). 1e SNPS has become a hot
research topic in Membrane Computing [41] and Natural
Computing. In recent years, it has been used to explore the
new fault information processing mechanism and SNPS-
based fault diagnosis methods with rich achievements.
SNPSs are a special kind of neural-like P systems [42],
inspired by the mechanism that biological neurons store,
transmit, and exchange information by pulses (spikes)
along axons from presynaptic neurons to postsynaptic
neurons in a distributed and parallel manner [4, 43, 44].
Due to the similarity between the spike transmission
among different neurons through synapses and the fault
propagation in power systems, fault diagnosis models
based on different variants of spiking neural P systems are
proposed to reason fault events to find faulty equipment
[4, 36–38, 45–49].

At present, SNPS-based fault diagnosis methods can
be divided into two categories (according to the fault
information processing way): fuzzy reasoning with real
numbers (FRRN) [36–38, 45–48] and fuzzy reasoning
with fuzzy numbers (FRFN) [4, 50–52]. 1e FRRN refers
to process uncertain and incomplete fault alarm messages
using probability numbers which correspond to historical
statistics of action information of protection devices
including protective relays (PRs) and circuit breakers
(CBs). 1erefore, the FRRN strongly depends on the
historical data. However, with the increasing complexity
of power systems, it is difficult to accurately obtain the
historical statistics and update them in time. For the
second kind of method, the FRFN is to deal with the
uncertainty and incompleteness by fuzzy numbers. Wang
et al. [4], for the first time, introduces trapezoidal fuzzy
numbers, fault fuzzy production rules, and fault

confidence levels into the framework of SNPSs to propose
a fault diagnosis method for power transmission net-
works, where neurons, spikes, firing rules, and firing
conditions are redefined. 1en, Tao et al., Yu et al., and
Peng et al. [50–52] continue to explore and introduce
triangular fuzzy numbers, interval valued fuzzy numbers,
and intuitionistic fuzzy sets, respectively, to diagnose
faults of transmission networks. However, for above-
mentioned types of FRFN, the different kinds of fuzzy
numbers are all obtained via expert experience. 1ere-
fore, the FRFN has high subjectivity, and its non-
subjectivity is still a difficult problem to be solved. In
addition, both the FRRN and the FRFN do not consider
the preprocessing of fault alarm messages, that is, the
fault alarm messages cannot be effectively utilized by
deleting redundant information before modeling the
SNPS-based diagnosis models. 1erefore, when the scale
and complexity [53–56] of a power system increase and
the redundancy of fault information is high, the fault
tolerance of SNPS-based methods will reduce rapidly.
1erefore, more attention should be paid to how to ef-
fectively overcome the above shortcomings.

On the contrary, the rough set [57, 58] is a typical
mathematical tool to deal with uncertain and imprecise
information in an objective way. However, the rough set
generally should be combined with other methods because it
can only reason and calculate fault data itself weakly. To
address the aforementioned issues, this paper first proposes a
spiking neural P system with self-updating rules (srSNPS)
considering biological apoptosis mechanism, which inte-
grates the strong objectivity (i.e., no need of any priori or
additional information [59]) and good uncertainty handling
capacity of rough sets and excellent parallel information
processing ability of SNPSs. 1en, an srSNPS-based fault
diagnosis method for transmission networks is further de-
vised. 1e main contributions of this paper are described as
follows:

(1) To effectively deal with uncertain and incomplete
fault information in an objectivity way, an srSNPS
and its apoptosis algorithm (Algorithm 1) for
condition neurons are proposed. 1is is the first
time to availably unify the attribute reduction
function of rough sets and the apoptosis mech-
anism of biological neurons in the framework of
membrane computing. 1is way makes the SNPSs
handle the uncertainty and incompleteness
without historical statistics and expert
experience.

(2) Besides, the self-updating matrix reasoning algo-
rithm (Algorithm 2) and self-updating rules for
input neurons are proposed. So, the srSNPS can
effectively make comprehensive use of fault in-
formation including action information, start in-
formation, and overlimit signals of protection
devices to improve its uncertainty and incomplete
processing capacity based on a simple matrix
reasoning process with a vivid graphical model-
building way.
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(3) Based on the proposed srSNPS and two algorithms,
combined with the depth-first search algorithm
(DSA), the weight network segmentation method
(WNSM) and the protection device event tree
(PDET), an srSNPS-based fault diagnosis method is
proposed. 1is method has good diagnosis result
interpretability while maintaining high-fault toler-
ance and a fast diagnosis speed under the uncertainty
and incompleteness of fault alarm messages. In
addition, it does not require historical statistics and
expertise. 1ese are not the case for previous SNPS-
based methods (even for all the graphical reasoning
diagnosis methods).

1e remainder of this paper is organized as follows.
Section 2 proposes the srSNPS and its algorithms. 1e
srSNPS-based fault diagnosis method is proposed in Section
3. In Section 4, the proposed diagnosis method is applied to
the IEEE 14- and 118-bus systems with the analysis of their
effectiveness and superiority. Conclusions are finally drawn
in Section 5.

2. Spiking Neural P Systems with Self-
Updating Rules

1is section first proposes the srSNPS and then presents its
SMRA.

2.1. Spiking Neural P Systems with Self-Updating Rules

Definition 1. A spiking neural P system with self-updating
rules (srSNPS) is a tuple:

Π � O, Me, σ1, . . . , σm, syn, in, out( 􏼁, (1)

where

(1) O � a{ } is a singleton alphabet (a is called a spike, O

is a set of spikes).
(2) Me � (Di, Cj) is called microenvironment, where

(a) Di � (θdi/T, T, fi), 1≤ i≤ s, is the i-th decision-
making neuron (DN) in Me and represents

Input: t condition neurons, s decision-making neurons
(1) Calculate h(C) via (2) and let L � C

(2) while (j≤ t)
(3) Calculate h(C − Cj) after the Cj dies via (2)
(4) Calculate the importance degree Sig(Cj) of the Cj via (1)
(5) if Sig(Cj) � 0, then
(6) L � C − Ci􏼈 􏼉

(7) else
(8) L � C

(9) end if
(10) end while

Output: survival condition neuron set L

ALGORITHM 1: Apoptosis algorithm for condition neurons.

