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Chapter 1

Abstract

Systems biology poses several challenges to computational sciences. As a research method, it implies they need to
deal with biological complexity emerging from multi-level, multi-scale, non-linear, quantitative and stochastic sys-
tems having dynamic hierarchies of regulative layers. As a research domain, it is very diverse, and many subdomains
compose it, each one with its representational specificities. The scope of this work is to allow for actual collaboration
in this context, by a computational framework for knowledge management in systems biology. The framework in-
cludes a modeling approach, mostly responding to knowledge inference requirements, and a domain-specific model
description language, complementing themodeling approach by dealingwith knowledge representation and exchange
requirements. While a variety of computational approaches to systems biology exist, they often tackle a limited sub-
set of the existing requirements. This PhD work aims at designing and presenting an integrated framework which
responds to them comprehensively. In particular, this thesis focuses on two parts of the framework: a modeling
approach and a model description language.

The proposed modeling approach targets knowledge inference and representation requirements by combining the
strengths of state-of-the-art solutions. Relying on the Nets-within-nets (NWNs) formalism, it provides the definition
completeness of mathematical models while allowing for direct execution like computational models. Supporting
different information specifications, it allows for model composition processes like hybrid models but preserving for-
malism uniformity. Also, it supports hierarchy and flexible abstractions. These capabilities support the construction
of multi-level andmulti-context models: they represent not only different organization levels from the system but also
different views over them. Thanks to this versatility it is possible to model in an explicit way the role of the spatial and
process contexts respectively over the system at each level. Thanks to the fact these features are made explicit, the
landscape of regulations and their dynamic hierarchy emerges during execution. The proposed approach initially de-
velops to target complex biological processes such as ontogenesis. At first, an application example for developmental
biology, the VPC specification in C. Elegans, is provided. It shows excellent flexibility in representation capabilities.
Two more application examples follow: the first one targets a cultured synthetic biological system and the second
one focuses on the spread of antibiotic resistance within the microbiota. A limitation is that models following the
proposed approach work as knowledge bases only for researchers with a background in computer science.

To make them accessible for non-expert users as well, the Biological System Description Language (BiSDL) has
a high-level syntax recapitulating the domain-specific language of experimental biologists. At the same time, it also
covers the low-level formalism elements. Also, BiSDL supports modularity: a description can make use of other
descriptions, representing interconnected and nested models. The expert user can build up models under the multi-
level, multi-context approach using BiSDL, creating re-usable modules corresponding to biological structures and
processes. They can store these modules in libraries. Non-expert users can access libraries and access the knowledge
stored in existingmodules, aswell as re-use, customize and combine them into high-levelmodels bymerely connecting
them, and tuning their parameters. A custom compiler generates NWNs models from BiSDL descriptions, and a
custom simulator directly simulates them. In this way, system dynamics is accessible as well to the non-expert user.

The proposed computational framework devises amodeling approach that collects contributions from the different
subdomains involved, and a high-level model description language making models accessible for the non-expert users
in the field. The goal is to foster true interdisciplinarity in systems biology by creating a common playground for all the
stakeholders. The resulting genuinely shared perspective should allow to ask new questions, and orient the growing
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1 – Abstract

technological capabilities both on the computational and high-throughput analysis techniques fronts. Ultimately,
the proposed framework wants to contribute, as an enabler, to the cultural shift from multi-disciplinarity to inter-
disciplinarity in systems biology.

The framework at the moment provides a prototypical version of the complete flow from BiSDL descriptions to
the simulation of NWNs models. In the future, the modeling approach should be tested for scalability, considering
both a broader spectrum of intracellular mechanisms and a more significant number of cells in the system. Also, the
simulator should adapt to parallel computations, so to handle more computational complexity. The framework should
devise complexity reduction strategies to improve computational performances. Bioinformatic pipelines should sup-
port partly data-driven models construction processes involving not only parameter identification but also model
architecture. The framework should also include model analysis routines to explore models formally. A smart user
interface should embed the full flow from BiSDL descriptions to simulations allowing easy model exploration and
design. This interface could also rely on a visual version of BiSDL, and simulation outcomes visualization.
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Chapter 2

Introduction

2.1 Short summary
This section aims to introduce systems biology from a philosophical and methodological perspective, highlighting
the different resulting shades of biological complexity. As a research method, systems biology implies they need
to deal with biological complexity emerging from multi-level, multi-scale, non-linear, quantitative and stochastic
systems having dynamic hierarchies of regulative layers. As a research domain, systems biology is very diverse,
and many subdomains compose it, each one with its representational specificities. Different requirements emerge
from each phase of the knowledge management cycle, and the proposed framework intends to respond to all of them
comprehensively.

2.2 Systems biology as a research method
Systems biology is a discipline that considers biological systems as a whole, rather than as compositions of subparts.
Its foundations imply several paradigm shifts in the way researchers approach scientific endeavors in biology. Figure
2.1 represents how science and technology flow into one another in systems biology.
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Figure 2.1. The circular pipeline of systems biology (©Institute for Systems Biology).

Starting from the sequencing of the human genome, in the last decades, technological advancements allowed
for the development of high-throughput, large-scale analysis techniques of biological samples. These improvements
dramatically increased the quantity and diversity of biological data made available. Extracting information from such
data supported the creation of quantitative representations encompassing different system parts and organizational
levels: from molecules to cells, from tissues to organisms, and from individuals to populations. On the computational
side, this reflects in the creation of bioinformatic pipelines to extract information from data streams. Moreover, this
allows the rise of multi-level (and multi-scale) quantitative models, comprising large amounts of the biological com-
plexity from the system of interest, challenging representational formalisms and capabilities. Continually improving
computational techniques and infrastructures allow for specifying such representations as computational models,
and possibly simulate or otherwise analyze them. Computational tools generate new knowledge and insights, as
well as hypotheses to be tested. Models can challenge, drive and guide experimental investigations. The capability
to design experiments in a model-driven fashion optimizes the employment of powerful, high-throughput analytical
techniques, which in turn allow for fine-tuned data generation to feed into bioinformatic pipelines and computational
models.

2.2.1 Biology as a quantitative science
While qualitative data seek to describe a topic, quantitative data aim to quantify a phenomenon by numbers, gener-
ating structured information supporting statistical analysis. At the beginning of its history, the scientific approach
to life sciences starts as qualitative. Biological behavior finds representation in functional, or sporadic annotations.
The quantitative approach prevails in the collection and analysis of such annotations, rather than in the type of data
gathered. Quantitative methods to data collection and interpretation in life sciences start way back in history, as told
in Gregor, 2017. In the first decades of 1900, scientists begin to apply to life sciences existing tools from mathemat-
ical science. This practice later evolved using physics, information science, and engineering. For these disciplines,
biology not only is an application domain gaining a benefit from the existing quantitative representation and analysis
tools hard science provides. Life sciences contribute to shape and innovate these disciplines as well, posing specific
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challenges to them, and fostering the ideation and development of new methods and tools. By that, hard sciences
develop not only their instruments but their theoretical foundations as well.

Computational biology can be seen as the umbrella for interminglings between hard and soft sciences. In this
domain, different and complementary disciplines contribute to building up both tools to advance experimental efforts
and new theoretical foundations and hypotheses to guide subsequent experimental investigations. In this context,
formal and quantitative representations for current understandings of biological systems function as prediction and
analysis tools, as well as knowledge bases.

Another way to intend biology as quantitative is by the large and increasing amount of data high-throughput
analysis techniques make available. Not only collected data are quantitative, but they also come in vast quantities,
allowing for data-driven strategies in computational biology. These combine with hypothesis-driven representations
to make more of the system complexity flow into them.

2.2.2 Holism and reductionism
In Bechtel, 2017, authors describe systems biology as the territory where reductionist and holistic instances inter-
mingle. Here, theoretical understandings of a system and mechanistic explanations of its biological functionings
match forcibly. In systems biology, interestingly, this question exists at multiple system scales and levels. As high-
lighted in Green and Batterman, 2017, a purely reductionist approach would assume that given an ”ideal physics”
and enough information from the smaller scale, it would be automatic to infer overall system behavior, encompassing
all scales involved. However, biological systems are better represented by multiple organization levels rather than by
different dimensional scales. Each level covers different scales and explicitly has specific boundary conditions, and
finds a better representation under a different mathematical formalism. Does this make every level with its scales
have an ”ideal physics” of its own? Holistic approaches consider a system as more than the sum of its parts, providing
an explicit representation of the relations between them. This can provide a frame for the available (and missing)
pieces of the puzzle, organizing separate, level-specific reductionist instances into an overall scheme of relations, and
a higher-level context for the mechanistic explanations they produce.

2.2.3 Biology as an information science
The central dogma of molecular biology is better known as ”one gene, one protein,” meaning the simplistic hypothesis
that information flows from each gene, through RNA, to a single protein, implementing a unique function. In the
words of F. Crick, the central dogma rather ”deals with the detailed residue-by-residue transfer of sequential information.
It states that such information cannot be transferred back from protein to either protein or nucleic acid”Crick, 1970. Either
way, the central dogma centers on information storage supports and usage in biological systems. In the early 90s,
Gilbert anticipates the next paradigm shift in life sciences W. Gilbert, 1991, a story authors tell in Lenoir, 1999.
A new central dogma arises, centered on information flow instead: genetic information shapes molecular structure,
which in turn implements biochemical functions, the basis of biological behavior Brutlag et al., 1994.

Biology relates to information science also in reason of the pivotal role information technology has in extracting
knowledge from biological data. Oftentimes, data availability surpasses knowledge generation paces. This can be
seen as an opportunity for computational approaches to improve the knowledge management cycle under many
aspects. Under this perspective it is possible to distinguish computational biology and bioinformatics according to
the use theymake of existing capabilities from computational sciences. According toW. Gilbert, 1991, computational
biology approaches the understanding of biological complexity on the theoretical front, with formal and quantitative
representational tools. This includes creating ad hoc methods for biological problems through bioinformatics, which
in the other hand functions as the experimental and instrumental side of computational biology.

2.2.4 Biology as an engineering science
As explored in Benso, Di Carlo, Politano, Savino, and Bucci, 2014, the encounter of the top-down stance of en-
gineers and the bottom-up approach of biologists resembles a cultural clash more than a paradigm shift. When
considered under an instrumental perspective, engineering practices live in their natural environment. A top-down
approach benefits the design and optimization of technological means for extracting data under a fixed experimen-
tal design, including analysis, experimental pipelines, and machinery. The same holds for systematic approaches
to experiments: engineering processes can optimize the application of methods and to scale it up, for example to a
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more significant number of samples. Standardization is another way to intend a systematic approach to life sciences.
Like in the case of chemistry in the previous century, biological knowledge is undergoing a progressive, yet messy,
unification and disambiguation of terms. Biology, in this case, is a challenging application domain for existing good
practices and paradigms borrowed from other, pre-existing fields. In these cases, the top-down approach changes
instrumental aspects of research. On the contrary, when engineering principles touch the overall scientific approach
to biological subjects, the paradigm shift is structural. Historically, experimentalists lead life sciences, using bottom-
up explorations. Furthermore, there is a large part of biological complexity which lacks explanations and scientific
understanding. Design processes, on the other hand, rely on the implementation of function through the disposal of
structure, which relies on a clear and detailed map between structure and function. In biology, the notion a structure
recurrently implements a function is far from equaling a prediction tool, being a function defined in regards of the
interactions a biological entity engages into at every moment as well. Top-down design processes involving biological
systems must then, at the very least, accept a significant degree of uncertainty when taking a project to life.

Biotechnologies are born way earlier from the start of the genomic revolution: picking and selecting breeds on an
empirical basis is, indeed, a form of genetic engineering. With a map of the genome at hand, it is possible to pursue
more targeted and efficient approaches. In this field, the top-down approach actualizes by modifications of biological
systems that make them useful for human purposes, and the application fields range from biomedical research to
industrial production processes. Such punctual changes target the genome of an organism, determining different
downstream effects. Innovation and development of genetic engineering techniques contribute to biotechnological
sciences.

Amore dramatic and disrupting change of perspective is that underlying synthetic biology. Rather than artificially
adapting existing biological systems to a precise scope, this discipline aims to map all biological structures to their
functions and to design their combinations so to implement de novo behavior or brand new systems reliably. In other
words, synthetic biology devises the realization of living organisms following an artificial design. In this case, top-
down approaches face the dramatic lack of understanding of biological systems, which impedes the definition and
design of most of their parts. A (somehow ironic) demonstration of the limitations of these strategies is the fact Craig
Venter creates, in 2010, an artificial cell from scratch Wade, 2010, defining a sort of minimal genetic inventory for
life to subsist. This endeavor did not unveil the functional correlates of most of the genetic material employed: the
artificial cell is alive, but it is not possible to explain how, exactly like in the case of non-artificial life forms.

In practice, synthetic biology often concerns the integration of genetic circuits into the genome of existing or-
ganisms, as a refined application of genetic engineering, introducing modifications that are not punctual, but rather
complex. While the implementation of genetic circuits is feasible and it works on a biochemical basis in vitro, often
synthetic biologists face the unpredictability of their biological behavior in vivo. This trend is an example to show how
the lack of understanding of biological systems hits the intention to design their behavior. Undiscovered processes,
unmapped quantitative aspects of even known mechanisms, or other unknown causes interfere with the assump-
tions behind the implementation. Still, if not to the scope of design and implementation, for sure synthetic biology
can respond to the aim of bottom-up discovery and produce valuable data and information. It provides different ex-
perimental set-ups, helping to advance biological knowledge in general. Also, in general, synthetic designs aim at
comprising more of the system complexity when extending the constructive approach of engineering to whole or-
ganisms Purnick and Weiss, 2009. Computational biology can mediate the inclusion of biological complexity into a
design process, providing tools for modeling and then taking into account the context an artificial construct connects
to within a biological system Bardini, Politano, et al., 2018.

2.3 Interpreting biological complexity
The previous section provided a general overview of how systems biology as a research method challenges the bor-
ders of life sciences as a research domain. This section explores how the underlying paradigm shifts reflect into
methodological requirements when approaching the different shades and recurrent features of biological complexity.

2.3.1 Why complex?
Why are biological systems complex? Putting aside the age-old matter of how aliveness is more or less operationally
defined, let’s ask some other questions: why does evolution tend to develop increasingly complex systems? How does
hierarchical complexity emerge along evolutionary paths? In Wolf et al., 2018, authors provide a possible theoretical
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explanation, stating that the emergence of complexity could base on self-organized criticalities, a concept taken from
spin-glass theories. Authors claim frustrated interactions between biological actors at different system levels make
complexity emerge through evolution. The reader can refer toWolf et al., 2018 for further exploration of this concept.

This section highlights different shades of biological complexity, introducing in this way the relevant representa-
tional requirements.

2.3.2 Defining biological complexity
Living beings are complex systems. This means they are systems in the firs place, that is, it is possible to describe
them as sets of entities forming a whole by means of their relationships. Such relationships can be, for example,
dependencies or interactions of different sorts. Systems have boundaries which define where they end, and where
the environment they live into begins.

Each part of a biological systemhas one ormore properties (structural features) and behaviors (dynamic evolutions
related to properties). The system as a whole has properties and behaviors different than the plain combination of
those of its parts. This emerges in the interaction of the system with its environment.

In a complex biological system, it is not possible to directly understand which behaviors will take place given a
set of properties. This can be due to an extreme sensitivity to initial conditions, emergent properties and very large
numbers of parameters.

Complex biological systems often exhibit nonlinear behaviors, that is, given the same stimulus, they respond in
different ways depending on the context or the previous behaviors.

Emergence can give rise to self-organization processes and spontaneous order. In these cases, a complex system
in biology exhibit an emergent organization and de-centralized self-coordination.

Biological systems are adaptive as well, that is, they can retain information from past behaviors and interactions
with the environment, and use that information to adapt their present behavior.

All of these aspects considered together contribute to define biological complexity. Systems biology as a research
method aims at targeting biological complexity under an holistic perspective, that is, focusing more on the whole
than on the separate parts. This reflects in the fact models not only represent biological substructures, but also the
relationships between them. Also, systems biology puts together different types of biological entities, traditionally
investigated in separate subdomains. This highlights multiple relevant organizational levels in biological systems,
encompassing wide dimensional ranges in space and time.

There are several objectives in tackling biological complexity with models: gaining a more in-depth insight over
systems functioning, representing biological entities formally and quantitatively, generating and testing hypotheses
to optimize and guide experimental strategies are some of them. To make these goals achievable, it is necessary to
carefully consider the modeling requirements that biological complexity with its specificities poses to systems biology
models.

The first step is then to define which recurrent features of biological systems, and the perspectives under which
they can be considered so to capture different shades of complexity.

2.3.3 Information dynamics
It is possible to interpret biological and biochemical interactions as a physical implementation of an information pro-
cessing complex scheme. In Landauer, 1999, Landauer provides a historical perspective over the concept information
is ”inevitably physical”; that is, in the material world information exists only by its physical supports. In Mehta et al.,
2016, authors extend this concept, developed in the context of computational sciences, to the field of synthetic biology.
The work focuses on the role of free energy usage for preserving modularity in non-equilibrium systems used as mod-
ules for synthetic biochemical circuits. Authors suggest free energy consumption in synthetic biology also happens in
reason of its capability of erasing memory. They interpret biochemical modifications enacting circuit functioning as
memory writing and erasing operations over biomolecules, which in this context work as information supports. The
authors provide a range of biochemical implementations of memory modification operations in synthetic biology,
ranging from post-translational modifications to chromatin adjustment and recombinase activity. These examples
clarify how information science and physics can approach biological complexity under the information dynamics
perspective.
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2.3.4 Structure and function
In biology structure not only encodes and implements information and function, but it is possible to consider it as
being the function itself. Finding structural aspects of a function is then essential. For example, functional motives in a
protein act in reason of the way particular amino acids occupy a volume. The electrochemical characteristics of those
amino acids contribute to defining the specific functional identity of the protein. Also, the same relation between
structure and function can be explored at the protein level as well, being their biochemical profile (indicating their
role as chemicals) a result of their molecular structure. Evolutionary pressure seems to act over function, causing
the structure to adapt. Exploring the phylogenetic tree, it is noticeable that different structural arrangements can
implement the same function: convergent evolution takes to the contemporary existence of different architectural
solutions to the same functional requirements across a diversity of species.

In biology, there is a tendency to define a function in reason of interaction. In this context, interaction refers to
the unilateral or mutual modification of biological structures possibly leading to structural/functional state changes.
The functional annotation of biological entities stems from their attested or predicted interactions; in other words,
they refer to their relative role(s) in different biological processes, and the possible interactors involved.