Input: θ0, δ0,D1,D2,D3,E, 01 � 0, . . . , 0{ }T
p, 02 � 0, . . . , 0{ }T

q

(1) Let g � 0
(2) if input neurons satisfy with the firing conditions of self-updating rules, then
(3) correct θg and the algorithm jumps to Step 7
(4) else
(5) the algorithm jumps to Step 7 without pulse value correction
(6) end if
(7) while (θg ≠ 01 or δg ≠ 02)
(8) if proposition neurons satisfy their firing conditions then
(9) proposition neurons fire and compute δg+1 via

δg+1 � (DT
1 ⊗ θg) + (DT

2 · θg) + (DT
3 ∘ θg)

(10) end if
(11) if rule neurons satisfy their firing conditions then
(12) rule neurons fire and compute θg+1 via

θg+1 � ET∘ δg+1
(13) end if
(14) g � g + 1
(15) end while

Output: Pulse values of output neurons

ALGORITHM 2: Self-updating matrix reasoning algorithm.
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suspicious faulty equipment in the targeted
power network, where

(i) θdi/T equals to 0 or 1 representing the pulse
value of the i-th DN at time T. Note that
θdi/T � 1 means the suspicious faulty
equipment corresponding to Di faults and
vice versa.

(ii) T is the sequence time of spikes, and a DN
produces a spike at each unit time. 1us, a
pulse value sequence is formed and recorded
in the DN after T unit time.

(iii) fi is a forgetting rule of the i-th DN with the
form E/ aθdi/T⟶ λ; g � 0􏼈 􏼉, where g rep-
resents the reasoning step of the reasoning
algorithm of the srSNPS, i.e., the self-
updating matrix reasoning algorithm pro-
posed in the next subsection. It means that if
fi is applied, then spikes in the Di are
emptied and the calculation process will be
reinitialized (i.e., g � 0). 1e firing condi-
tion is E � θdi/T′ ≠ θdi/T􏼈 􏼉, representing that
the pulse value in Di has changed.

(b) Cj � (θcj/T, T, fj, Arj), 1≤ j≤ t, is the j-th con-
dition neuron (CN) in Me and represents a
protective relay or circuit breaker in the targeted
power transmission network, where

(i) θcj/T equals to 0 or 1 representing the pulse
value of the j-th CN at time T. Note that
θcj/T � 1 means the protection device cor-
responding to Cj has acted and vice versa.

(ii) T is the sequence time of spikes, and a CN
produces a spike at each unit time. 1us, a
pulse value sequence is formed and recorded
in the CN after T unit time.

(iii) fj is a forgetting rule of the j-th CN with the
form E/ aθcj/T⟶ λ; g � 0􏽮 􏽯. It means that if
fj is applied, then spikes in Cj are emptied
and the calculation process will be reini-
tialized (i.e., g � 0). 1e firing condition is
E � θcj/T′ ≠ θcj/T􏽮 􏽯, representing that the
pulse value in Cj has changed.

(c) Arj represents an apoptosis rule in Me with the
form E/ Cj􏽮 􏽯⟶ Algorithm1 L{ }􏼈 􏼉, which means
that if Arj is applied, then Cj executes its apo-
ptosis rule to determine whether it lives or dies.
1at is, CNs execute Algorithm 1 to output
survival condition neuron (containing important
information) set L. In the same time, CNs in-
cluding redundant information die and will not
participate in fault reasoning. 1e firing condi-
tion is E � g � 0∩ sigj � 0􏽮 􏽯 indicating that the
rule Arj can be applied if and only if in the initial
configuration [43] (that is, g � 0) with sigj � 0
(please see Definition 2).

(3) σi � (θi, ri, ei), 1≤ i≤p, is the i-th proposition
neuron (PN) corresponding to a protection device or

the equipment, σj � (δj, rj), 1≤ j≤ q, is the j-th rule
neuron (RN) corresponding to a fault production
rule, and p + q � m, where

(a) θi and δj are pulse values (equal to 0 or 1) in
proposition neuron σi and rule neuron σj,
respectively.

(b) ri represents a firing rule of σi with the form
E/aθ⟶ aθ, where E � a{ } is the firing condi-
tion, which means that once σi contains a spike,
ri can be applied. 1en, σi will consume a spike
with pulse value θ, produce a new spike with the
same pulse value, and then transmit it to its
postsynaptic neurons; rj represents a firing rule
of σj with the form E/aδ⟶ aβ, where E � a{ } is
the firing condition, which means that once σj

contains a spike, rj can be applied. 1en, σj will
consume a spike with pulse value δ, produce a
new spike with pulse value β (equals to 0 or 1),
and then transmit it to its postsynaptic neurons.

(c) ei represents a self-updating rule of the form
E/aθ⟶ aθ. 1e firing condition is E � εi > 0􏼈 􏼉,
which means that ei can be applied if and only if
the self-updating operator εi > 0. 1en, σi will
consume a spike with pulse value θ, produce a
new spike with pulse value θ (equals to 0 or 1,
called the antispike of θ ), and then εi � εi − 1.
Note that only input proposition neurons con-
tain self-updating rules.

(4) syn⊆ 1, . . . , m{ } × 1, . . . , m{ } with i≠ j for all
(i, j) ∈ syn for 1≤ i, j≤m is a directed synaptic
connection between linked neurons.

(5) in, out indicate the input neuron set and output
neuron set, respectively.

Note that if a PN is an input neuron, then it corresponds
to a protection device, i.e., a protective relay or a circuit
breaker. In this case, the pulse value in σ i represents the
action information of its corresponding protection device,
where θi � 1 means that the device has acted, while θi � 0
means it does not. If a PN is an output neuron, then it
corresponds to suspicious faulty equipment. In this case, θi �

1 indicates that the equipment is faulty, and θi � 0means it is
not.

Definition 2. 1e importance degree of Cj (1≤ j≤ t) is

sig Cj􏼐 􏼑 � I Cj, D􏼐 􏼑 � h C − Cj􏼐 􏼑 − h(C), (2)

where h(C − Cj) is the conditional information entropy
(CIE) of the other condition neurons to decision-making
neurons after Cj dies.

Definition 3. 1e CIE of a condition neuron C is

h(C) � − 􏽘

|U/C|

i�1
p Xi( 􏼁 􏽘

|U/D|

j�1
p Yj

􏼌􏼌􏼌􏼌􏼌 Xi􏼒 􏼓logp Yj

􏼌􏼌􏼌􏼌􏼌 Xi􏼒 􏼓, (3)

where U is called the universe, D is a DN, p(Xi) represents
the probability of Xi on U, and p(Yj | Xi) � |Yj ∩Xi|/Xi
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indicates the probability of the event Yj under the occur-
rence event Xi.

Definition 4. Me of neurons in an srSNPS is a knowledge
base K � (U, R), where R is a nonempty finite set of attri-
butes. Set X � X1, X2, . . . , Xn􏼈 􏼉 and Y � Y1, Y2, . . . , Ym􏼈 􏼉 as
the partitions of P and Q on U, respectively. 1e probability
distributions of P and Q on the σ algebra composed of
subsets of U are

[X : p] �
X1 X2 · · · Xn

p X1( 􏼁 p X2( 􏼁 · · · p Xn( 􏼁
􏼢 􏼣,

[Y : p] �
Y1 Y2 · · · Ym

p Y1( 􏼁 p Y2( 􏼁 · · · p Ym( 􏼁
􏼢 􏼣,

(4)

where p(Xi) � |Xi|/|U|, i � 1, . . . , n and p(Yj) � |Yj|/|U|,

j � 1, . . . , m.
Algorithm 1 used in the apoptosis rule is the apoptosis

algorithm for condition neurons, described as follows. Its
output is a survival condition neuron set L. 1e neurons in L
will be connected according to the synaptic connection rule
in Definition 5.

Definition 5. Synaptic connection rules in this study are (1)
read the information sequences of DNs and survival CNs to
form the minimum reduction decision table (MRDT); (2)
create a fault production rule set (FPRS) for the MRDT; and
(3) realize synaptic connection according to production
rules in the FPRS. Note that only the living neurons (in-
cluding DNs and survival CNs) can build synapses.1e dead
condition neurons are unable to establish any effective
synapses.

To improve the intelligibility, a sketch map of neu-
rons and the microenvironment are shown in Figure 1,
and a diagram of evolutionary process of an srSNPS is
shown in Figure 2, where the ODTrepresents the original
decision table of a fault to be diagnosed. In an srSNPS,
there are three types of rule neurons, i.e., General-, And-,
and Or-rule neurons. All of them can represent fault
production rules but with different processing
methods of spikes, which will be described in detail in
Section 2.2.

2.2. Self-Updating Matrix Reasoning Algorithm. To explain
the SMRA, we first introduce its vectors, matrices, and
operators as follows:

(1) θ � (θ1, . . . , θp)T is a pulse value vector of PNs,
where θi(1≤ i≤p) represents the pulse value of i-th
PN σi. If σi is an input neuron, then θi � 1 means
the protection device associated with σi has acted,
and θi � 0 means it has not acted. If σi is an output
neuron, then θi � 1 means the corresponding sus-
picious equipment is faulty, and θi � 0 means it is
not faulty.

(2) δ � (δ1, . . . , δq)T is a pulse value vector of RNs,
where δj (1≤ j≤ q) is the pulse value of the j-th RN.

(3) ε � (ε1, . . . , εl)
T(1≤ l≤p) is a self-updating oper-

ator vector of input neurons, where εi(1≤ i≤ l) is
the self-updating operator of the i-th input neuron.

(4) D1 � (dij)p×q is a synaptic matrix, which represents
the directed synaptic connection from PNs to
general RNs. If there is a synapse from PN σi to
general RN σj, then dij � 1; otherwise, dij � 0.

(5) D2 � (dij)p×q is a synaptic matrix, which represents
the directed synaptic connection from PNs to And
RNs. If there is a synapse from PN σi to And RN σj,
then dij � 1; otherwise, dij � 0.

(6) D3 � (dij)p×q is a synaptic matrix, which represents
the directed synaptic connection from PNs to Or
RNs. If there is a synapse from PNs σi to Or RN σj,
then dij � 1; otherwise, dij � 0.

(7) E � (eji)q×p is a synaptic matrix, which represents
the directed synaptic connection from RNs to PNs.
If there is a synapse from RN σj to PN σi, then
eji � 1; otherwise, eji � 0.

(8) DT⊗ θ � (d1, . . . , dq), where dj � d1j × θ1 +

. . . + dsj × θq, j � 1, . . . , q.
(9) DT · θ � (d1, . . . , dq), where dj � min(d1j × θ1,

. . . , dqj × θq), j � 1, . . . , q.
(10) DT∘ θ � (d1, . . . , dq), where dj � max(d1j × θ1,

. . . , dpj × θp), j � 1, . . . , q. Likewise, ET∘ θ � (e1,

. . . , ep), where ei � max(e1j× θ1, d2j × θ2, . . . ,

dqi × θq), i � 1, . . . , p.

To parallelly reason and calculate fault alarm messages,
we design the SMRA for srSNPSs as follows.

3. The Proposed Methodology

1is section proposes a fault diagnosis method for power
transmission networks based on the srSNPS, whose flow-
chart is shown in Figure 3 and described as follows:

Step 1: transmission network partition.

Me

Dendrites

Cell body

Myelin sheath

Synapse

Biological conditions in
the microenvironment

Microenvironment

Figure 1: Sketch map of neurons and microenvironment.
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(a) Generate the Depth-First Search Tree (DST). Em-
ploy the depth-first search algorithm [60, 61] to
simplify the numbered transmission network to
generate the corresponding DST, in which nodes
represent buses.

(b) Divide the DST. Use the weight network segmen-
tation method [60, 61] to split the DST while en-
suring that the computational burden of each

subnetwork after network partition is approxi-
mately the same.