Functional annotation then describes one or different structures respect to their capabilities - attested or inferred
- to interact with other structures, relating to what the biological structure can do in the case certain conditions are
satisfied. In general, functional definition, if deprived of an interaction denotation, goes back to the mere structure.
Can an isolated DNA strand, with no transcriptional machinery attached and ready to produce transcripts out of its open
reading frames, be considered to contain genes? In a way, functions link different structures providing them with a
shared context, that is, specific biological processes they can join. Interactors themselves supply the setting for the
actualization of a function. The DNA strand, combined (at least) with the transcriptional machinery, makes open
reading frames operationally definable as groups of genes. In another operational context, maybe the DNA would
have been defined only as an acid, complex biomolecule.

Context is then pivotal for drawing which ones among all possible functional identities will come into interaction
for a specific biological structure. Moreover, it is possible to define a context as a set of interactors in turn.

2.3.5 Space and time
The context points at the coexistence of the biological structures involved. Coexistence implies proximity in both
space and time. If the DNA strand and the transcriptional machinery are close enough to attach, but one ceases to
exist before the other appears, they will not interact. If they live at the same time, but in different locations, that is,
with no possibility to physically interact, the interaction will not take place.

Then, spatiotemporal proximity transforms some of the interaction capabilities (and the respective functional
annotations) of each biological structure to an actual interaction taking place in space and time.

It is possible to extend the same kind of reasoning considering a group of interactors as a single structure, to which
all of the above applies. For example, the transcriptional machinery was a single interactor in the cases above, but it is
possible to describe several substructures composing it. The same spatiotemporal requirements and structure/function
definitions hold true for these substructures as well.

Proximity can also concern relationships, that is, it can indicate a relatedness, neighborhood relation or closeness
of two elements in a generic model, for example a social network or a phylogenetic tree. In the context of biological
complexity as intended in this work, spatiotemporal proximity is what builds up the model of relational schemes for
the system subparts. This introduces the concept of interaction networks presented in the following paragraph.

2.3.6 Interaction networks
Representations of biological systems often focus on functional relations between elements. Networks of interactions
conveniently express this. Most times, such kind of depictions abstract away from the physical system, focusing
more on functional relationships than they do on structures. Since structural aspects are the ones implementing
functionalities, it is necessary to take into account them in an explicit way as well. So this implies considering their
existence in space dimensions, and the spatial relations intercurring between actors and the environment. Spatiality
is both a feature and a mediator to regulation mechanisms. In a way, it is the substrate linking hierarchical levels
and the space continuum in representations of biological systems. A good model for systems biology needs then to
explicitly model spatiality.
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2.3.7 Compartments and semi-permeability
A recurrent feature of living organisms is compartmentalization, that is, the sub-division of the system in, possi-
bly concentric, subvolumes by semi-permeable membranes, providing functional segregation. In each compartment,
specific processes take place. Segregating compartment-specific biological elements allows for advancing different,
potentially incompatible processes in parallel, and isolating damaging biochemical reactions from the rest of the sys-
tem. Each compartment specializes so that all actors relevant for a particular process are in spatial proximity and do
not dilute in the overall cellular environment.

The membranes delimiting compartments are semi-permeable; that is, they selectively regulate which molecules
can or can not pass through them. Exchanges of substances and signals between compartments are then strictly
regulated. Selective communication by regulated permeability shows how spatiality can provide a constitutional
regulation layer to the system. A good model should then, besides explicitly expressing spatiality, naturally represent
both the segregation in subspaces and the selective communication mechanisms happening across the boundaries
between compartments.

2.3.8 Dynamic hierarchies
The usage of genomic information is regulated at different system levels and by different mechanisms. Regulation
mechanisms have dynamic hierarchical relations between them, that change according to the process context. The
broader definition of epigenetic regulation is useful for delimiting this regulative scheme, devising every mechanism
acting between a genotype and the corresponding possible phenotypes Hallgrimsson and Hall, 2011. The ensemble
of possible regulative states for biological entities draws a complex landscape. In representing this structure, it is
necessary to tune the level of abstraction in its representation so to capture its most relevant touchpoints to process
evolution.

2.3.9 Complex biological processes
Systems biology aims to bring in more of the complexity from biological systems. The definitions provided so far are
valid for a partial, even though systemic, screenshot of a complex biological system.

It is desirable to comprise system complexity also in reason of structural evolution along time. At this aim, it is
necessary to go beyond the screenshot and watch the entire movie instead. That is, it is required to represent system
organizations not only in space, and under a particular regulation set-up, but their time organization too. Comprising
time organization implies to describe how the regulation set-up of the system evolves according to the process context,
drawing a landscape of regulative states changing one into the other in sequential, timed ways.

Ontogenetic processes provide an excellent example of biological processes for which this approach is necessary.
Ontogenesis in biology has different acceptations, and it also refers to the phenomena by which a complex organism
with structural and phenotypic complexity develops out of a single cell, i. e. out of a uniform package of information
Oyama, 2000. All developmental processes are ontogenetic and occur without the intervention of an external regula-
tor. Instead, local interactions between biological actors make morphogenetic patterns emerge. Various subsequent
phases compose a developmental process, each one corresponding to a different regulatory set-up.

The regulation of genomic information usage is finely tuned and context-dependent. Plus, it depends on both
spatiality and timing, as in process context. Almost all cells in an organism share the same genomic information.
Different phenotypes and supracellular architectures emerge.

A goodmodel for ontogenetic processes needs to express subsequent phases, the corresponding regulatory set-ups
and the passages from a state to the next. All of these elements contribute to drawing paths across a landscape of reg-
ulatory dynamical conditions. Such paths may also devise branches and rules for choosing directions. A good model
needs to represent the landscape and the paths composing it, together with the regulated passages and crossroads.

Complex biological processes such as ontogenesis pose additional requirements to models for systems biology.
These requirements need explicit representation, posing the challenge of specifying model parts that do not directly
relate to physical structures in the system. These layers are dedicated to express the regulative landscape of the
system, and of each subpart of it, explicitly.
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2.4 Representing biological complexity
In systems biology, all the facets of biological complexity contribute to posing requirements to the modeling process.
In addition to that, there are recurrent features in biological systems, which contribute to define the requirements
posed to modeling approachs. This section explores such conditions to define the features of a good model for systems
biology.

This section also aims to clarify some relevant axes over which to stretch the concept of biological complexity.
Also, it seeks to identify an optimal positioning for computational models in systems biology under the presented
perspective.

Multi-level and multi-scale

In biology, each interaction context can contain and belong to other interaction contexts. A context can correspond
to a specific set of interacting biological structures, being part of and being composed by other structures. At the
same time, it can define a bioprocess, separable into smaller processes, and composing larger ones.

Models of biological systems require efficient ways to represent context-dependent and flexible hierarchies, im-
plying themodels can expressmulti-level systems. Each level of organizationmay correspond to different dimensional
ranges of interest, implying a model should support multi-scale information in both space and time dimensions.

Comprising multiple system levels brings on a systemic and holistic view considering all interconnections be-
tween subparts. For example, in a living organism, some levels of interest can be that of molecules and molecular
networks, the level of cells and cellular communications, and the ones of tissues and organs respectively. An excellent
computational model has then a multi-level, hierarchical architecture, and represents separately each level of interest
from the system. Still, biological actors from each level coexist on a spatiotemporal continuum in the physical system,
and this draws necessary interconnections between levels, which a good model should then represent in a clear and
consistent way.

Multi-level and multi-scale are not synonyms: the first refers to the multiple organization levels from the system,
the second to the fact biological systems and each level from them can span over extended time and space scales. The
dimensional range centering over a system level does not univocally define that level, nor a level sets the boundaries
for a specific scale range. Models need to express a vast range of parameter values, preserving dimensional consistency
both intra-level and cross-level in the model.

Implicit and explicit

Given this, a modeler may proceed with different degrees of abstraction from the physical system, for example in-
cluding in the model functional information alone, that is, making structural aspects implicit. This strategy can be
useful or necessary in some cases. For example, functional information may be the only one available to build the
model. It fails to capture many shades of complexity. On the other hand, the more explicitly the model treats the
spatiotemporal proximity underlying interaction, the less abstraction it accepts from the physical nature of the sys-
tem. Explicit modeling frees models from assumptions about the link between structure and function. Interaction
between subparts happens in reason of their proximity, and may or may not occur, during simulation, given it is
possible. Conditional or stochastic rules govern the actualization of interactions out of interaction capabilities. This
higher-detail description corresponds to a less biased way to proceed, and it enables to express the stochastic compo-
nent to biological behavior. In general, a lower degree of abstraction makes representations less coarse-grained, and
it allows for showing in a clear way the interdependence of regulations and contexts. Models which follow, when
possible, this direction are more suitable tools for the scopes of systems biology, both in terms of predictive power
and of knowledge representation.

Qualitative and quantitative

Some biological phenomena are sometimes better described by qualitative information, or data availability constraints
the representation to qualitative or semi-quantitative descriptions. For example, diagrammatic models, typical of
many subfields of biology, represent functional information, most times covering small subparts of the system, or
single bioprocesses. Such information consists, oftentimes, of categorical labels, on-off state descriptions, and absence-
presence annotations.
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Systems biology aims to comprise quantative aspects of biological systems as an essential aspect of system com-
plexity. Gaining a more quantitative insight over the system involves the quantification of kinetic parameters of bio-
processes, as well as assessing the concentrations of biomolecules, the transcriptional rates for genes, and performing
the mapping of different omic spaces in an high-throughput way. Quantitative information can derive from large
system portions, extending the scope of models both horizontally, that is, on single levels, and vertically, including
multiple system levels.

Discrete and continuous

It is possible to represent biological phenomena as composed by discrete elements interacting in separated steps, as
well as by physical entities living over a continuum. Both approaches perform substantial simplifications over the
system. Discrete representations divide continuous quantities into distinct parts, and subsequently easily represent
encapsulation and separateness of individual biological actors. Continuous models represent the space-time contin-
uum, under the assumption that every variable represents a compartment. This link sets the maximum resolution for
that compartment, and it implies the variable sums up a supposedly uniform spatial distribution (or concentration)
for the modeled quantity.

Hypothesis-driven and data-driven

Hypothesis-drivenmodeling tends to embed intomodel architectures the functional relations inferred between system
parts. This approach relates to more abstract, functional representations of a system. Diagrammatic models belong
to this category, but hypothesis-driven models can be quantitative as well. Data-driven modeling tends to build up
model architectures and to identify parameters starting from data. As opposed to the previous approach, this aims to
be completely unbiased. A combination of the twomethods can provide a compromise between the necessity to embed
existing knowledge in models, and the need to make them information-rich and unbiased. For example, a model can
inherit its architecture from functional relations, and the value of the quantitative parameters characterizing them
from data.

Deterministic and stochastic

While biological processes intrinsically exhibit stochasticity, most models in systems biology function in deterministic
ways. Models should instead express non-determinism and stochasticity. Models can do this embedding random
variables into their architecture, and operating their simulated processes in non-deterministic ways when executed.

Agents and networks

Most times interaction schemes are the tools for representing biological complexity. In this perspective, nodes model
elements, and arcs relations between them. The underlying formalisms, generally graphs, are naturally prone to
formal analyses for extracting information, and this is desirable in computational biology. Networks usually perform
substantial abstractions from the mechanistic explanations of functionality, and this is a limitation.

On the other hand, agent-based models treat biological elements as separate, reactive and information-rich enti-
ties, which interact with the environment and other actors. The representation strategy, in this case, centers on states
and their evolution, and the interaction scheme may be flexible. The behavioral model within agents can be either
based on linguistic rules or onmathematical models such as ODEs systems. This method supports less abstract models
that can represent mechanisms of interaction, besides the existence of interaction alone. This option is more compu-
tationally expensive, but it makes a more significant part of system complexity emerge in representations, covering
the dynamic evolution of the system as well.

Robustness and parameter sloppiness

As pointed out in Gutenkunst et al., 2007b, a peculiarity of systems biology models is that they are incredibly robust
to parameter perturbation. Authors make different hypotheses, among which one is explaining parameter sloppiness
with biological robustness. That is, evolution made biological systems resilient to environmental or stochastic per-
turbations by lowering their sensitivity to parameters variations. According to this view, models of biology may have
sloppy parameters because they are correctly recapitulating biological robustness.
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Mathematical and computational

In Bartocci and Lio, 2016, authors analyze the dichotomies between mathematical and computational models.
Traditionally, formal approaches to biology base on mathematical formalisms. For example, different types of

laws and systems of equations provide formal and quantitative models of biological phenomena considered in the
continuum. They can cover a limited amount of system complexity before solving them becomes computationally
too complex. They most times stick to single system levels or individual bioprocesses. Also, they tend to aim to
universal laws holding virtually for all instances of a phenomenon. However, biological knowledge is diverse, and it
organizes in a way exceptions outnumber norms, and information has both quantitative and qualitative forms. Other
mathematical tools, such as graphs, are more accessible to automatic analysis and provide formal representations of
interaction schemes. They perform substantial simplifications and abstractions over the system though, including in
its description only functional relationships.

Computational models, in the presented perspective, better respond to the representational requirements of sys-
tems biology. On this side, building up a biological model is similar to developing a computer program. Domain-
specific programming languages, with either textual or visual syntax, help modelers describe biological processes
in terms of execution sequences and control flows. The semantics of these languages points to the way a computer
should execute such sequences. These approaches lack the cohesive formal framework mathematical models belong
to, but canmore easily express the peculiarities of biological systems, which often live out of a systematic set of norms.
Also, they can recapitulate the mechanistic explanation of biological functioning. Discrete, event-driven models, in
particular, have smaller computational costs when executed.

A possibility to enhance model performance is to reduce complexity. On the other hand, when to scale up model
complexity is desirable, computational sciences can function as enablers putting at the disposal of model executions
highly parallel computing infrastructures or computational power in general. Advanced computation technologies
may soften the constraints posed to models in reason of their computational complexity.

2.5 Systems biology as a research domain
The source of complexity in computational systems biology relates not only to the system. In fact, besides system
complexity, models need to take into account all the complications deriving from the diversity characterizing systems
biology as a research domain. Many scientific fields contribute to produce and organize knowledge flowing in systems
biology. Diversity in systems biology affects both the formalisms and the modeling process, and, on another level,
interactions between the professionals involved.

On the representational side, diversity implies information comes under different formalisms, due to historical
and cultural stratifications specific to each field. On the first hand, this refers to the fact a variety of research fields
with disjoint histories now flow into a joint scientific effort. For example, biochemistry and cellular biology had
little overlaps, and so did physiology and molecular biology, until scientific advancements joined the ends of their
respective domains. Until a systemic view started to take them to the same purpose, such overlaps did not pose
any representational issue. On a second hand, systems biology devises the coexistence of so-called soft and hard
sciences: experimental approaches are supported by technological advancements in analytical techniques, and feed
computational tools and models with data so to generate knowledge. The contaminations between these traditionally
separated worlds raise complex communication issues. Also, existing modeling approaches tend to target single spe-
cific subfields of biology, creating a variety of established approaches to particular classes of biological problems. For
example, physicists traditionally model physiology, and consequently, models of physiological systems are expressed
frequently with mathematical formalisms.

On the side of the people involved in the scientific community orbiting around systems biology, this also reflects
in a great diversity of professional profiles, each one bringing in specialistic skills, specific language, and different
backgrounds while lacking others. For the scopes of this work, the more relevant cultural interface is that between
life scientists with an experimental background and computational scientists. Working together, these two profiles
can implement all of the desirable norms in models for systems biology. Communication is key: the different educa-
tional backgrounds reflect not only in the respective expertise. It also affects the way each professional thinks and
expresses knowledge. For example, the archetypical experimentalist has a bottom-up, heuristic, uncertainty-aware
and serendipity-prone approach to research, while the cliché engineer has a top-down attitude, assuming all variables
of the identified system are known and under control.
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Before biological complexity, and the fact the current understanding of it is small, this intercultural issue as-
sumes dramatic tones. A cultural transformation is necessary for making the stakeholders effectively communicate
to create opportunities out of this impasse. Towards the passage from multi-disciplinarity to cross-disciplinarity, it is
preferable that in the future such diversity generates value for the overall advancement of the understanding of bio-
logical complexity. As the first step in this direction, this work focuses on representational tools and communication
means intended as enablers for this change. So it devises as a first step the creation of a lingua franca for knowledge
representation, exchange, and inference in systems biology.

Considering that, computational approaches to systems biology acquire new facets besides their capability to
accurately predict and simulate system behavior. Not all professionals in systems biology have a background in
computational sciences. To serve the whole scientific community, representational tools accessible to the diverse
and complex user base of systems biologists need to take shape. Such tools should preserve their formal nature
and predictive power while becoming approachable and open to non-expert users. Computational models need to
function as knowledge representations that is easy to exchange with no information loss. All of these aspects affect
possible approaches at many levels. For example, the modeling processes need to take into account the diversity of
information and data they aim to represent. That means they need to correctly read and merge different formalisms,
and make sure the resulting models are consistent. In other words, they need to support hybridity. This piles up on
the requirements posed by biological complexity per se, making the class of multi-level and hybrid models particularly
relevant for the scopes of systems biology. For what concerns the computational tools and approaches in general, the
challenge is to provide quantitative and formal modeling approaches with accessibility and easiness of use.

2.6 The knowledge management moments in systems biology
This section recapitulates the requirements posed to computational models by systems biology, organizing them by
the different phases of the knowledge management cycle.

Knowledge inference A computational model scope can be predicting system behavior in time, or under new
starting conditions or contexts. At this aim, the more system complexity a model comprises, the more accurate
predictions can get. Predictions may cover not only punctual outcomes but also system evolution dynamics, making
the possibility to simulate or execute them appear as a desirable feature. Models should include more of the available
knowledge on complex biological phenomena also by covering more extensive parts of the system, enlarging model
scopes both as in incorporating more elements from the system, and more organizational levels, and the spatial
connotation underlying it. A desirable feature is the capability to cover the temporal organization of dynamic changes
in hierarchic regulation levels of the system.

Wanting to infer new knowledge from available information, a model should be capable of performing accurate
predictions, comprising more of the system complexity, which comes in many forms. These forms require the model
supports:

• quantitative information;

• spatiality

• multiple levels;

• multiple scales;

• dynamic hierarchy;

• stochasticity;

• scalability;

• simulation or execution (temporality);

• formal analysis;

• flexibility.
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Knowledge representation Systems biology is complex as a research field too, and different stakeholders can
benefit from computational models. Some of them are experts in computer sciences, other pure experimentalists. In
this sense, systems biology comprises a diverse population of stakeholders, which manifests over many axes. For
example, users of computational tools and models may be expert computer scientists as well as pure experimentalists.
Among computer scientists there may be theorists as well as pure developers, and among experimentalists the cellular
biologist may work together with the physiologist and the clinical researcher. Different types of intelligence are
involved in managing knowledge in systems biology: a model should be easily understandable by a human, but by
a computer as well. All of these profiles have a different understanding of biological complexity, and need suitable
representational tools and styles. At the same time, there is the need for a uniform representational standard. At
the aim of responding to the diversity of actors involved in systems biology, while preserving a degree of uniformity,
models need to allow:

• diversity-aware accessibility;

• flexible abstractions;

• usability and re-usability;

• human-readability;

• machine-readiness.

Knowledge exchange The first step for systems biology to benefit from the contributions of a diverse base of
users is the construction of a lingua franca making different professionals able to communicate. Models can play this
role functioning as knowledge bases, but only if exchanging knowledge through them is possible among all actors
involved. Modeling approaches should then support:

• standardization;

• modularity;

• compactness and cohesiveness;

• interoperability;

• platform compatibility;

These requirements considered together guide the high-level objectives of this work, which the following section
briefly introduces.

2.6.1 High-level objectives: a powerful and accessible modelling framework
for complex biological processes

The work presented in this thesis aims to respond in a consistent and scalable way to the requirements posed by a
systems biology approach to biological complexity. A comprehensive computational framework tackling the open
challenges requirements draw includes:

• a modeling strategy based on a formalismwhich covers requirements from both system complexity and domain
diversity;

• methods for automatically combining hypothesis- and data-driven approaches;

• languages, tools, and interfaces making models accessible;

The following section provides a map of the current modeling approaches and computational tools capable of
satisfying one or several of the requirements posed by systems biology, so to highlight their strengths and limitations,
and to furtherly define open challenges in the field.
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Chapter 3

Background

This Chapter aims at mapping the scenario of existing modeling approaches to systems biology, in order to contextu-
alize the presented solutions.

3.1 Mathematical and computational models
First of all, it is necessary to clarify the difference between mathematical and computational models and provide the
respective definitions.

In Fisher and Henzinger, 2007, the author distinguishes between two types of models, mainly by the use they
make of computational capabilities:

• models using ”computer power to analyze mathematical relationships between quantities”;

• models ”resembling a computer program,” and using computer power to execute the corresponding instruc-
tions.

At the aim of presenting more detailed definitions for these two classes, it is necessary to provide a more formal
description of the underlying paradigms, which revolves around the difference between operational and denotational
semantics.

3.1.1 Denotational semantics
A mathematical model’s primary semantics is denotational. According to Tennent, 1976, ”in mathematical logic, a
semantic interpretation for a formal language is specified by defining mappings of the syntactic constructs of the
object language into their abstract meaning in an appropriate mathematical model.” For example, this could be the
case of an equation-based model, drawing formal relations between biological quantities and variables, and between
their change rates and parameters in a system of equations. This type of representation does not directly imply an
algorithmic strategy to solve the system, and constitutes a model per se.

The transfer function, that is, the formal representation of the quantitative relations between system elements, is
the core concept underlying mathematical models. It may be specified, for example, by an equation describing the
relation between the input and the output of a system. Composing transfer functions allows describing networks of
interdependent quantities, defining a class of more complex mathematical models.

For example, in Carbonell-Ballestero et al., 2014 authors cite a re-definition of the transfer function in syn-
thetic biology as the ”response of a regulable genetic device in the presence of a signal that acts as the control variable
of the system.” In this work, to characterize a set of Lux homoserine-lactone-inducible genetic devices, they exper-
imentally determine the transfer function of underlying enzymatic reactions. Combining several building blocks of
this kind, a network model for a complex metabolic system, like that described in Semenov et al., 2015, can take shape.
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3.1.2 Operational semantics
On the other hand, the primary semantics of a computational model is operational Plotkin, 1981. That is, a model
works like a computer program, whose properties undergo verification by proving the logical correctness of its exe-
cution steps and procedures.

The fundamental entity of computational models is the state machine. Its function is to link different states, in-
tended as qualitative configurations. A simple implementation of a state machine may devise a computer program
defining how a state changes into another given specific external conditions and anterior events. Complex computa-
tional models take shape from the combination of different state machines, and it is possible to define them as reactive
systems Harel and Pnueli, 1985.

A reactive system is a tool to predict the emergent behavior of a biological system by the separate functioning
and local interactions of state machines. Separate components represent biological entities, such as cells, as capable
of undergoing state transformations after discrete events involving themselves and their neighbors. There is a shift
in the perspective of a computational model over the system compared to a mathematical one: the latter considers
variables evolution in terms of rates of change, while the first consider biological processes in terms of cause and
effect Fisher and Henzinger, 2007.

Since, at their core, computational models consist of sequences of operations, their computer implementation nat-
urally corresponds to the model itself. This does not hold for mathematical models, which at the contrary exist before
they translate into sequences of operations. Following this difference, algorithms solving mathematical models come
with a measure of their performance in terms of precision compared to the mathematical expression. Computational
models need to maximize precision too, but under a different acceptation: they need to provide proper representations
of system parts through abstractions.

Considering this, it is possible to build up a computational model of a biological system which is not a mathe-
matical model, and viceversa. For example, a computer program treating cells as objects passing messages between
themselves can be directly executed, and not necessarily uses mathematical formalisms to represent the system. An
ODEs system represents the biological phenomenon per se, and not necessarily needs to be solved computationally.
More often, computational models rely at least in part on mathematical formalisms to provide quantitative and formal
representations, and mathematical models leverage computer power for simulation and solving.

3.1.3 Model analysis techniques
The differences outlined so far between mathematical and computational models imply different strategies in using
them for characterizing the modeled system and its dynamics.

Solving and simulatingmathematical models Algorithms can be set up to simulate or solve mathematical
models. The model describes relations between quantities, and their change rates, and the algorithm simulates the
corresponding dynamics. However, the relation between a model and an algorithm solving or simulating it is not
exclusive. Many different algorithmic approaches may target the samemodel for solutions and simulations, exhibiting
different performances in terms of precision.

If the constraints for individual transfer functions are relatively simple, for instance, in the case of linear differ-
ential equations, then mathematical models are amenable to analytical solutions. In other cases, analysis alone is not
enough, and it is necessary to simulate models computationally to study and plot variables evolution over time. This
necessity emerges for nonlinear or stochastic differential equations and models with high dimensionality.

Executing computational models Computational models, as in Fisher and Henzinger, 2007, can be defined
as computer programs prescribing the step-by-step behavior of abstract machines and their interactions. As opposed
to mathematical models, then, they are inherently executable. When it comes to biological applications, execution
involves a large number of states, as well as non-linear and non-deterministic behavior. For these reasons, compu-
tational models for biology are usually not amenable to mathematical analysis, but they instead undergo analysis
through execution. For example, some methods first developed within computer science, such as temporal logic,
model checking, and runtime verification serve to this scope, and they can apply to systems biology models. These
methods can help to ponder models and analyzing them in the first place. Also, they are useful for validating experi-
mental results from the laboratory, and for checking behaviors of interest in an automatic way, as a form of pattern
identification. Finally, they can automatize the input or parameter identification process for the system of interest.
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All of these practices can follow the scope to determine, in the following phase, a desired behavior in the system
Bartocci and Lio, 2016.

3.2 Existing computational approaches to systems biology
Computational models, thanks to the fact they are directly executable, can comprise more biological complexity
than mathematical ones, minimizing computational costs. Computational time is the limiting factor when modeling
large and complex systems. Respect to the intention to scale up models to vast portions of biological systems, the
computational time is the limiting factor. This section focuses then mainly to computational modeling approaches to
biological systems.

A variety of approaches live under the definition of computational models for systems biology. Some of them are
more abstract, some more detailed. Some of them focus on the structure of a process and some others on the spatial
organization of a system.

It is necessary to specify that, in systems biolgy, computational tools comprise and support models, but they make
a larger category in general. In fact, computational tools include all of the systems and methods leveraging computer
power for targeting biological complexity. This ranges from bioinformatic pipelines to image analysis toolkits, from
model construction techniques to data visualization. In the following sections, the focus stays con computational
models intended as representations of biological systems.

What characterizes computational models is they specify sets of instructions that, once executed, recapitulate
a system’s behavior. Different languages can describe the instruction sequence modeling the successive events in
biological processes. It is possible to differentiate such languages by the way their syntax organizes around different
representational priorities. That is, each of them has a specific set of rules for creating well-formed instructions by
combining symbols.

In computational biology, most languages are domain-specific: they fit the needs and specificities of a subdomain
of life science, reflecting the way that field traditionally specifies the information. Languages can also group around
representation styles: some are textual, some others also have visual representations, making them more close to
diagrammatic representations from biology. Visual supports help the non-expert user to access knowledge and easily
manipulate information.

On the other hand, the semantics of a language attaches biological meaning to well-formed instructions, allow-
ing to describe the biological behaviors of interest and provide the model execution with the capability to support
biological interpretations.

The following part provides an overview of the approaches currently in place for biology, presenting each ap-
proach in reason of its general functioning and some specific applicative examples.

To different degrees, and somehow depending on their level of abstraction from calculation processes, these
languages function as intermediate models.

Most times, it is possible to encode a formalism into the others. The real property guiding the choice of a formalism
is its expressivity when modeling a problem under a particular perspective. Their respective syntaxes make them
more or less prone to express biological semantics in different ways, being capable of modeling biological systems
under different, often overlapping aspects. In other words, it is their expressivity for a particular facet of biological
complexity that clusters them together in sub-classes. Beyond biological meaning, languages usually get translated
in other computational models, with less abstract semantics, for being executed.

3.2.1 Agent-based models
Agent-based models Bonabeau, 2002 center on agents, that is, autonomous entities sensing the environment and
making decisions according to their individual and specific sets of rules. Groups of agents can interact with each
other following the same paradigm. A group of agents and their relationships define an agent-based system, which,
even in its elementary forms, can exhibit complex emergent behavior patterns such as competition and collaboration.

Every agent in the system is an explicit representation of an individual. Each agent has a unique functioning
and individual history, supporting, even in more complex agent-based systems, learning and adaptation of the single
agent.

In modeling biological systems, agents have cellular functional/structural features and behavior. Usually, agents
modeling cells express cellular behaviors and possible evolutions, as well as physical and mechanical properties.
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Moreover, the agent-based system models the interactions between cells. These characteristics support a very close
representation to the physical system and enable to reenact behaviors at different levels and scales, covering emergent
behaviors encompassing all system levels.

Agent-based models can be implemented with tools such as FLAME Coakley et al., 2012; Richmond et al., 2010,
REPAST An et al., 2009; North et al., 2006, and SPARK Solovyev et al., 2010.

3.2.2 Process Calculi
As told in Baeten, 2005, the history of Process Calculi (PC, or Process Algebras, PA) dates back to decades ago. As the
names suggest, the specificity of this language is the algebraic formalism it uses. PAs are text-based languages, and
their syntax uses symbols and rules from algebra and mathematics in general. The author defines PC as ”the simplest
model of the behavior of a computer program in computer science.” PC orients to the formalization of concurrent
processes, where a process is an abstract representation of partial observations over the behavior of a system. In
this context, concurrent processes can also match the definition of agents. Agents can model biological species and
their mutual interactions in a biological system. PC supports compositionality: starting from the specification of sub-
processes, a model of the entire system can take shape, by composing them following rules dictated by the formalism.
Another definite advantage of this approach is the treatment of comparisons between processes as equivalences,
which permits to reason in formal terms around the relations between different subprocesses in a biological system.
The primary usage of PC in biology is to formalize and organize knowledge. Some examples of PC applications in
systems biology are: the Bond-Calculus Wright and Stark, 2018, Beta-Binders Degano et al., 2006; Priami and
Quaglia, 2004, 2005, BlenX Dematte et al., 2008a,b, Bio-PEPA Ciocchetta and Hillston, 2009 and BioShape Buti
et al., 2010.

Among the others, some implementations express spatiality and compartmentalization of the biological system.
An example is Brane calculus Danos and Pradalier, 2004, which centers the simulation around biological mem-
branes, which play the role of coordinators for the modeled processes. Another one is BioAmbients Regev et al.,
2004, which is provided with special operators able to specify merging, splitting, and communication between bio-
logical compartments, and derives from pi-calculus Bruni and Montanari, 2017; BAM Muganthan et al., 2008 is a
tool supporting stochastic simulations in BioAmbients.

3.2.3 Rule-based modeling
Rule-based models Angelov, 2013 are very abstract representations which focus on the rules underlying the system’s
behavior. They are particularly useful when the set of such rules is way more straightforward than the model it
generates: the model is the enactment of a limited number of patterns repeating themselves.

This language is particularly of use for modeling certain types of biological systems. Its notation is very similar
to that employed for representing chemical reactions and biochemical interactions between molecular species. They
can easily cover, for example, reaction stoichiometry, and kinetic parameters of interaction.

Rule-based systems are very compact: each rule is an independent unit, making it easy to modify independently.
Compactness helps accessibility: their simple syntax makes them human-readable, and possibly visually represented
and modified with graphs. Existing tools for systems biology leverage these advantages, becoming accessible also
for non-expert users. Some examples are BioNetGen Harris et al., 2016 , BIOCHAM Calzone et al., 2006, Kappa
Wilson-Kanamori et al., 2015 and Virtual Cell Schaff et al., 2016.

3.2.4 Statecharts
Statecharts are easy-to-use, visual and state-centered formalism recapitulating the representational style of state di-
agrams. Passages from one state to another are event-driven, and each state corresponds to a particular set of pa-
rameters for the system. They support graphic visual representation, with the possibility to quickly highlight the
interdependence between states in a reactive system.

In systems biology, statecharts are useful for they formalize the visual representations of functional diagrams
widely employed in biology. Moreover, they augment them providing depth, hierarchy in state transitions and or-
thogonality between states Harel, 1987. These formalizations and refinements allow capturing more of the biological
system complexity, limiting the risk the number of possible states explodes.
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The most popular statechart tool for systems biology is IBM Rational Rhapsody Bloch and Harel, 2016; Efroni
et al., 2007; Harel, Setty, et al., 2008; Hoffmann, 2012; Swerdlin et al., 2008.

3.2.5 Boolean and Qualitative Networks
In Boolean networks Dubrova et al., 2005, nodes can assume one out of two states. Each node is a boolean variable,
updated by a boolean function determining its truth value given the inputs from the neighbor nodes in the network.

The most common application of this formalism to biology is the approximation of the dynamics of genetic reg-
ulatory networks. In these models, genes can be active or inactive, and boolean functions model regulatory relations
between genes, supporting the simulation of their dynamic evolution Vasciaveo et al., 2015. Boolean networks can
model post-transcriptional regulation as well, and this provides an higher resolution in representing biological com-
plexity Benso, Di Carlo, Politano, Savino, and Vasciaveo, 2014; Politano, Savino, et al., 2014. However, this
approach performs a strong abstraction from the complexity of the system, removing all quantitative aspects of gene
activation, including the intermediate passages through gene products regulating target genes, and their respective
kinetics. When dealing with large regulation networks, this can be a strategy for complexity reduction. Also, it
finds applications in studying the robustness and stability of gene regulation networks. Qualitative networks extend
Boolean ones, devising a finite number of states each node can assume.

Other approaches rely on graphs to model multi-omic enriched networks, including more of the different infor-
mation from the system Benso, Di Carlo, Rehman, et al., 2013; Politano, Benso, Savino, et al., 2014; Politano,
Logrand, et al., 2017; Politano, Orso, et al., 2016.

Graph-based coexpression networks built from experimental expression data are in general large and complex.
Methods exist to reduce the complexity of these models, preserving only the most valuable part of the information
they encode Benso, Cornale, et al., 2013.

Network models support multiple types of knowledge extraction procedures. The automatic identification of
network motifs corresponding to identifiable biological functionalities is one example of thatDi Carlo et al., 2013;
Natale et al., 2014; Politano, Benso, Di Carlo, et al., 2014. In other cases, graph-based models can support predic-
tion of disease Benso, Di Carlo, and Politano, 2011.

Interesting examples of how Boolean networks can be used to analyze regulatory networks in systems biology
are GINsim Naldi et al., 2018 and BoolNet Mussel et al., 2010. In R.-S. Wang et al., 2012 a review of the existing
approaches is provided. Bio Model Analyzer Benque et al., 2012 provides an implementation of qualitative networks.

3.2.6 Petri Nets
Petri Nets (PNs) collect many advantages of the previously described approaches for modeling distributed, concur-
rent processes. Also, they have an exact mathematical definition of their execution semantics and support visual
representation. They can easily encode process calculi and agent-based systems. Also, they can specify architectures
recapitulating graph-based models such as qualitative and boolean networks. PNs can also extend network-based
formalisms by including quantitative aspects from the system. They support both qualitative aspects, encoded in the
network architecture, and quantitative information, in the quantification of resources and emergent network evolu-
tion.

These features are particularly useful for modeling biology. In fact, on one side PNs recapitulate and expand
the expressive power of all the other formalisms. On the other side, they allow to flexibly comprise in a model the
different information characterizing systems biology as a knowledge domain.

PNs come in different shades, from the low-level formalism, providing semi-quantitative discrete representations
of concurrent processes, to different high-level formalisms, supporting continuous information, timings, stochasticity,
and hierarchy. Section 4.2.2 provides a more thorough description of existing Petri Nets formalisms.

3.2.7 Spatial models
Modeling formalism explicitly expressing the spatial features of a biological system can cover multiple system levels.
For example, they can be set up to representmicroscopic, mesoscopic andmacroscopic levels, accounting formolecular
interactions and networks, cell-cell and cell-environment communication Drasdo et al., 2018 and tissue- or organ-
level phenomena. Compared to compartment-based models such as BioAmbients Regev et al., 2004, which in a way
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also express spatiality, these formalisms provide a structure representing positions in space independently of the
objects possibly occupying them.

Lattice-basedmodels Checa and Prendergast, 2010; Tronnolone et al., 2017 base over a regular repeated graph,
formed by identical n-dimensional grid sites. They have periodic or fixed boundary conditions in each direction over
the grid.

Cellular automata Schiff, 2011 are n-dimensional grids devising, for each position, either the presence or absence
of a cell. Each cell has neighbors, and according to a mathematical function taking them as inputs, the whole model
evolves in terms of state changes at each position. This scheme of functioning allows to model pattern formation
according to short- and long-range interactions between cells Deutsch, Dormann, et al., 2005.