Step 2: establish an srSNPS-based fault diagnosis model
for each subnetwork. 1e subnetworks perform the
following steps (a)–(d) in a parallel way:

(a) Select Living Neurons. (i) Transport the ODTof the
fault into the microenvironment, i.e., feed

Me

ODT

C1

C2

C5

C3
C4

Cs

D1

D2
Dt

Me Me
C1

σ1

σ2

C2

C5

C3
C4

Cs

D1

D2
Dt

Initial neurons Neurons containing redundant
information die

An srSNPS

Living
neurons

Information
sequence

σpσp+q

Apoptosis
algorithm

…

…

…

…

…
…

…

… …

Figure 2: Diagram of evolutionary process of an srSNPS.

Overlimit 
singals

Start
information

of PRs

Network partition

Faulty 
equipment

Protection device 
evaluation

ODT

Action
information of 

CBs

Action
information of 

PRs

Output diagnostic results

Be
fo

re
 fa

ul
ts

Control center

A
fte

r f
au

lts

Correct pulse values of input 
neurons

Network 
topology data

Protection 
configuration 

data

Action rules of 
PRs and CBs

Control center

Establish an srRSNPS-based fault 
diagnosis model for each subnetwork

Action
information

of CBs

Action
information

of PRs

Self-updating 
operator ε

PDET

Start 

End

Each model execute the SMRA to 
compute pulse values of output 

neurons

Figure 3: Flowchart of the proposed srSNPS-based fault diagnosis method.
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conditional attributes of the ODT into CNs in Me
and decision-making attributes into DN neurons.
(ii) CNs execute apoptosis rules (i.e., Algorithm 1)
to select survival ones. 1e purpose of this step is to
select out important fault alarm messages (i.e., the
core attribute fault information) by deleting re-
dundant ones.

(b) Establish MRDT. Read the information sequences
of DNs and survival CNs to form the MRDT.

(c) Create the FPRS via the obtained MRDT.
(d) Realize Synaptic Connections to Build an srSNPS-

Based Model for Each Subnetwork. Establish syn-
apses according to Definition 5. Note that each fault
production rule corresponds to a rule neuron, while
each antecedent or consequent proposition in a rule
is associated with a proposition neuron. Now, the
survival CNs mutate to input PNs and the DNs
mutate to output PNs. 1e pulse values in the input
PNs represent the core attribute fault information
(corresponding to action information of PRs or
CBs) in fault alarm messages.

Step 3: correct pulse values of input neurons. Integratedly
utilize the start information and action information of
protection devices based on the fault information matrix
(please see Subsection 3.1) to get the self-updating op-
erator vector of input neurons, i.e., ε. 1en, each input
neuron applies its self-updating rule to correct and update
its pulse value. Accordingly, thewrong action information
of protection devices is corrected because the pulse value
of each input neuron represents the action information of
a protective relay or a circuit breaker.1e flowchart of this
step is shown in Figure 4.
Step 4: compute pulse values of output neurons. Each
subnetwork performs the SMRA (i.e., Algorithm 2)
of its srSNPS-based fault diagnosis model in a par-
allel way to reasoning out the pulse values of output
neurons.
Step 5: output diagnosis results. If and only if the pulse
value of an output neuron is 1, its corresponding
equipment is faulty.
Step 6: evaluate uncertain behaviors of protection
devices. Search the protection device event tree (PDET,
please see Subsection 3.2) to find the false or lost alarm
messages of protection devices.

1e purpose of Step 1 includes (a) simplify decision-
making samples for srSNPS-based diagnosis models. 1e
typical fault diagnosis methods based on rough sets establish
the ODT of a fault event via the fault data of the entire
transmission network, while our proposed method con-
currently establishes the ODT for each subnetwork; (b)
improve the topological adaptability of networks. When the
topology of a transmission network changes, it just needs to
modify the srSNPS-based diagnosis model of the corre-
sponding subnetwork. Besides, Steps 1 and 2 are finished

before faults occur, and Steps 3–6 are executed immediately
after failures. 1us, the proposed method can save some
time.

3.1. Correct Pulse Values of Input Neurons in srSNPS-Based
Diagnosis Models. Define the fault information matrix of a
CB (labeled as A) as

MA �

P
(1)
stA P

(1)
acA RacA

P
(2)
stA P

(2)
acA RacA

P
(3)
stA P

(3)
acA RacA

P
(4)
stA P

(4)
acA RacA

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where P
(u)
stA is the start information of PRs, P

(u)
acA is the action

information of PRs, and u � 1, 2, 3, 4 represents the main
protective, first backup protective, second backup protective,
and bus protective relays associated with the CB, respec-
tively; RacA is the action information of the CB. Particularly,
if there is no bus PR, P

(4)
stA � P

(4)
acA � 0.

Check overlimit signals of protection
devices corresponding to suspicious

equipment

Read fault information matrix

Compute the fault information 
identification matrix

The srRSNPS diagnosis 
model read ε

Y

N

Start

End

Any row of the matrix exists
Pst + Pac + Rac = 1?

Figure 4: Flowchart of correction steps for action information.
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Define the fault information identification matrix NA as

NA �

P
(1)
jA RjA

P
(2)
jA RjA

P
(3)
jA RjA

P
(4)
jA RjA

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where P
(u)
jA (P

(u)
jA � P

(u)
stA ⊕ P

(u)
acA, u � 1, 2, 3, 4) represents

decision value of status for the corresponding PR and ⊕ is the
xor operation. When P

(u)
jA � 1, read overlimit signals of pro-

tection devices corresponding to the suspicious equipment.
ε � (ε1, . . . , εl)

T is the self-updating operator vector of
input neurons. Define εi(1≤ i≤ l) as

εi �

0
0
, ∪

4

z�1
P

(z)
sti + P

(z)
aci􏼐 􏼑 � 0,

0
P

(3)
ji ⊕Rji􏼐 􏼑∪ P

(4)
ji ⊕Rji􏼐 􏼑

, ∪
2

z�1
P

(z)
sti + P

(z)
aci􏼐 􏼑 � 0,

P
(1)
ji ⊕Rji􏼐 􏼑∪ P

(2)
ji ⊕Rji􏼐 􏼑

0
, ∪

4

z�3
P

(z)
sti + P

(z)
aci􏼐 􏼑 � 0,

P
(1)
sti ⊕Rji􏼐 􏼑∪ P

(2)
ji ⊕Rji􏼐 􏼑

P
(3)
ji ⊕Rji􏼐 􏼑∪ P

(4)
ji ⊕Rji􏼐 􏼑

, ∪
4

z�1
P

(z)
sti + P

(z)
aci􏼐 􏼑≠ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where the symbol “—” is not the fraction line. 1e symbols
above “—” indicate self-updating operators of lines where
protective devices associated with input neurons are located,
while the ones under “—” represent self-updating operators
of buses.

3.2. Search the Protection Device Event Tree. According to
start and action messages of PRs, action messages of CBs, and
overlimit signals of faulty equipment, the PDETfor a fault event
is generated as shown in Figure 5, where Psti and Paci are the
start and action information of the i-th PR, respectively, Raci is
the action information of the corresponding CB, andOLi is the
overlimit signal of the faulty equipment we have found; the
start and action messages are represented by , the overlimit
signals are indicated by , and the behaviors of protection
devices are represented by ; the pink in above symbol
represents the corresponding protection device has acted, while
the gray color means it does not. When faulty equipment is got
in Section 3-Step 5, then we search the PDET to evaluate
uncertain behaviors of protection devices.

4. Case Study

1e proposed method is applied to the IEEE 14-bus and IEEE
118-bus systems to demonstrate its effectiveness and superiority.

4.1. IEEE 14-Bus System. 1ere are 14 buses, 20 lines, 40
circuit breakers, 40 line main protective relays, 40 line first

backup protective relays, 40 line second backup protective
relays, and 14-bus protective relays.

4.1.1. Comparative Tests. Ten cases including uncertainty
and incompleteness, such as maloperation and misinfor-
mation, are used to do the comparisons between the pro-
posed method and three typical fault diagnosis methods, i.e.,
the cause-effect network (CEN) in [2], the fuzzy Petri net
(FPN) in [18], and the fuzzy reasoning spiking neural P
system (FRSNPS) in [36]. 1e reason choosing the three
methods is that their performance over many other ap-
proaches has been demonstrated. 1e diagnosis results are
shown in Table 1.

For cases 1 and 2, four methods can find the right faulty
equipment. 1erefore, they are all effective without uncertain
or incomplete fault information. For case 3, only the proposed
method and the FRSNPS are successful, while both CEN and
FPN are failed. For cases 4–7, only our method can accurately
diagnose the faults. Cases 8–10 are three extreme examples, i.e.,
all the action information of protective relays or circuit
breakers are lost. 1e CEN, FPN, and FRSNPS are all failed for
cases 8–10, while our method is successful for cases 8 and 9 and
failed for the case 10. 1is is because the lost information in
cases 8 and 9 is the redundant information in our method, and
the one in case 10 is the core attribute information. 1erefore,
we can see that if the uncertainty and incompleteness occur in
the redundant information, it has no effect on the diagnosis
results of the proposed method. However, when it happens in
the core attribute information, it will influence the results.
Fortunately, due to the stability of the relay protection system,
the case of complete loss of all core attribute information is very
rare under normal operation of power systems. 1erefore,
Table 1 shows that the proposed method can obtain satisfying
results in the situations with incomplete or uncertain alarm
information for both single and multiple faults.

Besides, the computational complexities of the CEN,
FPN, and FRSNPS are analyzed. Note that the computa-
tional complexities of the four methods are all in the linear
order. Since the proposed method reduces redundant in-
formation by the apoptosis algorithm of condition neurons,
the number of neurons used for establishing srSNPS-based
fault diagnosis models is smaller than that of the CEN, FPN,
and FRSNPS. 1e more the redundant information, the
smaller the computational complexity of the proposed
method. In a fault diagnosis problem, there is typically much
redundant information. So, the upper limit of algorithm
computational complexity for the proposed method is far
less than that of the other three methods. 1erefore, we can
see that, although ourmethod needsmore information (such
as start information and overlimit signals) to improve its
diagnostic accuracy, the time complexity does not increase.

4.1.2. Disturbed Tests. To verify the fault-tolerant ability of
our method, we take the disturbed test under different
uncertain information ratios (UIRs). 1e test results are
shown in Table 2.

Define the UIR as
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Behaviors of protection devices
Psti Paci Raci Li

Action of the PR and CB is normal

Action information of the CB is false

Start and action information of the PR are lost

Start information of the PR is lost

Start information of the PR and CB is lost

Start information of the PR is false

Start and action information of the PR are false

Action information of the PR is lost

Action of the PR and CB is normal

Action information of the CB is lost

Action information of the PR and CB is lost

End

Figure 5: Protection device event tree.

Table 1: Comparisons of diagnosis results between the proposed method and three typical fault diagnosis methods for the 14-bus system.

Cases

Preset faults

CEN
[2]

FPN
[18]

FRSNPS
[36]

1e proposed method
Action

information of
protection
devises

Faulty
equipment

Diagnosis
results Information evaluation

PRs CBs

1 MLR1314
MLR1413

CB1314
CB1413

L1314 L1314 L1314 L1314 L1314 Correct action

2

MLR1314
MLR1413
SLR0613
SLR1213

CB1213
CB0613
CB1413
CB1314

L1314
B13

L1314
B13

L1314
B13

L1314
B13

L1314
B13

Correct action

3
BR12
ML1213
ML1314

CB1312
CB1206

L1213
B12

L1213
B12

L1213
B12

L1213
B12

L1213
B12

Lost information: CB1213

4 BR13
MLR1213

CB1213
CB1312

L1213
B13

L1213
B13

L1213
L1213
B13

L1213
B13

Lost information: BLR1312, CB1306, CB1314

5
MLR1213
MLR1312
SLR1206

CB0612
L1213
B12

L1213 L1213
L1213
B12

L1213
B12

Lost information: CB1312, CB1213, SLR1312

6

BR12
BR13

SLR1312
SLR1306

CB1206
CB1213
CB1312
CB1314
CB1409
CB1306

B12
L1314

B12
B13
L1314

B12
B13
L1314

B12
B13
L1314

B12
L1314

False information: BR13, CB1312, CB1314
Lost information: SLR1409

7
BR12

MLR1314
MLR1413

CB1213
CB1206
CB1306
CB1314
CB1413

B12
B13
L1314

B12
L1314

B12
L1314

B12
L1314

B12
B13
L1314

Lost information: BR13, CB1312
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κ �
Nuncertain

Nfault
× 100%, (8)

where Nfault is the number of fault alarm messages from the
SCADA system and Nuncertain is the number of the uncertain
fault messages which are caused by the refuse operation,
unwanted operation, and information loss of protection
devices (including PRs and CBs).