In multiscale models of these kinds Alemani et al., 2012, the challenge is to set up a homogeneous representa-
tion, including communication between different model levels across multiple spatial scales. It is also necessary to
reconsider specific asymptotic techniques for the analysis of the multiple time scales involved. Cellular Potts mod-
els Durand and Guesnet, 2016; Svoboda et al., 2018 combine the Monte Carlo method with a regular lattice-based
model of spatiality. In this context, Osborne, 2015 provides an example of a multi-level model showing homogeneity.
In general, cellular Potts models devise objects living in the lattice. These objects may be either discrete such as cells,
or continuous, such as molecular gradients. Either way, their interactions, such as cell-cell communication, or cell-
nutrient contact, are associated with an energy description. Energy minimization of a Hamiltonian function drives
lattice rearrangements to simulate the evolution of the system, including its spatial architecture.

CompuCell3D Palm andMerks, 2015; Swat et al., 2012 is a general modeling framework for cellular Potts models,
which combines rigorous energetic and mechanical consideration of the system with usability and biology-centered
representational capabilities.

Lattice-free models, on the other hand, represent spatial features of a system without specifying a spatial scaffold
external to the system. For example, vertexmodels Fletcher et al., 2013 represent cell membranes as a set of polygonal
points. Basing on tensions deriving from cell-cell adhesion forces and cell elasticity, during the simulation they update
the position of each vertex.

3.2.8 Hybrid Models
Hybridmodeling approaches integrate state-based, event-driven discrete formalisms presented so far with the capabil-
ity to represent continuous dynamics in each modeled state. Mathematical formalisms such as ODEs usually support
this feature. Hybrid systems can leverage the advantages of both mathematical and computational models, moving
over the trade-off between expressivity and computational cost. They can accurately represent continuous phenom-
ena with some model structures, and perform stronger abstractions, through discretization, in others Antsaklis and
Koutsoukos, 2003; Witten et al., 1987. For this reason, they are becoming relevant to systems biology, also in terms
of adaptation of dedicated experimental procedures and knowledge exchange standards Nakamura et al., 2018.

Matlab and Simulink support the design and simulation of hybrid models for systems biology Sanfelice et al.,
2013. Some other examples of tools supporting hybrid modelling approaches are BioDivine Barnat et al., 2009 Breach
Donze, 2010b dReach Kong et al., 2015 and Rovergene Bogomolov et al., 2015. S-TaLiRo Annpureddy et al., 2011 is
a Matlab toolbox for identifying trajectories with minimal robustness in hybrid systems simulation.

3.3 Limitations of existing approaches
The different formalisms presented in this section reflect a particular approach to the modeling of biological systems.
On the overall, this limits each approach to the perspective it develops around.

Each approach satisfies only partially the requirements presented in Section 2.6. Approaches limit not only to
specific system levels but also to specific views over the system. In other words, each formalism centers over a
particular facet of biological systems and behaviors. Its expressivity dedicates to that facet, and this impedes to
express with the same effectiveness the other ones.

Compared to the others, hybrid models have a more flexible approach to biological complexity. They can fit
each system part with a dedicated modeling style. Among existing hybrid approaches, the tendency is to be problem-
specific and not extendable to other modeling challenges. In general, there is a lack of standardization. Hybrid models
leverage the combination of different, context-specific formalisms, chosen in reason of their expressivity towards a
specific aspect. Even if this has, on the overall, more expressive power than individual formalisms, it is an only
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methodological improvement, and it still lacks the generality, unification, homogeneity, and portability a lingua franca
for computational systems biology needs to have.

The presentation of this Ph.D. work starts from an introduction to existing hybrid approaches which also express
hierarchy (see Section 4.2.1), for then presenting a multi-level and multi-context modeling approach which relies on
a single formalism, which combines several advantages of the ones presented in this section.
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Chapter 4

A multi-level, multi-context
modeling approach

4.1 Short summary
Starting frommodeling and datamanagement requirements, this Chapter introduces theNets-within-nets-basedmod-
eling approach object of this Ph.D. work, and how it responds to the challenges systems biology poses. The proposed
modeling approach responds to knowledge inference and representation requirements by combining the strengths of
state-of-the-art solutions. Relying on the Nets-within-nets (NWNs) formalism, it provides the definition completeness
of mathematical models while allowing for direct execution like computational models. Supporting different informa-
tion specifications, it allows for model composition processes like hybrid models but preserving formalism uniformity.
Also, it supports hierarchy and flexible abstractions. These capabilities support the construction of multi-level and
multi-context models: they represent not only different organization levels from the system but also different views
over them. Thanks to this versatility it is possible to model in an explicit way the role of the spatial and process
contexts respectively over the system at each level. Thanks to the fact these features are made explicit, the landscape
of regulations and their dynamic hierarchy emerges during execution. The proposed approach initially develops to
target complex biological processes such as ontogenesis. At first, an application example for developmental biology,
the Vulval Precursor Cells specification in C. elegans, is provided. It shows excellent flexibility in representation ca-
pabilities. Two more application examples follow: the first one targets a cultured synthetic biological system and the
second one focuses on the spread of antibiotic resistance within the microbiota. A limitation is that models following
the proposed approach work as knowledge bases only for researchers with a background in computer science.

4.2 Introduction
As in Section 2, an excellent computational model for systems biology must handle different scales of representation,
and the complex hierarchical structure of the system and its sub-parts, as well as the different types of information
and data available, together with their representations based on different formalisms. In other words, they need to
respond to the requirements emerging both from system complexity and the heterogeneity of systems biology as a
research domain.

At the moment, combining different existing methods in hybrid models (see section 4.2.1) is a strategy to obtain
this result. This composition-based approach fails to respond to at least one requirement, that is, modeling approaches
should be easily generalized to different systems.

The presented approach aims to unify the capabilities of existing approaches into a single one, while as well as
preserving formalism uniformity, and thus enabling model flexibility, generality, and portability. For achieving this
goal, we chose to rely on Nets-within-nets (NWNs), a high-level Petri Nets formalism.

In order to present the proposed modeling approach, first an overview of existing hybrid and multi-level model-
ing approaches (Section 4.2.1), and then an introduction to the Petri Nets formalisms and NWNs (Section 4.2.2) are
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provided.

4.2.1 Hybrid and multi-level modelling approaches for systems biology
Multi-level models describe a system specifying at least two different organization levels and the interactions within
and between those levels Adelinde M. Uhrmacher et al., 2005. They explicitly represent upward relations, since
the system is somehow constrained by the behavior of its parts, as well as downward relations, since the behavior of
each part is influenced, in turn, by the behavior of the system as a whole. Considering different system levels implies
considering all the different dimensional scales implied for each level, and their consistency across levels.

Multi-level models can also be hybrid models. According to Stephanou et al., “in its most general definition, a
hybrid model corresponds to any interaction or coupling between two or more models that are not based on the same
formalism” Stephanou and Volpert, 2016. Then, multi-level and hybrid models find a definition in the fact that they
support different formalisms while being organized in multiple levels, and encompassing multiple systems scales.

In this section, the presentation of existing hybrid and multi-level modeling approaches organizes around succes-
sive moments of the modeling process.

Data and information gathering High-throughput analysis techniques make it possible to extract vast
amounts of heterogeneous data from different organization levels in biological systems Davidsen et al., 2016. Di-
rectly extracting useful knowledge from them is not straightforward. Also, when data-driven and hypothesis-driven
approaches work together, existing information from the system can contribute to representing and inferring new
knowledge. Thus, it is necessary to store and organize the large quantity of data made available in a way that makes
it ready for model integration or construction. This task needs to take into account biological data are heterogeneous.
Also, a model may benefit, for example, from the combination of biological and physiological data.

Model integration and construction depend under many aspects of the context and the type of data and informa-
tion in use. However, in general, they benefit from standardization and general usability of the available information,
which also relates to accessible storage, unique information sources, and data reliability. These aspects can improve
out of specifying dedicated practices and formalisms for data storage, and of making data and information collection
systematic.

Data diversity can originate from the consideration of different system levels in a model. For example, within
the Physiome Project, insilicoDB collects experimental physiological data, e.g., time series and image-based mor-
phological models Y. Asai et al., 2011. The information contained in this database can function as the basis for the
construction and simulation of biological mechanisms that occur at several system levels.

Another example of systematic data aggregation appears inMosca et al., 2010, where the potential of a multi-level
approach to breast cancer control focuses on the integration of molecular information and functional descriptions
at the organ system level. With an eye to data integration, this platform also makes it possible to query existing
ontologies and perform analyses and modeling of stratified data.

Other challenges emerge when dealing with data from different -omic pools and different system levels. Ex-
tracting cohesive information from the complete exploration of genomic, epigenomic, transcriptomic, proteomic,
metabolomic, and phenomic data of a system is not trivial.

In Rajasundaram and Selbig, 2016, the authors review a series of integrative inference and analysis techniques
for -omic datasets generated by different levels of the system. They mainly take into account interrelations and
correlations between two levels, and on co-regulation analyses. In this approach, a temporal series analysis can
target time-resolved experiments, focusing on how the disruption of a system spreads from one level to another. This
approach can extend to populations of organisms that adapt to the different environmental conditions that affect their
regulatory state.

In life sciences, sometimes data relevant to a given phenomenon is not available. For example, the kinetic param-
eters of metabolic reactions are limited to equilibrium states and do not cover the dynamic evolution of the system
towards equilibrium. Moreover, the experimental data available in biology often refer to in vitro studies and not to the
in vivo system, where the cellular microenvironment, external adaptations, and interactions with other cells influence
the parameters to be studied. This lack of data is often due to technological limitations, that is unlikely to change soon.
Consequently, it is necessary to develop alternative strategies for the investigation of biological complexity. Address-
ing limitations of data availability is not trivial; interested readers can refer to Bulik et al., 2009 for an overview of
modeling approaches that address current limitations of data availability.
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Model construction, integration and composition The construction of a model can start from a de-
ductive, hypothesis-based process as well as from an inductive, data-driven process J. Cox and Mann, 2011; Fisher
and Henzinger, 2007; Leonelli, 2012.

A peculiarity of multi-level and hybrid models is they often take shape from existing models by compositional
processes Duncan et al., 1998. Such models are usually already complete and validated. The result of their compo-
sition, that is, the resulting comprehensive model, needs to be tested again, to ensure consistency between both the
model and the system, and within the composed model.

In building up hybrid models, formalism selection and semantics specification are usually demanded to the avail-
able existing models, each of them being consistent per se in solving specific issues in independent and different ways.
The real challenge in hybrid compositional processes is integrating such existing models.

Also, when consideringmulti-level models, consistency needs to exist within each level, and across different levels
in the model. Existing multi-level models often deal with two (or three) levels of organization: a micro (a meso) and
a macro level. It is possible to describe relations across levels as upward or downward causations A. M. Uhrmacher
et al., 2007.

to dA number of strategies do exist for representing how sub-parts of a system at the micro-level do influence the
system as a whole at the macro-level, and how the system as a whole does influence its parts Maus et al., 2011.

Formalism selection Another way to face model construction starting from existing models and heteroge-
neous data is to build up a brand new model, re-specifying and combine existing ones using a single formalism.

For example, DEVS (Discrete Event Systems Specification) is a formalism supporting this modeling strategy. In its
original formulation, it covers the macro level with coupled modules. These modules act as executives for the atomic
models from the micro level, which represent the parts of the system Vangheluwe, 2000. This approach shows great
flexibility, but it is not capable of setting global variables to the behavior of sub-models. Besides, all interactions at
the micro level are asynchronous, which can create some inconsistencies both within and across levels.

In A. M. Uhrmacher et al., 2007, the authors present possible solutions to these limitations. They introduce
a multi-level-DEVS formalism. First of all, at the macro level, coupled models have states and behaviors of their
own. Then, consistency across levels is made stronger by a system of upward and downward exchanges between
levels, which are explicitly defined and support selective communication. Cross-level communication allows to refine
communication across levels: threshold crossings at the micro level can determine discrete state changes at the macro
level. The macro level, on the other hand, can activate modules at the micro level specifically sending events to them.
Moreover, such communication channels function synchronously.

Moving to the field of high-level model description languages, in Yoshiyuki Asai, Abe, et al., 2014 a platform for
integrating two different mark-up languages is presented.

This strategy starts from the fact that both languages are usable and interoperable, enabling the combination of
the respective expressive powers. The Systems Biology Markup Language (SMBL) and the Physiological Hierarchy
Markup Language (PHML), in fact, present specific advantages and specificities. SBML Hucka et al., 2003 tends to
model sub-cellular phenomena and translates to ODE systems to be simulated. PHML, instead, better orients to the
representation of hierarchically organized systems, as its ancestor insilicoML did Yoshiyuki Asai, Y. Suzuki, et al.,
2008. In this work, a PHML framework embeds modules specified in SBML.This combination extends the expressivity
of SBML to several levels from the system, thanks to the hierarchical organization of PHML. A model structured in
this way ensures great expressivity, but it can become computationally expensive when simulating the underlying
mathematical formalisms.

Modelling approaches A typical application of multi-level and hybrid model construction processes is the
study of tumor growth. Modeling tumor growth under different perspectives is possible. For example, some ap-
proaches focus on the macro level, where the tumor appears as an entity inside an organism, showing independent
behaviors and relations with other entities. Another one centers at the micro level, where the tumor appears as a
complex structure whose behavior emerges from local interactions between single cells, with their inner function-
ings, intertwined with communications between each other and the environment. It is also possible to consider a
meso level, where the significant entities are cellular aggregates and their architecture mediating cell-cell and cell-
environment communications LACHOWICZ, 2005.

In Delsanto et al., 2008, the authors describe a multi-level model of in vitro tumor spheroids and the effects of
environmental stimuli on their growth. Cellular aggregates make the lower level in the model, while the macroscopic
regulations make the higher one. Themost significant contribution of this work is the construction of an intermediate
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model interfacing the two models. Such structure can put in the correct relations input and output functions between
the levels, making them communicating in away that is consistent with the experimental data to bemodeled. Since the
two bridged models stem from independent model construction processes, the fact that they can generate consistent
behaviors provides a sort of mutual validation for both of them, highlighting one of the advantages provided by hybrid
modeling strategies: inherent validation by direct comparison of independently developed models to be combined
Delsanto et al., 2008.

Most often, multi-level modeling approaches to systems biology deal with multi-cellular systems and biological
tissues. More rarely, they face the aim to model a whole organ. For example, in the context of the Physiome Project
Holzhutter et al., 2012, researchers are trying to build a virtual liver. This virtual organ encompassesmultiple system
levels, comprising a wide range of time and space scales. For example, a hormone requires seconds to exert its action
on cellular receptors. Tissue regeneration processes, take weeks instead. Single cells live on the scale of micrometers,
while thewhole organism themodeled organ belongs to on the scale ofmeters. This perspective is relevant since one of
the modules composing themodel refers to the whole body, modeling it with a Physiologically Based Pharmacokinetic
(PBPK) model Zhao et al., 2011. The scope of this module is to consider the contribution of all body districts to the
functional context for the liver to live. The virtual liver supports many different functional levels. For instance, the
Perfusion module models incoming blood flow at the organ level. The model starts with the assumption of anatomical
micro-homogeneity. That is, the smallest functional units are assumed to share homogeneous structures. These
functional units find representation in the Lobule modules. Sets of cells compose them and recapitulate the organ
function. Lobule modules function at a steady state most times. Cell replacement occurs at a decidedly slower rate
than that of other processes in the model. Sometimes this rate increases. For example, when tissue regeneration
occurs, cells vary in number and identity at a faster rate. In this case, single cell dynamics can determine process
evolution. An agent-based approach underlies the model of cells, which then react to their environment according to
their internal rules. All modules in the model are coupled, and therefore interdependent. In principle, any variable
change could affect all other variables on some level. In this way, the model is a very accurate and integrated one, but
it also makes a vast computational complexity emerge when simulating it.

Authors in Delsanto et al., 2008 provide another example of a hybrid and multi-level modeling approach, relying
on a different strategy. Authors model tumor spheroids cultured in vitro, and the way external signals can alter their
growth.

In the model, the bottom level represents cellular aggregates, and the top level covers the external signals. The
peculiarity of this approach lies in what lies between different model levels. The authors design an intermediate
model, functioning as an interface between the other two. This interface puts in consistent relations inputs and
outputs from the two sides, making them communicate properly. The fact that the overall model is consistent with
the biological system modeled works as a sort of validation for the two models it integrates. This example hints a
collateral advantage hybrid modeling has: it provides a direct comparison between integrated, pre-existing models,
working as a form of built-in validation Delsanto et al., 2008.

Parametrization and parameter identification Parametrization defines, broadly speaking, the fact that
a model represents some physical quantities as static parameters, instead of computing them dynamically Godfrey
and DiStefano III, 1987. In the case of mathematical models, this requires to find a set of parametric equations to
describe the system.

Parameters are measurable factors defining specific aspects of the system. They are usually numerical, but they
can also find other representation.

For most biological systems, the majority of the parameters are either unknown or largely uncertain. The reason
a model represents a system part through a parameter, in this context, is that the phenomena it corresponds to are
too small or too complex to be measured. In a different case, the model treats them as system variables. In this cases,
the resulting parameters are said to be loosely constrained, or ill conditioned Moles et al., 2003.

Parameter identification is the task of estimating parameter values for a given model, usually by fitting the model
to experimental data. The parametrization is generally non-unique: different sets of parameters can be used to repre-
sent the same data.

In the compositional processes yielding to multi-level and hybrid models, parametrization concerns the models
to be combined together more than the resulting overall multi-level model. In fact, the compositional process does
not impose a different structure to the submodels, but only draw links between them.

The number of effective parameters of a model is a good measure of its complexity Spiegelhalter et al., 2002,
and this holds for composite models too. Multi-level models pose an additional challenge in this context since quite
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often parameters of a given model level represent variables for the corresponding upward layer Gil-Quijano et al.,
2012. This layer of hyperparameters makes the identification of effective parameters, and therefore the corresponding
measure of model complexity more complicated.

The more complex a model is, the wider is the set of possible trajectories in its evolution, reflecting directly to
parameter identification, which can become a computationally intensive task. Breach Donze, 2010a is a Matlab/C++
toolbox for verification and property-driven parameter synthesis based on Signal Temporal Logic Raman et al., 2014.
This tool is specific to non-linear hybrid models, and it is based on a very efficient numerical solver of ODEs, making
it able to handle the complexity of the task.

ABC-SysBio Liepe et al., 2014 is a platform providing tools for model selection and parameter estimation in sys-
tems biology. This tool works with models written in SBML, both deterministic and stochastic, and it relies on by
Bayesian computation Sunnaaker et al., 2013, which is pretty useful for inferring the parameter values of complex
models, in particular when they rely on ODEs as a formalism. GNU MCSim Bois, 2009 can perform numerical sim-
ulations of different kinds, including simple runs, as well as plain or Markov Chain Monte Carlo simulations Gilks
et al., 1995. Also, it supports Bayesian statistical inference for equation systems.

Besides structural relations between the parts of a biological system, parameters also model quantities relative
to process dynamics, for example, the time-delays in an evolving regulatory network. What generates these delays
is usually not well-characterized, and most probably a multi-factorial mechanism, making the identification of the
corresponding parameters an ill-defined problem. To face this challenge, in von Stosch et al., 2010, authors present
a semi-parametric, hybrid approach for performing system identification for biochemical networks with time-delays,
performing better than the approaches avoiding tho consider them.

Verification and validation Verification ensures model correctness, by finding and fixing model errors,
assuring that the model matches the starting assumptions and specifications Carson, 2002. For hybrid and multi-
level models verification concerns also the way different models communicate between different levels and from
different formalisms Tokishi and Chiu, 2013.

UPPAAL Behrmann et al., 2001 is a very usable, integrated tool environment taking care of model construction,
validation and verification of dynamical hierarchical hybrid systems. It consists of different parts: two languages,
one description-oriented, another one supporting multiple data types, and non-deterministic guarded commands;
the simulator, which allows for validation exploring possible evolutions during the early phases of the design process
already; a model-checker, which performs model verification by exploring in an exhaustive way the entire state-space
of the system.

Validationmakes sure that themodel represents the system to bemodeled at an accepted level of accuracyCarson,
2002. Techniques such as cross-validation have the objective to assess to what degree the model under validation can
generalize to a data set that did not contribute to model construction.

When dealing with hierarchical Bayesian models of phylogenesis, a possible validation approach is to analyze
marginal likelihoods Xie et al., 2010, but this shows high sensitivity to model priors Duchene et al., 2016. To improve
the validation of these models, the authors introduce another approach, based on the expansion of the cross-validation
method proposed in Lartillot et al., 2009, to include other components of the Bayesian hierarchical model in the
rotation estimation process.

4.2.2 Petri Nets formalisms for biology
In the context of multi-level, hybrid models, the Petri Nets (PNs) formalism leverages different strengths from the
existing approaches introduced in Section 3 Bonzanni, Feenstra, et al., 2014; F. Liu and Heiner, 2010. As an unam-
biguous formalism, they can easily encode most other formal notations. Petri Nets support both visual representation
and complete mathematical description and analysis. The structure of PNs solidly bases on causality, allowing to
discriminate between concurrent and mutually exclusive behaviors finely F. Liu, Heiner, and D. Gilbert, 2017.

In the class of PNs, several formalisms exist, and each of them can support the modeling of biological systems to
different extents. Several general purpose simulation tools that allow real-time inspection and network simulation
using Petri Nets are available.

In the following sections, an overview of different PNs formalisms intends to provide a context for the introduc-
tion of Nets-within-nets, the formalism the proposed modeling strategy relies on for modeling complex biological
processes.
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Low-level Petri Nets

Petri nets (PNs) is a graphical, mathematical modeling tool, named after Carl Adam Petri, who created the formalism
in 1962 to study communication with automata.

The low-level PNs formalism supports a model covering these features, combining usability and simplicity in
model design with the capability of supporting dynamic simulations and formal, quantitative analysis. For these
reasons, as reviewed in Koch, 2015, low-level Petri Nets are a valuable state-of-the-art tool for computational biology.

Petri Nets at their core are bipartite, directed graphs consisting of two kinds of nodes: places, represented by
circles, and transitions, represented by boxes. A set of directed arcs connects the nodes, usually labeled with weights
that represent the minimum tokens required to trigger the transition having the place as an input. A place that has an
outgoing arc towards a transition is an input place for a transition. A place that has an incoming arc from a transition
is an output place. As shown in Figure 4.1, each place can contain a number of tokens. Tokens provide a quantitative
and discrete representation of resources, and they are another element of the PNs formalism.

At each moment during net evolution, the marking recapitulates the position of each token in the net: the state
or marking of a net is its assignment of tokens to places. The initial marking models the starting conditions for
system evolution, that is, the state of the net at the beginning of a simulation. After each simulation step, the marking
evolves after transitions move, produce or consume tokens in the net. The evolution of the marking along a simulation
represents the system dynamics emerging along time.

Transitions function according to specific, local rules, regulating both enabling and firing. Rules define the con-
ditions required for the transition to fire (e.g., a particular marking of the input places), and the effect of the transition
(i.e., how tokens move when the transition fires). Firing transforms the current marking, and it can involve tokens in
different ways: consuming them, putting them back, moving them or generating new ones to the output places, or a
combination of these, according to the firing rules of the specific transition.

Net architecture organizes these rule-based functionings over the connections between input places, transitions
and output places. The output place for a transition can work as an input place for another transition. In this way, sev-
eral interlocked mechanisms find representation in a PNs model. Also, a transition can have multiple output places,
linked to parallel downhill mechanisms, supporting the modeling and simulation of distributed systems and concur-
rent processes competing for resources Koch, 2015, here modeled by tokens. A PN model comprises an arbitrarily
large number of these structures, each with specific architecture, rules, and connections to the other ones.

PNs easily model isolated biological mechanisms, such as biochemical reactions, representing semi-quantitative,
stoichiometric relations between molecular species involved. In regulation networks such as genetic or metabolic
ones, several reactions combine, and further requirements emerge. A low-level PNs model faces these requirements
too. Inmodeling regulation ormetabolic networks, places canmodelmolecular species and enzymes from biochemical
reactions. Tokens canmodel biomolecules in a discretizedway. Transitions canmodel the reaction processes, covering
with their rules the stoichiometry and the biochemical transformation of resources in a semi-quantitative way.
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Figure 4.1. A simple Petri Net: places (circles) and transitions (boxes) are connected by directed arcs. Places
represent states, and transitions processes taking from one state to another. Each transition has enabling and
firing rules determining if it can fire, and when it fires given it can. Each place is characterized by the presence
or absence of tokens (black dots), which represent discretized quantities of resources.

The network architecture in Figure 4.1 could model a variety of biological mechanisms, according to the semantics
the modeler chooses for it.
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Figure 4.2. A place models Protein A, and another one Protein B. Each token represents a single instance of a
protein. The transition represents the process by which a protein complex forms out of protein A and protein
B. The transition gets enabled when at least one token is present in both input places.

For example, in Figure 4.2 a place models Protein A, and another one protein B. Each token represents a single
instance of a protein. The transition represents the process by which a protein complex forms out of protein A and
protein B.The transition gets enabledwhen at least one token is present in both input places. When it fires, it consumes
one token from Protein A and one from Protein B respectively, and it produces one token into the place modeling the
protein complex. In this way, a simple Petri Net recapitulates the stoichiometry of this biological process.

In general, low-level PNs do not scale with system complexity, restraining their use to the modeling of only small
systems. Their limitations emerge when models aim to comprise more system complexity. The visual language of
PNs, in fact, does not support the construction of large and complex models. It is more probable that the modeler
makes a mistake, and the visual support fails to guarantee any clarity of understanding.

Complex systems need quantitative representation. Complexity not only makes the net architecture larger and
more intricate. If the diversity of mechanisms from a biological system enter a model, this imposes the formalism
supports different types of information, quantitative and qualitative. Also, systems biology imposes that a model pro-
vides proper representation for the multiple organization levels of biological systems and their hierarchy. In general,
biological processes are intrinsically stochastic: PNs models need to express stochasticity as well when executed.

High-level Petri Nets

To overcome these limitations, several high-level PNs extend the low-level formalism, supporting multi-level and
nested models that properly handle information diversity, including more system complexity into models F. Liu,
Heiner, and D. Gilbert, 2017.

Colored Petri Nets (CPNs) Jensen, 1987 support the representation of arbitrarily complex data structures attached
to tokens. A model supports different information structures, which take the name of colors, and each place in the net
supports a subset of colors, limiting the token types it accepts. In each place, a multi-set over the color set attached to
the place defines themarking F. Liu andHeiner, 2010. In CPNs, each token can carry structured information, allowing
it to represent different types of resources. Introducing colors makes CPNs valuable visual modeling tools form
complex systems as well, for they allow for non-redundant, more compact representations. Compactness improves
readability and averts modeling errors while preserving the modeling capabilities of low-level PNs, which can be
generated from CPNs models by automatic unfolding F. Liu and Heiner, 2010; F. Liu, Heiner, and D. Gilbert, 2017.
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The Timed Petri Nets (TPNs) Scheidel et al., 2015 formalism extends the low-level PNs capability by setting
specific timings for transition firing. That is, once a transition is enabled, deterministic time delays can occur before
actual firing, ordering different transition activations during net evolution. Delays are tunable parameters in the
model. Time delays increase the time resolution of representations, and they allow to include in models mechanisms
centered at different timescales.

For modeling the inherent stochasticity in biological systems, stochastic PNs (SPNs) F. Liu, Heiner, and Yang,
2016 extend TPNs introducing probabilistic time delays. That is, time delays between enabling and actual firing are
no more tunable parameters, but instead random variables. Their value can also depend on the current marking of the
net, adding a representational layer for interdependencies within and across model levels. These capabilities prove
useful in modeling biological systems Schulz-Trieglaff, 2005.

Hierarchical (or nested) Petri Nets can model multi-level biological systems. Representing parts and subparts in
nested net architectures, they make the hierarchical relations between them explicit, allowing for arbitrarily high
resolution in the description of mechanisms from different system levels Marwan et al., 2011.

Nested PNs aim at representing multi-level systems with single-level models. Also, similarly to CPNs, they stick
to a static paradigm: token colors correspond to static data structures, and nets have a static model architecture.
Resources can change state only by moving from place to place, and the models devise mobility for tokens but not for
other model parts.

Complex biological processes challenge the limitations of most high-level PNs. They consider biological systems
as dynamic structures with multiple regulation set-ups and structural conformations across different phases of the
same process. Developing conformations involve evolutions of system architectural and functional patterns, including
the movement and generation of new system parts, and decision making processes based on the outcome of previous
process stages. This new level of biological complexity reflects into further requirements to computational models
and the underlying formalisms.

The Nets-Within-Nets formalism

As introduced in Valk, 2003, Nets-within-nets (NWNs) can express all of the functionalities from other high-level PNs
formalisms, such as stochasticity, timings, hierarchy, and quantitative information. Besides, they innovate PNs-based
modeling strategies providing tokens with a PNs structure in turn. That is, NWNs go beyond the concept of static
token color, by attaching dynamic information to tokens using the PNs formalism itself Kummer et al., 2004. Tokens
specified in this way are called net tokens, or object nets. As Petri Nets, they evolve dynamically like the net holding
them, which takes the name of system net. Also, they can hold net tokens in turn. This recursive scheme can be
reiterated in a boundless fashion, allowing for open recursion in specifying the hierarchical organization of system
levels with dedicated model layers Cabac, Duvigneau, et al., 2005 (see Figure 4.3).

In other words, NWNs follow a paradigm similar to that of Object-Oriented Programming (OOP): tokens in an
NWNs model can take the form of classes’ instances. These classes can be specified with the NWNs formalism,
in turn, living within and being simulated concurrently with a higher-level NWNs model. As instances of NWNs
models, object nets can hold net tokens as well, and this can be repeated recursively, specifying as many model levels
as desired. This flexible structure provides full expressivity, in an NWNs model, for representing system hierarchy.
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Figure 4.3. In Nets-within-nets (NWNs), tokens can be specified with the NWNs formalism in turn,
generating an arbitrary number of nets within other nets. This allows to model the hierarchical
organization of biological systems.

According to their definition, NWNs are particularly suited to model distributed systems that require the expres-
sion of hierarchy and encapsulation. Thanks to their capability to express encapsulation and selective communication,
they can easily represent biological compartmentalization and semi-permeability of biological membranes. Moreover,
by construction, the NWNs formalism recapitulates the OOP formalisms. This similarity facilitates the integration of
NWNs models with several modern programming languages.

The following paragraphs introduce the features and capabilities of the NWNs formalism, as a premise for the
presentation of the NWN-based modeling strategy object of this work, which follows.

Object systems In Valk, 2003, the author defines a elementary object system as a single system net and itsmarking,
which comprises either net tokens, with their markings, or simple black tokens. These elements draw a hierarchy of
two levels: the system net on top, and the net tokens on the bottom. In this hierarchy, net tokens are objects, instances
of net classes. They can be instantiated within other net instances, creating a system of nets.

A possible extension of the concept of elementary object system considers that the same net token instance can
live in different system nets. This peculiarity allows for specifying different facets of the context to be modeled for
the net token.

Transports and interactions Different system nets can host the same net token, and each net token can navi-
gate system nets following different mechanisms. Transitions in the system net can transport net tokens from a place
to another one without determining any other changes. In this case, net tokens function independently and con-
currently to the system net. In other cases, transitions from the different nets interlock: a interaction between them
takes place. Interactions between different nets rely on communication mechanisms such as synchronous communi-
cation channels, which join transitions across nets Christensen and Hansen, 1994. Each channel has two ends: the
down-link and the up-link. The transition containing the down-link, when enabled, checks for the presence of the cor-
responding up-link in the nets system. If it finds it, they activate synchronously. Transitions containing a up-link, on
the other hand, wait for the corresponding down-link to evoke their joint activation. A single down-link can activate
multiple up-links at the same time. Up-links and down-links define, in a sense, a directionality for channels. Channels
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can also pass arguments, supporting tokens flow across nets. The direction of tokens flow between the down-link and
the up-link transitions is independent from channel directionality, and it can occur in both directions.

Intra- and cross-layer interactions In a hierarchical system of nets, interactions involve transitions from
both the same layer and different layers. They can result in either writing or reading mechanisms. That is, the
description of transitions activation can focus either on their determination of the marking in the output places or
on their consideration of the marking in the input places for the next evolutions. Combining these options, four
categories of communication mechanisms take shape:

• Intra-layer reading: a transition considers the marking at input places of another transition from the same
model layer.

• Intra-layer writing: a transition affects the marking at output places of another transition from the same
model layer.

• Cross-layer reading: a transition considers the marking of an input place of another transition from a differ-
ent model layer.

• Cross-layer writing: a transition affects the marking at output places of another transition from a different
model layer.

Figure 4.4. NWNs communication styles: a visual representation of the four communication styles in NWNs.
Plain arrows represent intra-layer mechanisms, while full dots cross-layer mechanisms. Transitions read from
their input places, and write in their output places.

These mechanisms recapitulated in Figure 4.4, allow for communication between different nets, and combining
them it is possible to build up a consistent hierarchical model of a multi-level system and the contexts for its dynamic
evolution.
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4.3 A multi-level, multi-context modeling approach to complex
biological processes

In a systems biology perspective, a good computational model should support with an equal level of detail the available
information from all system levels of interest. Including this information implies to represent all the interdependent
layers of regulation involved, and their context-dependent, dynamic hierarchy. In particular, both the level of cells
and their dynamic regulative landscape, including their functional and process context: the model needs to explic-
itly represent spatiality in the system and temporal organization of the process. Also, systems biology poses general
requirements to computational models, involving the capability to represent quantitative information, nonlinear dy-
namics and stochastic behaviors.

Computational models can have different scopes, for example, prediction and analysis. They can also serve as a
very structured, information-rich knowledge base. A range of scientific subdomains with their own culture flow into
systems biology as a research domain, and scientific collaborations involve a diversity of actors, each one speaking a
particular language. Models need to reach this complex and diverse base of potential users, functioning as accessible
tools to foster model-based scientific collaboration across disciplines. Also, they need to be scalable and generalizable,
so to comprise the enormous complexity of biological systems and show high performances in different applications.

The presented modeling strategy extends the concept of elementary object system (see Section 4.2.2, leveraging
the capabilities of NWNs-based computational models for targeting complex biological processes. The capability to
express encapsulation, selective communication, and hierarchy, together with the support of colored tokens, consis-
tently allows handling different information structures in the same model, making sure they are coherent with the
semantics of each NWNs instance in the model.

This modeling strategy was primarily developed to model ontogenetic processes. This class of phenomena was the
starting point for developing the strategy because it is intended as the bioprocess involving the more system levels,
strongly relying on spatiality, and showing the most dynamic hierarchical relations between different regulation
layers. Also, available information from these processes come in many formats, from time series describing state
changes of cells to transcriptional profiles, imposing that models support different information. In other words,
ontogenetic processes stress every requirement posed by biological complexity and systems biology. For this reason,
they are the right target for developing a modeling strategy: by aiming at ontogenetic complexity, the resulting
approach easily and flexibly applies to many other systems posing more relaxed requirements.

For this reason, the syntax underlying the proposed modeling approach develops around a semantics relevant to
ontogenesis. Nonetheless, the same approach can flexibly extend to other target processes. This Chapter provides
various application examples and uses case scenarios, so to show the flexibility of the presented approach. Each
application example develops around some common points:

• an introduction to the class of biological processes to model, and the requirements it poses;

• a declaration of the modeling objective;

• a presentation of the modeling strategy: basic building blocks and model organization;

• the brief presentation of a application example relevant to the domain;

In particular, after introducing the original application to ontogenetic processes, this scheme is applied to the
modeling of in vitro synthetic biological systems, and that of epidemiological processes.

4.4 Modeling ontogenetic processes
Ontogenesis (or morphogenesis) is one of the key concepts at the base of the developmental biology Scott et al.,
2001, defined as the origination and ”[...] development of a single individual, or a system within the individual, from
the fertilized egg to maturation and death” Said, 2018. Ontogenesis concerns developing embryos of multi-cellular
organisms as well as unicellular life forms not having an embryonic stage in their life cycle. In this work, we focus
on the ontogenesis of a multi-cellular organism, which presents emergent architectural and phenotypic complexities
and takes place following process stages.

Systems biology targets complexity with a holistic approach, considering a system as more than the sum of its
parts Palsson, 2015. Under this perspective, ontogenesis comprises a complex and intertwined processes at multiple
system levels, from the development of the organism as a whole at the macroscale to the differentiation of single
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cells at the microscale. In morphogenesis, emergent patterns, at the mesoscale, are aggregates of cells with different
phenotypic identities grouped following a defined spatial organization Nelson et al., 2005. Patterns reshape after each
developmental stage, and changes emerge from local interactions between cells, occurring over different distances and
time ranges.