In Table 2, each diagnostic accuracy for different κ is got by
computing the mean value under 1000 random tests. Note that
the headers “Uncertainty is in the RAI” and “Uncertainty is in
the CAAI” represent that uncertain fault alarmmessages appear
only in the redundant alarm information (RAI) and the core
attribute alarm information (CAAI), respectively.Moreover, the
“Uncertainty is in the RAAI” represents that uncertain fault
alarmmessages appear randomly both in RAI andCAAI, which
is called random attribute alarm information (RAAI). Table 2
shows that when uncertain alarm messages contained in κ are
all RAI, the diagnostic accuracy is the highest compared to the
other two situations.1is is because the RAI is deleted in Step 2
(a) and is not used in the fault diagnosis process. When there is
too much RAI, it will interfere with the judgment of the CAAI
which should be used in the diagnosis process.1erefore, when
the uncertainty is in the RAI, the diagnostic accuracy is less than
100%, and it will decrease with the increasing UIRs of the RAI.

When the uncertain fault messages contained in κ are
CAAI and RAAI, the diagnostic accuracy is also high be-
cause the start information and overlimit signals of pro-
tection devices will guarantee the diagnostic accuracy.
Table 2 shows that the diagnostic accuracy of our proposed
method is very high when κ is less than 5%, and the diagnosis
results are still acceptable when κ is between 5% and 10%.

1e diagnostic accuracy drops quickly when κ is more than
10%. Fortunately, this situation will not happen unless there
are attacks [62, 63]. 1erefore, we can get from Table 2 that
the diagnostic accuracy of the proposed method is high for
the three cases (uncertainty is in the RAI, CAAI, and RAAI,
respectively) when κ is less than 5%, and the RAI has a
smaller impact on fault diagnostic results.

4.1.3. Working Details of the Proposed Fault Diagnosis
Method. 1is section takes the IEEE 14-bus system as an ex-
ample to show how the proposed fault diagnosis method works.

(1) Network Partition. 1e system is first abstracted as a DST
by the depth-first search algorithm, as shown in Figure 6(a).
1en, the weight network segmentation method is employed
to divide the DST, as shown in Figure 6(b). 1e relationship
of subnetworks after division is shown in Figure 7. Note that
the information on each line in Figure 7 will be used by its
linked subnetworks. Finally, we get the network partition
result, as shown in Figure 8.

(2) Establish srSNPS-Based Models for Subnetworks. Sub-
network S6 is considered to show how to establish an
srSNPS-based fault diagnosis model for a subnetwork. 1e
protection configuration of S6 is shown in Figure 9.

First, the ODT for S6 is established by using the pro-
tection configuration information and causality between PRs
and CBs. 1en, we obtain living neurons by executing Step 2
(a) in Section 3, where LC � BR13,BR14,CB1213,CB1312,􏼈

CB1314,CB1206,CB0613,CB0914}, LD � L1213, L1314, L1206,􏼈

L1306, L1409,B12,B13,B14}. Finally, the MRDT is obtained

Table 1: Continued.

Cases

Preset faults

CEN
[2]

FPN
[18]

FRSNPS
[36]

1e proposed method
Action

information of
protection
devises

Faulty
equipment

Diagnosis
results Information evaluation

PRs CBs

8 — CB1312 B12
No
fault

No
fault No fault B12 Lost information: SLR0612, SLR1312, CB0612

9 BR13 — B13
No
fault

No
fault No fault B13 Lost information: CB1206, CB1213

10 — CB0613 B13
No
fault

No
fault No fault No fault Lost information: SLR1213, SLR0613 SLR1413,

CB1213, CB1413

Table 2: Diagnostic accuracy of the proposed method of IEEE 14-bus system for different κ.

κ(%)
Diagnostic accuracy

Uncertainty is in the RAI Uncertainty is in the CAAI Uncertainty is in the RAAI
1 0.9998216 0.9774273 0.9777241
3 0.9773322 0.9534217 0.9536811
5 0.9402314 0.9212946 0.9217332
7 0.9186726 0.8842735 0.8858784
9 0.8730823 0.8426232 0.8457151
10 0.8501379 0.8218934 0.8275321
20 0.7038297 0.6807239 0.6884047
30 0.6129324 0.5002955 0.5187934
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(shown in Table 3) and accordingly the FPRS of S6 is created,
as shown in Table 4.

1e srSNPS-based diagnosis model for S6 is built, as
shown in Figure 10, by connecting synapses based on the
FPRS shown in Table 4 and the synaptic connection rule
given in Definition 5.

(3) Computational Process. In this section, case 3 in Table 1 is
considered as an example to show how an srSNPS-based
model works.

Case 3. L1213 and B12 fault. Operated protective relays:
MLR1213, MLR1213, and SLR0612. Tripped CBs: CB1206. Lost
information: CB1312and CB1213. 1e fault alarm messages
obtained from the SCADA system are shown in Table 5.

According to Table 5, we can get the fault information
matrices of CB1213, CB1312, and CB1206 which are MCB1213

,

MCB1312
, and MCB1206

, respectively. According to their fault
information, the identification matrices NCB1213

, NCB1312
, and

NCB1206
are obtained.