Following and extending the classification proposed in Jernvall, Newman, et al., 2003, the repertoire of basic
ontogenetic mechanisms making such complex dynamics emerge in three classes:

• autonomous mechanisms, making the internal dynamics of the cell and resulting outward behaviors, such as
division of a heterogeneous egg, and different mitotic spatiotemporal patterns. Alternatively, the evolution of
cell identity, considered in reason of its functional markers;

• inductive mechanisms: cells affect each others’ autonomous mechanisms via either unilateral (hierarchical) or
bilateral (emergent) signaling during pattern formation.

• morphogenetic mechanisms: phenomena changing the spatial architecture of cells (the form of tissue) in a de-
veloping structure without directly affecting their internal dynamics. Some examples include directed mitosis,
differential growth, and adhesion, apoptotic and migration processes, contraction, and matrix modification.

In a developmental process, each stage corresponds to a different architecture, regulative set-up or subprocess
in the organism and its subparts. Architectural conformations, as a form of morphogenetic mechanism, dictate the
communication schemes the cells participate in Guglielmi and Renzis, 2017, setting up a scheme of relative positions
between cells. Thismediates cell-cell communication, that is, inductive and subsequently cell autonomous mechanisms.
Basic ontogenetic mechanisms, as in Sharpe, 2017, are defined as ”tractable and understandable phenomena,” the result
of a reductionist approach to complexity, which deconstructs the system to facilitate our understanding. In this work,
they are intended as building blocks for facilitating the construction of a model.

Rather than a linear combination of subprocesses, a multi-dimensional, dynamic landscape of interdependent,
diverse and complex regulation mechanisms underlies ontogenesis Huang, 2012; Nepal et al., 2013. At each devel-
opmental stage, the cellular microenvironment affects cell autonomous mechanisms. The microenvironment defines
the context cells live into under two main aspects. On the one hand, the functional context includes neighboring cells,
their architecture and environmental signals. On the other hand, the process context refers to the stage the cell lives
into at a particular moment. In some circumstances, a regulation mechanism may overtake others, but the situation
can reverse when the context evolves.

In order to holistically comprise the resulting dynamic hierarchy of regulation layers, models of development need
to integrate multiple system levels consistently. At the same time, reducing biological complexity to understandable
phenomena allows for straightforward knowledge interpretation and exchange.

In this work, we present a modeling strategy for ontogenesis relying on the combination of both the holistic and
reductionist approaches. The fundamental bricks of models following this strategy are functional modules, modeling
complex ontogenetic mechanisms thanks to the following features:

• they encompass all system levels of interest;

• they can function as scaffolds for a set of basic building blocks, mediating the combination of their functionalities
within the multi-level hierarchy of the model;

• they have abstract architecture and adjustable parameters, making them both generalizable across different
ontogenetic processes and fine-tunable to specific modeling applications;

• they can be combined forming models that naturally exhibit consistency between time and space scales at all
system levels.

In this way, our approach supports generalization and knowledge exchange, as well as the gain of a deep, systemic
insight over the system.

In the presented approach, functional modules and the overall model share an essential backbone centered on two
system levels:

• the cells, and their internal regulation circuitry, including all relevant omics.

• the dynamic regulative landscape cells live into, as in their functional and process context.
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4.4.1 Model organization for ontogenesis

Figure 4.5. General model architecture for the modeling approach to be presented in this Section. Net tokens
at the bottom level model cells with their internal dynamics (not shown in this Figure); net token instances
live in the top level in two system nets: the Interactive Spatial Grid (ISG), modeling the functional context for
the cells, and the Differentiative Landscape (DL), modeling the process context.

As depicted in Figure 4.5, the presented modeling approach is structured with two main levels. The top level hosts a
set of two system nets, each one dealing with a different view over the complex regulatory landscape of the system.
Net tokens populate the bottom level, each one representing one of the cells from the system. Each net token instance
lives in both system nets.

At the bottom level, net tokens model cells composing the developing system; at the top level, the system nets
represent their functional and process contexts, reflecting in different semantics for the different nets. Synchronous
communication mechanisms make the whole model consistent.

Interactive Spatial Grid At the top level, this system net model the spatial architecture of the system,
together with all possible interactions taking place between each pair of positions in the grid. It covers the spatial
context and implications of morphogenetic and inductive mechanisms.

Differentiative Landscape This other system net from the top level models the process context, providing
a functional scenery for inductive and cell autonomous mechanisms to take place.

Cells At the bottom level, net tokens model the cells from the developing system. They comprise cell au-
tonomous mechanisms, such as cell differentiation, and the regulatory networks underlying them within the cell.
They also partly model inductive mechanisms, for their origination or effects within the cell.

Building blocks for basic ontogenetic mechanisms

This Section describes the basic building blocks that compose the nets at each level. These structures reflect the
definition of meta-transitions presented in Bonzanni, Krepska, et al., 2009: ”[...] a Petri net with specified inputs
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(places which can receive tokens) and outputs (arcs outgoing of the module)”. Building blocks possibly rely on either
intra- or cross-layer communication mechanisms. In the second case, the cross-level communications arrange in a
way that ensures consistency between the semantics of the two levels involved.

Each building block is a general model structure, corresponding to a general mechanism underlying ontogene-
sis. This modular approach makes the presented modeling strategy both specific for ontogenesis and general across
different ontogenetic processes. When employed for modeling specific processes, building blocks quickly adapt by
adjusting their parameters.

Interactive Spatial Grid

In the ISG, the following relations between model and system elements hold:

• Places model subparts of space (in either one, two or three dimensions). Each subspace holds a cell plus its
pertinences;

• Transitions model transports or interactions between actors living either in the same or in adjacent places, also
marking relations of mutual neighborhood between subspaces.

• Coloured tokens model biomolecules in the extracellular space;

• Net tokens model cells;

• Net architecture models the grid (either uni- bi- or three-dimensional) of subspaces, and their respective adja-
cencies and interactions.

In an ISG, model elements form the following building blocks, modeling morphogenetic and inductive ontogenetic
mechanisms. Each place in the grid has all of the capabilities described, and this makes the grid interactive and reactive
to the net token instances it contains.

The following Figures depict building blocks presented in the main text. For visual simplicity, they highlight the
most relevant net structures to explain their respective peculiarity. In particular, in illustrating building blocks from
the ISG, a transition connecting two places in the grid by double-edged arcs summarizes the variety of interactions
that can exist between them.

When a zoom into net instances (Cell A or Cell B) living in places from the ISG is useful for explaining how a
building block works, a grey triangule works as the background for the relevant net structures of the instances.

Neighbor detection is the basic process implemented by the ISG. It marks the neighborhood relations between
two positions, allowing a net token occupying a place to retrieve the identity of (Figure 4.7) and to connect to (Figure
4.6) the neighboring net token instances living in the adjacent places. It relies on intra-layer reading for neighbors
identification, and on cross-layer reading and writing for communications between net tokens.
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Figure 4.6. Neighbor detection
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Figure 4.7. Neighbor communication

Cell movement models the atomic movement of a cell in the defined space with the transport of a net token
from a place to another in the grid (Figure 4.8). It relies on intra-layer writing.

Figure 4.8. Cell movement

Molecular flow models the atomicmovement of a biomolecule in the defined spacewith the transport of a colored
token from a place to another in the grid (Figure 4.9). It relies on intra-layer writing.
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Figure 4.9. Molecular flow

Mitosis models the generation of two daughter cells from a single one with the consumption of a net token and
the following instantiation of two copies of it (Figure 4.10). By cross-layer reading, a checkpoint ensures cell division
starts after specific markers signal the completion of previous mitotic phases. The newly generated net tokens model
daughter cells and occupy the starting place and one of the adjacent ones respectively. The choice of the latter can
be random. Alternatively, contextual rules can affect the choice, including directionality over embryo axes, other
neighbor cells, and gradients of biomolecules over the surrounding places.

Figure 4.10. Mitosis

Apoptosis models the regulated death of a cell with the consumption of a net token from a place (Figure 4.11). By
cross-layer reading, a checkpoint ensures the apoptotic process starts after specific regulations within the cell are in
place and the respective markers arise.
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Figure 4.11. Apoptosis

Signal sensing models the passage of a signal, carried by a biomolecule, from outside to inside a cell. By cross-
layer writing, the colored token modeling the signal flows into the net token modeling the cell when they both occupy
the same place in the grid (Figure 4.12).

Figure 4.12. Signal sensing

Signal sending models the passage of a signal, carried by a biomolecule, from inside to outside a cell. By cross-
layer writing, the colored token modeling the signal flows from the net token modeling the cell to its place in the grid
(Figure 4.13).
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Figure 4.13. Signal sending

Differentiative Landscape

In the DL, the following relations between model and system elements hold:

• Places model cell states, inteded as functional identities or phenotypes;

• Transitions model passages from a cellular state to another one.

• Net tokens model cells;

• Net architecture models the landscape of differentiative trajectories underlying the ontogenetic process.

In the DL, model elements form the following basic building block, comprising inductive and cell autonomous
ontogenetic mechanisms.

Differentiative step models the passage of cells from a state to another. By cross-layer reading, a checkpoint
dynamically assesses the state of net tokens, and if they respond to the requirements, a state change takes place.
Firing relies on intra-layer writing for transporting the net token to the place modeling the following state (Figure
4.14).
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Figure 4.14. Basic building block from the DL: a general and abstract representations of the differentiative
step. Checkpoint rules adapt to the specificities of the differentiative trajectory to be modeled.

Cells

In the Cells, the following relations between model and system elements hold:

• Places model biomolecules from all -omics and their possible states, including for example genes, mRNAs,
ncRNAs, active and inactive proteins, and metabolites.

• Transitions model all kinds of biological processes, for example, transcription, translation, genetic and epige-
netic regulation, post-translational modification, enzymatic catalysis, and protein degradation;

• Black tokens model biomolecules within the cell, whose identity changes depending on the place they live into;

• Net architecture models the scheme of relations between bioprocesses and the flow of resources among them.

Model elements form the following building blocks, covering basic inductive and cell autonomous ontogenetic
mechanisms.

Transcription models the use of genetic information for producing protein-coding (mRNA) or non-coding tran-
scripts. By intra-layer reading, a black token marking the presence of a gene allows, without being consumed, for
the production of a variable number of black tokens in the places modeling the transcriptional products of that gene
(Figure 4.15).
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Figure 4.15. Transcription

Translation models the consumption of an mRNA for producing an aminoacidic chain, or protein. A black token
in the place modeling the mRNA is consumed for producing one (or more) black tokens in the place modeling the
protein product (Figure 4.16).

Figure 4.16. Translation

Enzymatic reaction models the modification of the state or structure of a biomolecule through the intervention
of an enzyme, which may be the same or another biomolecule. By intra-layer reading, it checks for the presence
of the active enzyme. After that, it consumes black tokens from the place modeling the substrates for the reaction
and produces black tokens into the place modeling its products, following its stoichiometry. This general scheme can
model diversity of reactions, for example, protein activation by post-translational modification, as well as metabolic
cycles (Figure 4.17).
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Figure 4.17. Enzymatic reaction

Gene regulation models the role of regulatory molecules in the modulation of gene expression. This block can
attach to a transcription block, which will consume black tokens from a place modeling the regulator (for instance, a
transcription factor) to switch on, off or modulate the process (Figures 4.19 and 4.18).

Figure 4.18. Activating gene regulation

Figure 4.19. Inhibiting gene regulation
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Post-transcriptional regulation models the role of molecules able to contribute to the subtle modulation of
mRNA translation, such as miRNAs. This block can attach to the place modeling coding transcripts in a translation
block, and, consuming some black tokens from the place modeling miRNAs, take away some black tokens modeling
mRNAs, according to the specific stoichiometry, and produces black tokens into the place modeling mRNA with
miRNAs attached (Figure 4.20).

Figure 4.20. Post-transcriptional regulation

Functional modules for complex ontogenetic mechanisms

Higher-level functional modules for complex ontogenetic processes can be seen as combinations of building blocks.
They encompass multiple system levels, providing holistic representations of complex ontogenetic phenomena. In
our approach, all model levels contribute to support functional modules, relying on cross-layer communication mech-
anisms that ensure consistency in the resources and information flow across nets, and semantic coherence of the
overall model.

At the aim to provide some applicative examples of the presented modeling approach, we provide some examples
of complex ontogenetic mechanisms functional modules can model, and the basic building blocks they can rely on to
do so. The Discussion and Conclusions section addresses the question of the role of the modelers, and when they stop
to assemble and adapt pre-existing structures and start designing their model.

Migration waves can correspond to different biological mechanisms, all devising the active movement of cells,
co-directed by other cells and environmental factors such as mechanical or chemical gradients. Cell movement, neigh-
bor sensing, molecular flow and signal sensing building blocks combine to model this process. [how?]

Apoptotic waves involve a group of cells undergoing apoptosis in a regulated way, often inducing proliferation
and migration in neighbor cells. Molecular flow, Signal sensing and apoptosis building blocks, over a set of adjacent
places in the ISG underlie these processes.

Proliferative phases involve a selected population of cells undergoing mitotic processes in a regulated way, as
a form of morphogenetic mechanism. Signal sensing and mitosis building blocks underlie this process, starting from
places in the ISG and populating adjacent ones.

Patterning is the emergence of phenotype and architectural complexity from the local interactions between cells.
It results from the combination of inductive mechanisms. For example, hierarchical signaling from a unique signal
source can determine a chemical gradient over the architecture of receiver cells. In a distance-dependant way, cells
receive a graded signal, having different effects at different concentrations. This can determine per se a pattern of
different cell identities. Lateral signaling between neighbor receiver cells can affect the downstream effects of the
signal.
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4.4.2 Application example: VPC specification in C. Elegans
This section presents, as an application example of the modeling strategy developed for ontogenetic processes, the
Vulval Precursor Cells (VPC) specification process in C. Elegans. The corresponding model relies on the patterning
complex ontogenetic mechanism (see 4.4.1), introducing into the details the corresponding functional modules.

As extensively described in Riddle et al., 1997; Schmid and Hajnal, 2015; Shin and Reiner, 2018; Sternberg,
2005, VPC specification occurs between the L3 and L4 stages of larval development in C. Elegans. At this stage, each
of six multi-potent stem cells, the Pn.p cells (Figure 4.21, acquire one of three fates (1°, 2° or 3° fate respectively). Fate
determination in this phase guides the subsequent phases of organ development. For each Pn-p cell, different actors
contribute to fate decision:

• the Anchor Cell (AC), residing in the adjacent developing uterus district;

• the hypodermis, residing below all Pn.p cells;

• the neighbor Pn.p cells.

Each of these actors can affect fate determination in each Pn.p cells, via different mechanisms. Intra-cellular
regulation mechanisms mediate the effects of environmental signals via specific pathways.
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Figure 4.21. Left lateral views of VPC specification in C. Elegans larval hermaphrodites. A: the configuration
from the L3 developmental stage: no signs of morphological differentiation. B: two rounds of mitosis over
the cell lineage are shown. The 2° and 1° vulval precursors take part to longitudinal (L), transverse (T) or no
division (AC: anchor cell; 3: 3° VPCs (P4.p and P8.p); 2: 2° VPCs (P5.p and P7.p); 1: 1° VPC).
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Figure 4.22. Overview of the C. Elegans VPC fate patterning. Pn.p cells are numbered P3.p through P8.p.
P6.p, the closest to the Anchor Cell (AC), receives the highest level of LIN-3 inductive signal (via juxtacrine
signaling) and assumes 1° fate. P5.p and P7.p receive lower levels of inductive signal (via paracrine signaling)
and lateral Notch signal from the P6.p, yielding to 2° fate. P3.p, P4.p, and P8.p, due to the lack of sufficient
signal levels, adopt nonvulval fates. Adapted from Shin and Reiner, 2018.
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Figure 4.23. Critical aspects of the 1°-2° VPC patterning mechanism. LIN-3 from the anchor cell acts in a
graded fashion with P6.p receiving more signal than P7.p. LET-23 activation promotes the 1° fate and pro-
duction of DSL ligands for LIN-12, and inhibits LIN-12 protein levels. LIN-12 activation promotes the 2° fate
and inhibits the response to LET-23 activation. Adapted from Sternberg, P.W., Vulval development (June
25, 2005), WormBook, ed. The C. Elegans Research Community, WormBook, doi/10.1895/wormbook.1.6.1,
http://www.wormbook.org. © 2005 Paul W. Sternberg.

As in Figure 4.23, in the physiological case, the AC sends out a LIN-3 (EGF-like) signal reaching Pn.p with distance-
dependent intensity. The closest cell to the AC, P6.p, engages in LIN-3/LET-23 based juxtacrine signaling, while its
neighbors, P5.p and P7.p cells, receive paracrine signaling, mediated by the soluble isoform of LIN-3. The signal does
not reach P3.p, P4.p, P7.p and P8.p, the farthest cells. The hypodermis (hyp7) sends uniformly strong paracrine LIN-3
signals to all Pn.p cells. Each of the Pn.p cells can engage in mutual juxtacrine lateral signaling via trans-membrane
DSL/LIN-12 (DSL/Notch-like) signaling.

At the intracellular level, intense LIN-3 signaling induces the 1° fate in P6.p, via the activation of a LET-23-mediated
RAS/MAPK signaling pathway. The predominance of the 1° fate becomes evident by high concentrations of the ac-
tive form of MPK1, which activates strong DSL lateral signaling to the neighbors, causing them to switch off the 1°
fates traits induced by LIN-3 paracrine signals from the AC, activating 2° fate traits instead, corresponding to high
concentrations of the active LIN12 protein. P3.p, P4.p, and P8.p cells do not receive any LIN-3 other than that from
the hypodermis, thus causing them to undergo the 3° fate. In a non-physiological case, corresponding to the ablation
of the AC, no LIN-3 inductive signal is present: all cells undergo the 3° fate.

The combinations of these signals, considering the states different cells can assume, results in a pattern of six
cells, each one with a fate among three: primary, secondary or tertiary.

Patterning as a functional module

This model implementation recapitulates the complex ontogenetic mechanism defined as Patterning in Section 4.4.1.
This functional module combines building blocks to model different mechanisms. Starting from the top level in the
model, the ISG models different cell-cell communication mechanisms.

Juxtacrine signaling relies on neighbor detection and neighbor communication. This mechanism links the AC
with the P6.p cell position, and the Cell instance living in it, as well as each Pn.p cell positions and Cell model instances
with its neighbors. While the communication from the AC to P6.p is unilateral, between each pair of neighbor two
signaling ways exist, since communication is bi-lateral.

Paracrine signaling relies on signal sending, molecular flow and signal sensing. This mechanism links the AC
with P5.p and P7.p cells and represent a unilateral communication mechanism.

The DL model represents with places the possible states of the cells along the developmental step from L3 to L4.
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Fate determination leverages one differentiative trajectory building block for each possible fate for Pn.p cells.
Each trajectory relies on a checkpoint with different rules. All checkpoints track dynamically the marking evolution
of Cell models respect to the places modeling active MPK1 and active LIN12. A classification module labels cells
basing on the two resulting vectors of sampled values. After classification, each Cell model in the DL moves to the
place corresponding to the acquired state, via a cell movement building block. The model is currently trained, with a
supervised mechanism, on a dataset generated from previous simulation runs. Classification occurs at the System Net
level during simulations. The simulation outputs the result of the six classifications: an ordered array of six labels,
recapitulating the fate decision over each Pn.p cell. The Cell model represents with the low-level PNs formalism cell
autonomous mechanisms, except for it communicates with the ISG and the DL.

Signaling pathways and their mutual interactions rely on signal sensing and enzymatic reation. Each actor
involved in the pathway also has gene regulation and translation building blocks. In particular, [egf-like, dsl/notch
like]

Fate determinants correspond to places, which the checkpoint building blocks from the DL access and use for
classifying the cell into one out of the three places.

Model construction

The model aims to perform predictions over the fate decision processes for each cell, predicting, in the end, the fates
pattern formation in the single developmental stage between L3 and L4. For modeling autonomous and inductive
cellular mechanisms, this model integrates the one presented in Bonzanni, Krepska, et al., 2009, recapitulating the
available information about the process. Information about the organization of cells forms a scheme of relative posi-
tions, which permits to build a bi-dimensional spatiality model, where it is possible to express proximity relations and
graded discrete distances. Recapitulation of possible cell fate specifications draw the differentiative trajectories in the
landscape model. Checkpoints assign cell fates dynamically, classifying cells according to their evolving markings
during execution.

Model implementation

The resulting model comprises three views over the system.

Interactive Spatial Grid A bi-dimensional ISG model mediates juxtacrine and paracrine signaling by the AC,
lateral signaling between Pn.p cells, and paracrine signals from hyp7. Six places represent positions where Pn.p cells
are supposed to live, in their mutual proximity relations. One place hosts the AC in the form of a colored token, which
can be either present or absent to this level of abstraction. Another place hosts hyp7 in the form of a black token.
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Figure 4.24. In this implementation, the ISG model and the DL model combine, representing in two dimen-
sions the relative positions of the AC and the Pn.p cells, and the states Pn.p cells can assume in terms of
fate determination. A: The place modeling the AC links to P5.p, P6.p and P7.p positions in the grid via mod-
ules implementing cell-cell communicationmechanisms, devising neighbor detection,molecular flow and signal
sensing building blocks. B: the place modeling hyp7 leverages neighbor detection and signal sensing to commu-
nicate with all Pn.p positions. C: lateral signaling between neighbor cells rely on neighbor detection, neighbor
communication and molecular flow building blocks. D: for each Pn.p position in the grid, the checkpoint build-
ing blocks sample, via cross-level communication, the marking evolution of the fate determinants from Cell
models living there. E: After checkpoints classify each Cell instance, the results of the classification form the
pattern, highlighting a new state out of the landscape of possible differentiative state for each of them.

Differentiative Landscape A DL model for the developmental stage from L3 to L4 comprises the state of Pn.p
cell, 1°, 2°, and 3° fates respectively. This model also represents the trajectories from the Pn.p state to each of them.
Each trajectory has a checkpoint, classifying the cell by the time evolution of its levels of active MPK1 and LIN12 as
having one out of the three fates. In this implementation, the ISG and the DL models coexist in the same net (Figure
4.24).

In particular, in this implementation, the checkpoint has a model per se, which takes the name of Fates Manager
(Figure 4.25). In this net, the classifiers are operated by structures for dynamically storing reading vectors for the
classification, so that it can occur at runtime over the current time windows of markings from the cells.
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Figure 4.25. In this implementation, an entire net dedicates to managing the rules behind checkpoint building
blocks. Thanks to cross-layer communicationmechanisms, this net dynamically reads, and stores evolving fate
determinants MPK1 and LIN12 markings from each Cell instance, and leverages a Weka-based classification
model for labeling them with a specific fate.

Cells A Cell model represents cell-autonomous mechanisms and signaling pathways communicating with other
cells via the ISG, such as the MPK signaling cascade, and the DSL/LIN12 pathway. For each actor from signaling
pathways gene regulation and protein degradation processes find a representation in the model (Figure 4.26).
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Figure 4.26. The Cell model, recapitulating cell-autonomousmechanisms in Pn.p cells, and their commu-
nications within each other and with the environment. The MAPK and DSL/NOTCH signaling pathways
interact resulting in different levels of active MPK1 and active LIN12 over simulation time. A, B: signal
sensing building blocksmediate the AC-and hyp7-derived signalingmechanisms. C: neighbor communica-
tion building blocks, one for each side of the Cell, handle the lateral communication mechanisms between
neighbor Cell instances. D: the checkpoint module samples evolving markings in the places modeling the
fate determinants active MPK1 and active LIN12.

The Cell model lives as an instance in Pn.p places from the ISG and the Pn.p state in the DL model.

Experimental design

In the model, different initial markings represent different experimental conditions, chosen by the scheme proposed
in Bonzanni, Krepska, et al., 2009. In particular, we simulate the physiological case and the AC ablated mutant.
The latter devises the absence of the AC and the following functional activations, resulting in all cells acquiring the
tertiary fate. During simulations, the final pattern of Pn.p cells fates constitutes the outcome. Such fates emerge
from the evolution of marking in places modeling active MPK1 and active LIN12 respectively in each cell. Figure 4.27
shows two sample tracks the simulation automatically generates. Also, it depicts the fate pattern generation process,
including the classification of these tracks into one of the three possible fates. This last step is based on the integration
of the Java-based machine learning library Weka into the model.
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Simulations

Model design and simulation rely on Renew Cabac, Haustermann, et al., 2016, a Java-based modeling environment
for NWNs. Among the possible modes, the stochastic simulation mode allows representing stochastic effects by
randomizing the firing order of enabled transitions. The classification module for the checkpoint in the DL relies on
a custom Java class that integrates a RandomForest classifier based on Weka Smith and Frank, 2016, a Java-based
library for machine learning.

Figure 4.27. A scheme of the classification process which in this implementation the checkpoint building
block relies on for labeling cells with a fate. The classification process relies on aWeka random forest classifier,
and its training makes use of previous simulation tracks, and it labels Cells with one out of the three possible
fates basing on the evolving markings of active MPK1 and active LIN12, sampled over simulation time.

For each experimental condition, 100 simulations were performed, according to what authors in Ritter et al.,
2011 recommend. Table 4.1 recapitulates the initial conditions tested, the relative expected pattern in the relative
simulation outcome, and the accuracy scores per cell in each generated pattern. Simulation outcome is an array of
six ordered fate values, one for each Pn.p cell, as in column Pn.p pattern.

experiment Pn.p pattern accuracies refs
wt 3 3 2 1 2 3 100% 100% 100% 94% 100% 100% (a)

AC ablated 3 3 3 3 3 3 100% 100% 100% 100% 100% 100% (b)

Table 4.1. Each experimental condition corresponds to an expected Pn.p fates pattern. Accuracy scores refer
to the cell-by-cell classification performance by the model, compared to the expected fate. Reported results
refer to 100 simulation runs. References: (a)Sulston and Horvitz, 1977; (b)Kimble, 1981.

4.5 A modeling approach to synthetic biology
This section illustrates a potential role for the presented modeling approach for synthetic biology. For a more thor-
ough exploration of the use of computational models in this field, and a detailed description of the presented use case,
see Bardini, Di Carlo, et al., 2018. The domain of synthetic biology challenges the presented approach in at least two
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ways. On one side, it leverage models for design processes, where predictive power allows for reliable implementa-
tions. On the other side, synthetic systems may have operable components, for example, inducible genetic switches,
or controllable culture conditions. The capability for inducing a state change in the system corresponds to a different
interpretation of the states the system can assume. In fact, in these models, state changes need to be imposable in a
top-down manner, reflecting the core paradigm shift in synthetic biology.

There is no single definition for the domain of synthetic biology. It generally concerns the implementation of an
artificial function through modification or construction of a biological structure Cameron et al., 2014. In other words,
what defines synthetic biology is the application of a top-down engineering approach to biological systems Benso,
Di Carlo, Politano, Savino, and Bucci, 2014.

When engineering the genome of a complex biological system, it is necessary to precisely and reliably map the
quantitative relation between the genetic information to be manipulated and its structural-functional correlates. This
map is relevant at the very least for the downstream informational flow specific to the synthetic structure. It would be
better to leverage information from the whole functional context for the modification. In other words, it is necessary
to consider synthetic biological systems under the perspective of systems biology. In particular, it is mandatory to
take into account, for each system level of interest, quantitative aspects, non-linearities, and stochasticity, as well as
the way spatiality mediates regulation mechanisms in the system Bardini, Politano, et al., 2017a.

In the design of biological systems, the designer can either modify existing genetic information or build up com-
plex artificial constructs to embed in an existing organism. The latter requires the definition and use of biological
sub-parts for the construct to take shape and to yield the desired behavior Purnick and Weiss, 2009. This strategy,
based on the use of functional building blocks from different system levels, highlights the necessity of a systemic
perspective: each building block and their combination need to take into account the inherent complexity of the
system.

The scope of this section is to illustrate how the presented modeling strategy can be employed to leverage the
holistic understanding of systems biology to combine it with the top-down approach of synthetic biology.

4.5.1 Case-study: synthetic cell-cell communication
The presented case-study, based on W.-D. Wang et al., 2008, concerns the artificial culture of mammalian cells ex-
pressing the genes of a cell-cell communication genetic construct. The system includes two different types of cells,
each one carrying a part of the construct, and engaging in a communication mechanism based on these parts. Also,
the system comprises the cell culture medium, providing nourishment and possibly signals to the cells. Figure 4.28
recapitulates the functioning of such genetic circuit. The culture medium can function as an additional regulative
layer for the cells, taking part in the artificial set-up for building the synthetic system.

Intercellular nitric oxide (NO)-based signaling mechanisms enable communication between sender and receiver
cells respectively. Before that, the synthetic process of NO takes place, in sender cells, after induction. The NO-
mediated signal reaches the receiver cells and acts inducing the expression of an EGFP reporter. More specifically,
sender cells express NO synthetase (NOS) in a TeT-on-inducible way. Integrating with the c-fos promoter, NOS
catalyzes the production of NO. Fos can activate, in receiver cells, an EGFP-based gene reporter. The NO signal
activates soluble guanylyl cyclase, producing cytosolic GMP from GTP, which activates the reporter gene through
fos. In this way, the receiver cell produces the EGFP reporter.

This section aims to show how the presented modeling strategy can cover the different levels of the biological
and artificial systems involved in this design. In this perspective, the model needs to include the level of cells and that
of the culture medium. In order to evaluate cell-cell communication, their spatial organization needs to find proper
representation.
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Figure 4.28. The synthetic circuit of interest involves different cell recipients, defined sender and re-
ceiver cells respectively. Sender cells send a NO signal after an aTc-inducible transcriptional activation,
an receiver cells produce EGFP following the subsequent activation of a NO-mediated activation. The co-
culture of sender and receiver cells promotes the activation of the NO signaling-based EGFP production.
Adapted from Bardini, Politano, et al., 2018

Model design

The model represents three system levels:

• the culture medium;

• the cell aggregates;

• the mechanisms within cells.

Following the presented modeling strategy, three nets compose the model.

• the ISG models the volume cells occupy within the culture medium, and the spatial relations between them. It
also mediates the NO-based signaling mechanisms, and the administration of signals to cells via the medium,
as well as the detection of fluorescent cells in the cell aggregate (Figure 4.29);

• the DL model, which in this case has more of a States Landscape acceptation, comprises the identities and
states of cells in the cultured system: sender and receiver, but also fluorescent and non-fluorescent. Another
higher-level States Landscape operates the administration of the stimuli to the cell culture (Figure 4.30).

• the Cell models represent the artificial circuitry inserted in sender and receiver cells respectively; also, it pos-
sibly comprises all relevant cell autonomous mechanisms the designer may want to consider (Figure 4.31).

This type of model can be useful as a starting point to include more of the complexity from the modified system
and to analyze the culture process. In the present form, the model only covers the synthetic circuit to be embedded
in cells, and the cellular interaction it makes possible. For showing how the presented strategy can help this kind of
process, in the following paragraphs, the three models and their building blocks are presented.
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Figure 4.29. The Interactive Spatial Grid hosts both sender and receiver Cell instances. In the ISG,molec-
ular flow building blocks model the diffucion of NO and aTc signals in the extracellular space. Signal
sending and signal sensing building blocks model the generation and reception of aTc and NO signals.
Adapted from Bardini, Politano, et al., 2018
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Figure 4.30. The culture environment functions as a control system for the cultured cells. Viamolec-
ular flow and signal sensing building blocks it can target the cell culture with the aTc signal. A
checkpoint building block detects the presence of EGFP-based fluorescent signal from the lower level.
Adapted from Bardini, Politano, et al., 2018

59



4 – A multi-level, multi-context modeling approach

Figure 4.31. The NWN model at the bottom level represents the cell types involved in the system. They are
described using Petri Nets modeling the relevant synthetic functionalities that they implement. Sender cells
model the aTc-dependent transcriptional activation of NO synthase with the enabling rule of the transition
modeling the production of the NOS gene product. The marking of the NOS operates the transition modeling
NO production from L-Arg. Receiver cells depend on the marking of the place for incoming NO molecules.
These activate the sCG enzyme, which, if it is present in its active form, corresponds to a marking enabling
the transition transforming GTP into cGMP. This transition activates through a dedicated enabling rule the
transition for the transcription of the EGFP gene. Adapted from Bardini, Politano, et al., 2018

Heterogeneous cell culture as a functional module

The model easily covers the fundamental mechanisms characterizing this partly artificial system employing the basic
building blocks from the modeling approach proposed for ontogenetic processes.

The ISG models different positions in the cell culture medium, and mediates the administration of signals such as
aTc to the cells. Positions may host either cells or culture medium.

aTc signaling relies on a form of hierarchical signaling, which the DL model operates.

NO signaling relies on molecular flow for modeling the diffusion of the NO molecule in the culture medium.
The DL model covers the states the receiver cell can be in; that is, it can either produce the fluorescent signal or

not.

aTc administration draws a particular kind of trajectory for the Cell models. In fact, instead of evaluating
conditions from them, the checkpoint in this case imposes a state change according to conditions from its level. This
capability for imposing conditions over the system reflects the artificial part of the culturing process, over which the
experimenter has effective control.

Fluorescent reporting is modeled similarly to a differentiative trajectory: the receiver cells can pass to the
”fluorescent” state after a checkpoint assesses their production of EGFP in the dedicate place from the receiver place.

The Cell models, for the sender and the receiver cells respectively, represent cell autonomous mechanisms, except
for they communicate with the ISG and the DL. In this case study, the Cell models cover the artificial constructs to
embed in the cells only.
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NO production in the sender cell relies on a signal sensing building block for receiveing the aTc signal from the
ISG model. Then, an activating gene regulation, transcription and translation blocks operate the production of NOS
from its gene. An enzymatic reaction block models the NOS-mediated production of NO from L-Arg. A signal sending
block takes care of sending the NO signal back to the ISG.

EGFP production in the receiver cell relies on a signal sensing building block for receiveing the NO signal from
the ISG model. Then, NO enables an enzymatic reaction activating sCG, which, with a second enzymatic reaction
block, produces cGMP from GTP. GTP, in turn, enables a transcription and a translation building block for the EGFP
gene.
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4.6 A modeling approach to epidemiology
To prove the semantic versatility of the presented modeling approach, this Section illustrates an entirely different
application example, where models deal with bacterial cells, microbiotas and their hosts.

4.6.1 Application example: the spread of antibiotic resistance within the mi-
crobiota

Poor management of antibiotics administration in clinical practice and intensive breeding seems to have caused,
in the last years, the emergence and increase of resistance in several bacterial strains. Policies and practices for
antibiotics managements in different areas of the societal system point to a multi-level problem: considering each
as a meta-organism, it is necessary to consider the microbiota living with it, which plays a role in the spread of
antibiotic resistance. Each microbiota, includes bacteria, fungi, viruses, and other microbial and eukaryotic species.
Their population growth dynamics, together with exchanges of genetic information among microorganisms can both
facilitate resistance spreading and open possibilities for its prevention.

A possible intervention point is the design of more efficient antibiotic administration protocols, preventing or
slowing down the spread of antibiotic resistance, both within single microbiota and at the hosts’ population level.

The microbial taxa associated with humans exhibit great genomic diversity Ley et al., 2006, corresponding to
excellent enzymatic capability and can control the physiology of the host. The host organism and the microbiota live
in a symbiotic relationship. Bacteria get to live in a favorable environment for them, and the host organism gains
a diversity of advantages M. Li et al., 2008. For example, the microbiota often can protect the host from pathogens
Kamada et al., 2013.

Each microbiota has different proportions of different bacterial species, making overall growth dynamics emerge.
The overall availability of resources bounds the overall growth and the way they occupy the available ecological
space Korem et al., 2015. The larger a bacterial population in the microbiota, the more its genetic profile determines
the functional profile of the overall population. Healthy microbiotas have a necessary core of functionalities, and
at the same time, they show impressive species diversity, which makes them capable of adaptation and plasticity
Turnbaugh et al., 2007.

It is possible that brand new functional capabilities emerge in a microbiota, thanks to different mechanisms. For
example, previously absent species join in from the environment, starting to contribute to the pre-existing microbiota
Lozupone et al., 2012. Anotherway is that thanks to the activation ofHorizontal Gene Transfer (HGT)mechanisms, the
acquisition of new functional capabilities can take place across species within the microbiota Thomas and Nielsen,
2005, which usually happens via plasmids exchange between cells Huddleston, 2014.

Antibiotics can cause insurgency and spread of resistance in all the bacterial populations they come in contact
with after administration. They target conserved biological features Arenz and D. N. Wilson, 2016 in bacterial cells,
and then they hit a broad spectrum of different bacterial species at the same time. Antibiotic administration kills both
pathogenic and non-pathogenic species in the microbiota. This lack of species-specificity selects for survival only
resistant species, that after the death of non-resistant cells can access the large portion of the ecological space which
is freed from them, having less competition for resources Rodriǵuez-Rojas et al., 2013.

HGT promotes diversity in the bacterial population and improves their overall resilience by the sharing of capa-
bilities. The HGT-mediated acquisition of antibiotic resistance is, for the cells involved, a form of adaptation to an
environment becoming hostile for the antibiotic treatment.