MCB1213
�

1 1 ∗
0 0 ∗
0 0 ∗
0 0 ∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

MCB1206
�

0 0 0
0 0 0
1 1 0
0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

MCB1312
�

1 1 0
0 0 0
0 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

NCB1213
�

0 1
0 0
0 0
0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

NCB1206
�

0 0
0 0
0 1
0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

NCB1312
�

0 1
0 0
0 0
0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Figure 6: (a) 1e DST; (b) the segmentation result.
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Figure 7: Relationship of the subnetworks.
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1e self-updating vector of input neurons is

ε �
1
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

􏼔 􏼕
T

. (10)

1e pulse value vector of proposition neurons before
correction is

θ � [O]
T
1×15. (11)

1e pulse value vector of proposition neurons after
correction is

θ � 1 1 O1×13􏼂 􏼃
T

. (12)

When the SMRA stops, we get that

θ � O1×8 1 0 1 O1×4􏼂 􏼃
T
. (13)

Now, both pulse values of output neurons σ9 and σ11 are
1. 1erefore, the equipment corresponding to them is faulty,
i.e., L1213 and B12 have failed.

1en, we search the PDET in Figure 5 for the fault event
that “B12 is faulty,” and the searching path is PstMLR1213 �

1⟶ PacMLR1213 � 1⟶ RstCB1213 � ∗⟶ 10 , i.e., the
action information of CB1213 is lost. 1e action information
of protection devices of L1213 can be got in a similar way.
Finally, we find that the action information of CB1206,
CB1312, and CB1213 are lost. 1e computational work was
performed in MATLAB running on a computer, and the
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CB0612 CB0613 CB0611

CB1312 CB1306
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CB1314 CB1413
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Figure 8: 1e partition result of the IEEE 14-bus system.

Table 3: Minimum reduction decision table of S6.

BR13 BR14 CB1213 CB1312 CB1314 CB1206 CB0613 CB0914 F
0 0 1 1 0 0 0 0 L1213
0 0 0 0 1 0 0 0 L1314
0 0 0 0 0 1 0 0 L1206
0 0 0 0 0 0 1 0 L1306
0 0 0 0 0 0 0 1 L1409
0 0 1 0 0 1 0 0 B12
0 0 1 0 0 0 0 0 B12
0 0 0 1 0 1 0 0 B12
0 0 0 1 0 0 0 0 B12
1 0 0 1 1 0 0 0 B13
1 0 1 0 1 0 0 0 B13
1 0 0 1 0 0 0 0 B13
1 0 0 1 1 0 1 0 B13
0 0 1 0 0 0 1 0 B13
0 1 0 0 0 0 0 0 B14
0 1 0 0 1 0 0 0 B14
0 1 0 0 0 0 0 1 B14
0 1 0 0 1 0 0 1 B14
0 0 0 0 1 0 0 1 B14
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Figure 10: 1e srSNPS-based fault diagnosis model of S6.
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Figure 9: 1e protection configuration of S6.

Table 4: Fault production rule set of S6.

Number Fault production rules
Rule 1 IF CB1213 �1 AND CB1312 �1 THEN L1213 faults
Rule 2 IF CB1314 �1 THEN L1314 faults
Rule 3 IF CB1206 �1 THEN L1206 faults
Rule 4 IF CB0914 �1 THEN L1409 faults
Rule 5 IF CB1213 �1 OR CB1312 �1 THEN B12 faults
Rule 6 IF CB1213 �1 AND CB0613 �1 THEN B13 faults
Rule 7 IF BR13 �1 THEN B13 faults
Rule 8 IF CB0914 �1 OR BR14 �1 THEN B14 faults
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computing time is 0.001675 s. 1e computer was equipped
with an Intel® Core™ i7-6700 @ 3.40GHz CPU, 32.0G RAM
and 64 bit Windows 7 operating system.

4.2. IEEE 118-Bus System. 1e IEEE 118-bus system is
complex, and it has 118 buses, 180 lines, 360 circuit breakers, 360

line main protective relays, 360 line first backup protective
relays, 360 line second backup protective relays, and 236 bus
protective relays. 1e system is divided into 12 subnetworks, as
shown in Figure 11. For this system, ten typical cases are
considered to do the comparison tests for the proposedmethod,
CEN, FPN, and FRSNPS. 1e results are shown in Table 6.
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Figure 11: 1e partition result of the IEEE 118-bus system.

Table 5: Start and action information of protective devices for case 4.

Startup information Action information
PRs CBs

MLR1213 1 MLR1213 1

CB1213 ∗BLR1213 0 BLR1213 0
SLR1213 0 SLR1213 0
BR12 1 BR12 1
MLR1312 1 MLR1312 1

CB1312 0BLR1312 0 BLR1312 0
SLR1312 0 SLR1312 0
BR13 0 BR13 0
MLR1206 0 MLR1206 0 CB1206 0BLR1206 0 BLR1206 0
SLR1206 0 SLR1206 0 CB0612 1BR12 1 BR12 1
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In Table 6, cases 1–4 have faults with less information loss,
while cases 5–10 have faults with serious information loss or
many information errors. For cases 1 and 2, all the four
methods can diagnose the right faulty equipment. For case 3,
the FPN is failed, while the other three methods are successful.
For case 4, only our method can diagnose the right faults and
all the three other methods have missed diagnosis of faulty
equipment. For case 5, CEN and FPN are failed, while the
FRSNPS and the proposed method are successful. For case 6,
theCEN, FPN, and FRSNPS have missed diagnosis, while the
proposed method can diagnose all the right faults. When the

lost information increases, such as cases 7–9, the missed di-
agnosis of faulty equipment for the CEN, FPN, and FRSNPS
becomes more serious, while the proposed method is still
successful. Furthermore, for case 10, not onlymany fault alarm
messages are lost but also the false information is involved.1e
results show that, for this case, our method is still valid, while
all the other three methods misdiagnose the faults.

1is is because that the redundant fault alarm information
reduction ability of the apoptosis algorithm (Algorithm 1)
and the false information correction ability of self-updating
rules guarantee the high fault tolerance of the proposed

Table 6: Comparisons of diagnosis results between the proposed method and three typical fault diagnosis methods for the 118-bus system.

Cases

Preset faults
CEN
[2]

FPN
[18]

FRSNPS
[36]

1e proposed method
Action information of
protection devises Faulty

equipment
Diagnosis
results Information evaluation

PRs CBs

1 MLR8384,
MLR8483, BR83

CB8483,
CB8385,
CB8382

L8384
B83

L8384
B83

L8384
B83

L8384
B83

L8384
B83

Lost information: CB8384

2 BLR8384,
BLR8483, BR83

CB8483,
CB8385,
CB8382

L8384
B83

L8384
B83

B83
L8384
B83

L8384
B83

Lost information: CB8384

3 BLR8384, BR83

CB8384,
CB8385,
CB8382

L8384
B83

B83 B83 B83
L8384
B83

Lost information: BLR8483 CB8483

4 BR88, BR89

CB8885,
CB8889,
CB8988,
CB8985

B88
B89

B88
B89

B88
B89

B88
B89

B88
B89

Lost information: CB8990, CB8992

5 BR85

CB8583,
CB8589
CB8885,
CB8889

B85
B88

B88 B88
B85
B88

B85
B88

Lost information: BR88, CB8584, CB8588,
CB8564

6
BR88, BR89
BLR8990,
SLR9089

CB8885,
CB8992,
CB9091

B88
B89
L8990

B88
B88
L8990

B88
L8990

B88
B89
L8990

Lost information: CB8889, CB8988,
CB8985, CB8990

7 —
CB8885,

CB8889CB8992,
CB9091

B88
B89
B90

No
fault B88 B88

B88
B89
B90

Lost information: BR88, BR89, BR90,
CB8988, CB8985, CB8990, CB9089

8 BR89, SLR8589

CB8885,
CB8992,
CB8990,
CB8589,
CB8586,
CB9089

B88
B89
B90
L8589

No
fault

No
fault B89

B88
B89
B90
L8589

Lost information: BR88, BR89, MLR8985,
CB8889, CB8985, CB8988, CB8584, CB8583,

CB8588, CB9091

9 —

CB8885,
CB8992,
CB8990,
CB8589,
CB8586,
CB9089

B88
B89
B90
L8589

No
fault

No
fault No fault

B88
B89
B90
L8589

Lost information: BR88, BR89, BR90,
MLR8985, CB8889, CB8985, CB8988,
CB8584, CB8583, CB8588, CB9091

10 BR85, BR89
BLR8985

CB8583,
CB8588,
CB8584,
CB8589,
CB8586,
CB8992,
CB8985,
CB8990

B85
B89
B90

B85
B89
B90
L8589

B85
B89
B90
L8589

B85
B89
B90
L8589

B85
B89
B90

Lost information: BR90, CB8988, CB8984,
CB9091, CB8588 False information:

BLR8589
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method.1erefore, we can see from Table 6 that the proposed
method can also obtain satisfying results for a complex system
with fault information loss and information errors.

Besides, to further demonstrate the effectiveness and
superiority of our proposed method, the IEEE 118-bus
system is employed to do disturbed tests for different κ. 1e
disturbed test method is the same as that of the IEEE 14-bus
system, and test results are shown in Table 7. Table 7 shows
that when uncertain alarm messages appear only in the RAI,
the diagnostic accuracy is the highest. Besides, when the
uncertain fault messages are contained in the CAAI and
RAAI, the diagnostic accuracy is also high. Comparing the
data in Tables 2 and 7, we find that, for the same case, the
diagnostic accuracy of the IEEE 118-bus system is only 0.01
lower than that of the IEEE 14-bus system on average.
1erefore, Table 7 shows that the proposed method is still
feasible and effective with high diagnostic accuracy and fault
tolerance for different kinds of faults for complex systems.

5. Conclusions

To reduce the error caused by historical statistic, expertise,
and redundant fault information, this paper proposes a fault
diagnosis method of power transmission lines based on an
srSNPS, considering the biological apoptosis mechanism.
1e attribute reduction capacity of rough sets and the ap-
optosis mechanism of neurons are integrated in a system in
the framework of membrane computing for the first time.
1e srSNPS can deal with uncertain and incomplete fault
alarm messages without historical statistic and expert ex-
perience, while its apoptosis algorithm for CNs can delete
the redundant fault information before modeling. 1is
simplifies the problem complexity. Besides, the transmission
network partition improves the topological adaptive ability.
Case studies show that the proposed method has high di-
agnostic accuracy and fault tolerance with good diagnosis
result interpretability and fast speed. Owing to the com-
plexity of fault diagnosis for power systems, future work will
focus on different applications, such as power plants, sub-
stations, distribution networks, integrated energy system,
and cyber-physical power system considering network
attacks.

Nomenclature

SCADA: Supervisory control and data acquisition

ES: Expert system
ANN: Artificial neural network
BN: Bayesian network
PN: Petri net
CEN: Cause-effect network
OM: Optimization method
FL: Fuzzy logic
RS: Rough set
SNPS: Spiking neural P system
FRRN: Fuzzy reasoning with real numbers
FRFN: Fuzzy reasoning with fuzzy numbers
srSNPS: Spiking neural P system with self-updating rules
SMRA: Self-updating matrix reasoning algorithm
DSA: Depth-first search algorithm
WNSM: Weight network segmentation method
PDET: Protection device event tree
DN: Decision-making neuron
CN: Condition neuron
PR: Protective relay
CB: Circuit breaker
PN: Proposition neuron
RN: Rule neuron
CIE: Conditional information entropy
MRDT: Minimum reduction decision table
FPRS: Fault production rule set
ODT: Original decision table
FPN: Fuzzy Petri net
FRSNPS: Fuzzy reasoning spiking neural P system
UIA: Uncertain information ratio
RAI: Redundant alarm information
CAAI: Core attribute alarm information
RAAI: Random attribute alarm information.
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[39] L. Pan, G. Păun, G. Zhang, and F. Neri, “Spiking neural P
systems with communication on request,” International
Journal of Neural Systems, vol. 27, no. 8, p. 1750042, 2017.
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