In this application example, the proposed modeling approach targets a different multi-level system than the pre-
vious examples. The modeling objective, in this case, is to both better understand the spread dynamics, and to find
antibiotic administration strategies allowing to slow down or prevent the spread of resistance within a microbiota
and the hosts’ population Lozupone et al., 2012.

Model organization

Compared to the previous application examples, in this case, the role of state representation is prominent respect to
that of spatiality. Also, there is no detailed representation of cell-autonomous mechanisms: colored tokens model
cells, providing information about their species and resistance state (see 4.32). As depiced in Figure 5.1, the model
represents three system levels:

1. the population of hosts;
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2. the microbiota;

3. the bacterial cells;

NON-RESISTANT STATE MILDLY RESISTANT STATE SEVERELY RESISTANT STATE

NON-RESISTANT 
CELLS

RESISTANT 
CELLS

NON-RESISTANT 
CELLS

RESISTANT 
CELLS

NON-RESISTANT 
CELLS

RESISTANT 
CELLS

BACTERIAL CELL: 
SPECIES x, 
RESISTANT

BACTERIAL CELL: 
SPECIES x, 

NON-RESISTANT

1) HOSTS (TOP LEVEL)

2) MICROBIOTAS  (MIDDLE LEVEL)

3) BACTERIAL CELLS  (BOTTOM LEVEL)

Figure 4.32. High level conceptual view of the proposed computational model organized into three levels.
Taken from Bardini, Di Carlo, et al., 2018.
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Microbiota States
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Figure 4.33. Conceptual view of the network architecture for the hosts (top) level. Three main places describe
the health states the microbiotas can assume. The letters identify the different sections of the detailed model
presented in 4.34. Taken from Bardini, Di Carlo, et al., 2018.
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Figure 4.34. Network architecture for the top-level States Landscape model, modeling populations of hosts.
Three main places describe the health states the microbiotas can assume: the non-resistant (in green), mildly
resistant (in yellow) and severely resistant (in red) states respectively (A). Transitions can move microbiota
tokens, each having the network structure from 4.36, to the next place. The state of non-resistance holds two
microbiota tokens depicted in a compact form, i.e., with their name only. According to the value of their point
prevalence score which a synchronous channel (D) reads from networks at the lower level, possibly taking the
relative microbiota to the next step along with resistance progression (the structures in E track the changing
numerosity of microbiota instances in each place). Synchronous channels take care of the antibiotic admin-
istration and microbiota integration events (B), activating network structures at the lower level (4.36.B and
4.36.F, respectively) according to time delays and the number of microbiota instances injected in the network
by the dedicated structure (C). Taken from Bardini, Di Carlo, et al., 2018.

65



4 – A multi-level, multi-context modeling approach
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Figure 4.35. Conceptual view of the network architecture for the microbiotas level: two main places describe
two conditions each bacterial cell can assume. The letters identify the different sections of the detailed model
presented in 4.36. Taken from Bardini, Di Carlo, et al., 2018.
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Figure 4.36. Network architecture for the bottom-level States Landscape model. It models individual micro-
biota. Twomain places describe two conditions each bacterial cell can assume: a state of non-resistance (green)
and a state of resistance (red), respectively (C). Horizontal transfer mechanisms can turn non-resistant cells
into resistant ones (G). Network structures managing the generation of new bacterial cells (D), total population
numerosity and resource availability (E) give rise to a competitive population dynamics between resistant and
non-resistant populations. Dose-dependent depletion of non-resistant cells following antibiotic administra-
tion (B) and microbiota reintegration (F) events activate as synchronous channels with structures in 4.34.B.
The structure in A dynamically computes the point prevalence score of the microbiota network, making the
information available for the upper level through a synchronous channel (see 4.34.D). Inscriptions over arcs
specify instructions for transition functionings. Taken from Bardini, Di Carlo, et al., 2018.
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Genetic exchanges in the microbiota as a functional module

The building blocks from the proposed modeling strategy in this context adapt to the actors involved in antibiotic
resistance spread and their main functional interactions Bardini, Politano, et al., 2017b; Centers for Disease
Control and Prevention, 2013.

The ISG reduces to a minimum: no spatial resolution is provided for the simulation of interactions between
bacterial cells. The DL model is, like in the previous example, better interpreted as a Landscape of States. There are
two States Landscape models. One for the microbiota, and another one for the bacterial cells. At the top level, the
emergent behavior of its bacterial population determines the state of each microbiota.

Increases in resistance level for the host leverage a building block similar to differentiative trajectories: the
host organism moves from a place corresponding to a lower resistance level to one for higher resistance. A checkpoint
building block regulates the passage, reading from the lower level a dynamically computed metric evaluating the
overall population state. That is, the Point Prevalence Score (PPS), i. e. the proportion of bacterial cells carrying
resistance factors over the total bacterial population Szklo and Nieto, 2014 (see Figure 5.7.A).

Treatment administrations leverage a form of hierarchical signaling operated by the States Landscape model,
determining the marking of lower-level nets with a precise temporal organization (see Figure 5.6.B) in all microbiota
instances existing in the target place. Antibiotic doses deplete non-resistant cells, while reintegration waves make
new non-resistant cells join the microbiota. Both events dramatically affect population dynamics.

At the middle level, bacterial cells can live either in resistant or non-resistant states. Also, they can carry graded
levels of resistance as colored tokens.

HGT mechanisms leverage a building block similar to differentiative trajectories: the bacterial cells move from
a place corresponding to the non-resistant state to one for the resistant state. The passage is regulated by an active
checkpoint building block, which can transform non-resistant cells in resistant ones, moving them in a dedicated place.
This block enables after a stochastic time delay, modeling the probability for resistance acquisition for the average
bacterial cell in the microbiota.

Bacterial duplication leverages a mechanism similar to the Mitosis building block. Depending on the availabil-
ity of ecological space within themicrobiota, which growth rates of subpopulation and overall availability of resources
allow to compute, bacterial cells can divide.

Bacterial death leverages a mechanism similar to the Apoptosis building block. Depending on the entity of
antibiotic dose administered, which arrives from the top States Landscape model through a signal sensing building
block, a number of non-resistant bacterial cells die.

The Cell models are, in this case, colored tokens which can carry information about the bacterial species and the
state of resistance of the single cell.

General experimental designs

To provide an example of the types of experiments that a model specified under this approach can support, in this
section three different experimental conditions initialize simulations. Each of them corresponds to a different an-
tibiotic administration procedure. The objective is to compare the effects of different administration protocols over
the spread of resistance. On one side, the simulation of traditional protocols takes place. On the other side, existing
clinical practices such as autologous microbiota transplants also called bacterial therapy Lozupone et al., 2012. This
strategy has the scope to mitigate the advantage acquired by the resistant cells in colonizing the gut niche, reinforcing
the non-resistant population.

• no antibiotic administration is performed (Figure 4.37);

• two administration events take place, the first one devising a lower dose and the secondo an higher one (4.38);

• the application of an innovative treatment protocol, where administration of the first low antibiotic dose pairs
with reintegration of non-resistant bacterial cells in the microbiota (4.39).
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In this first experimental design, simulations track the PPS of a single microbiota; this measures the prevalence
of resistant cells within the total bacterial population. PPS score is sampled at different stages of the simulation:

• before any treatment;

• after the administration of the first, low dose of antibiotic (plus, for the innovative protocol, the microbiota
integration)

• after the administration of the second higher dose of antibiotics.

The values presented in Figures 4.37, 4.38, 4.39 are computed as the average point prevalence score (APPS) over
30 simulation runs. In this way, the proposed model intends to enable the study of the overall resistance state of
microbiota and the dynamics of its insurgency and the different treatment protocols.

In the first experimental condition, devising no treatment at all, the APPS remains at a low and almost constant
level during the whole simulation. Small increases can occur after the activation of random mutations or horizontal
gene transfer events. In only 4 out of 30 experiments the score exceeded the threshold required to assign themicrobiota
into a state of mild resistance. The relative averaged APPS of 57.75±0.63 (second bar of 4.37) refers to these four cases.
All remaining simulations find representations in the first bar of 4.37, showing that the microbiota remained in a
healthy state, with an APPS score of 48.67±0.61. In none of the simulations, the microbiota reached a state of severe
resistance.

In the second experimental condition, the model simulates a treatment protocol composed of two administrations
of an increasing dose of antibiotic (4.38). Before treatment (as in the control condition), the APPS was 50.34±0.88. The
administration of the first lower dose allows partial recovery of the non-resistant portion of the bacterial population
(APPS of 64.74±1.14); the second higher dose, instead, takes the microbiota towards a state of increased resistance
(APPS 93.24±2.4).

In the third experimental condition (4.39), the previous treatment protocol combines with a parallel preventive
reintegration of non resistant bacterial cells; this improved protocol has a significant effect after each antibiotic dose:
the APPS decreases of 18.08% after the first dose (when compared to that originating from the traditional treatment
alone), and decreases of 24.12% w.r.t. the traditional protocol after the second antibiotic dose.

PPS remains constant when no treatment is administered (4.37). With traditional treatment, it increases in cor-
respondence with the administration of the two antibiotic doses (blue curve in 4.38). The same dynamic emerges in
4.39, with the difference that the preventive action of bacterial reintegration mitigates the resistance effects of the
first dose of antibiotics, taking the PPS score to a level similar to pre-treatment.
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Figure 4.37. Results for ED1 in case of no treatment. The APPS (Average PPS) is 48.67±0.61 (first bar),
under the threshold of mild resistance, keeping the microbiota into the ”non-resistant” state. Only in 4
cases such threshold was crossed, and the APPS for those cases is slightly higher: 57.75±0.63 (second bar).
All cases had similar tracks, where PPS (the curve in orange) reaches a value and keeps it steadily along
the simulation. The curve in blue tracks treatment administrations: it marks zero during the entire track.
Taken from Bardini, Di Carlo, et al., 2018.

70



4.6 – A modeling approach to epidemiology

Pretreatment After first dose After second dose

A
PP

S

Simulation time

PP
S

Figure 4.38. Results for ED1 in the case of traditional treatment. Two doses of antibiotics target the micro-
biota, the first lower and the second higher. The APPSs for the three important stages of the experiment are
50.34±0.88 before treatment (homologous to that in 4.37), 64.74±1.14 after the first dose (beyond the thresh-
old for mild resistance) and 93.24±2.4 after the higher dose, beyond the threshold for severe resistance. The
simulation track of the PPS shows that after each dose (the curve in blue, whose peaks represent doses admin-
istration) PPS increases proportionally, moving from the ”non-resistant” steady state to the ”mildly resistant”
one, and finally to the ”severely resistant” state, where it stays. Taken from Bardini, Di Carlo, et al., 2018.
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Figure 4.39. Results for ED1 in case of the innovative protocol. This protocol lowers APPS both in the
second and in the third stages of the experiment: while pretreatment APPS remains homologous to those
in 4.37 and 4.38 (50.94±0.67), after the first dose of antibiotic and microbiota reintegration it drops to
53.03±0.52. Eventually, after the second dose of antibiotics, it reaches 70.75±0.82, corresponding to sig-
nificant decreases compared to the corresponding simulation stages in the traditional treatment scenario
4.38. In the simulation curve, we observe how the microbiota reintegration counterbalances the effects of
the first antibiotic dose on PPS: in the first place PPS begins to rise, but it is bounded right away to a low
level by the preventive action, leaving on the track just a transient spike. After the second, higher dosage
of antibiotics, PPS increases, reaching a steady state at a higher level, which is lower than that reached in
4.38. Taken from Bardini, Di Carlo, et al., 2018.
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A second experimental design centers over the host population level: multiple instances of the microbiota model
a population of hosts. The following experimental conditions were taken into account:

• no treatment administration;

• a single, high-dosage treatment administration (see Figure 4.43);

• a single, high-dosage antibiotic administration, combined with bacterial reintegration (see Figure 4.40).

We simulated 50 instances of the microbiota network, collecting the simulation times at which the number of
severely resistant hosts exceeds the number of mildly resistant hosts (severe resistance onset time, T), representing
the fact the spread reached a turning point, after which extensive resistance diffusion takes place.

When no treatment administration, severe resistance does not emerge. Figure 4.43 shows how a high-dosage
antibiotic administration determines an average onset time (AT) of 162.87±7.78, while bacterial reintegration, AT is
delayed on average by 9.68% in AT, 178.64±7.4 (see Figure 4.40).
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Figure 4.40. Results for ED2 in case of innovative treatment. A single high dose of antibiotic combined
with bacterial reintegration reaches the microbiota. Microbiota reintegration combined with antibiotic
administration yields an increased AT (178.64±7.4), compared to that observed with the administration
of the antibiotics alone (Figure 4.43). In simulation tracks we notice how the overall migration of healthy
individuals towards a worsening resistant state slows down, resulting in a slower severe resistance onset
time (T).The blue curve represents the number of non-resistant individuals, the orange curve the number
of mildly resistant individuals, and the yellow one the population of severely resistant individuals. Taken
from Bardini, Di Carlo, et al., 2018.
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The role of bacterial predation in the spread of resistance

This section presents an application example of the general modeling approach to resistance spread dynamics. This
general framework applies to the spread of antibiotic resistance in themouse gutmicrobiota. Thismodel also considers
the role of bacterial predationmechanisms Acinetobacterium and E. Coli bacterial cells engage in Asahara et al., 2016;
Cooper RM, 2017.

Among other bacterial species that can live in the microbiota, Acinetobacterium baumanii acts as an opportunistic
pathogen, posing a real threat to immunocompromised or injured individuals. This species thrives in hostile envi-
ronments, such as hospitals or battlefields, because it can survive in biotic and abiotic environments thanks to its
capability to build up a protective biofilm. For this reason, cells survive in the environment for a longer time. This
improved survival capabilities support the formation of pathogenic reservoirs, making infection by environmental
contact more probable. In addition, Acinetobacterium Baumanii acquires antibiotic resistance very fast (Antunes
et al., 2014; Joly-Guillou, 2005), reaching multi drug-resistance (MDR) rates beyond 60% (Antunes et al., 2014;
Centers for Disease Control and Prevention, 2013).

A model integration procedure embeds quantitative parameters (e.g., bacterial population sizes and HGT rates)
from the literature and plugs them into the proposed model. For this reason, this applicative case also functions as a
valuable example of the capability of the proposed formalism to integrate information of different types from different
sources.

In particular, information flows into the microbiota model and the hosts’ populationmodel from two experimental
works treating the problem from the two different aspects respectively Cooper RM, 2017 Asahara et al., 2016. In
Cooper RM, 2017, authors claim what makes Acinetobacterium faster in acquiring resistance is a particular HGT
mechanism: bacterial predation, which involves a predator species that kills adjacent prey cells and acquires their
genes, including those coding for adaptive resistance. In Asahara et al., 2016, the authors study the same bacterial
species, but they focus on the spread and infectious activity of MDR Acinetobacterium strains in the murine gut
microbiota. They aim to provide a in vivo model of post-surgery infections in hospitals. Also, they assess how
a bacterial reintegration-based therapeutical approach can buffer and mitigate the rise of MDR Acinetobacterium,
mitigating the infection and improving the general conditions of the host.

The presented model aims to investigate how Acinetobacterium, through bacterial predation, contributes to the
overall resistance state of the microbiota and the prevalence of Multi-drug Resistance (MDR).

The model represents three organization levels from the system:

• a group of mice hosting the microbiota;

• their microbiota;

• the different bacterial cells from the microbiota.

At the top level, treatment administration (specified by the experimental design) takes place for murine hosts. In
general, possible treatments devise antibiotic doses, possibly combined with bacterial reintegration.

The microbiota model aims to represent, in a very simplistic way, the diversity inherent to the population of
microorganisms involved. See Appendix 3 for further details on the net architecture and implementation. Figure
reffig:microbiota2-conceptual shows its high-level structure while Figure 4.42 reports its detailed implementation.

At this level, Acinetobacterium cells acquire MDR making use of both standard HGT mechanisms (4.42.G) and
bacterial predation (4.42.B) over other bacterial species, which can occur at variable rates Cooper RM, 2017. Themodel
explicitly covers both mechanisms. Dynamically computed scores represent the resistance state of the microbiota: the
Point Prevalence Score (PPS, see Section 4.6.1), and the Acinetobacterium Resistance Level (ARL, the average amount
of antibiotic-resistant DNA factors acquired through bacterial predation divided by the number of total predation
events), representing the probability of a population to acquire multi-drug resistance factors. In order to properly
integrate kinetic parameters from Cooper RM, 2017 into the model, the model provides an explicit representation of
time.
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Figure 4.41. Conceptual view of the network architecture for the microbiotas (median) level in the Acineto-
bacterium/E.coli model. Taken from Bardini, Di Carlo, et al., 2018.
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Figure 4.42. Network architecture for the microbiotas (median) level in the Acinetobacterium/E. Coli model.
Two main places describe two conditions each bacterial cell can assume: a state of non-resistance (green) and
a state of resistance (red), respectively (C). Horizontal transfer mechanisms can turn non-resistant cells into
resistant ones (G). Network structures managing the generation of new bacterial cells, including Acinetobac-
terium and E. Coli (E), total population numerosity and resource availability (D) give rise to a competitive
population dynamics between resistant and non-resistant populations. Dose-dependent depletion of non-
resistant cells following antibiotic administration (B) and Bifidobacterium reintegration (F) events activate as
synchronous channels with structures in 4.34.B.The structure in A dynamically computes the point prevalence
score and the Acinetobacterium Resistance Level of the microbiota network, making the information available
for the upper level through a synchronous channel (see 4.34.D). Taken from Bardini, Di Carlo, et al., 2018.77
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Colored tokens which live at the microbiota level represent bacterial cells. The color, in this model, identifies the
species. The species modeled explicitly are Acinetobacterium Baumanii, Escherichia Coli, and Bifidobacterium, or
generic commensal bacteria. Color also represents the antibiotic resistance level of each cell, and only tokens which
are modeling Acinetobacterium can cumulate resistance factors through bacterial predation.

Genetic exchanges in the microbiota: a specific application

The functional module presented in 4.6.1 finds further specification by modeling the role of bacterial predation in
the spread of antibiotic resistance within the murine microbiota. The building blocks adapt to the specificities of this
application example, embedding information and data from the selected sources.

This model as well is mainly oriented to representing states rather than spatial aspects from the system. There
are two States Landscape models: one holds the murine microbiota, and the other one the bacterial cells. At the level
of murine hosts, organisms can be in different resistance states, also according to the treatments they received.

Increases in resistance level for the host leverage a building block similar to differentiative trajectories: the
murine hosts move from lower to higher resistance states by the activity of a checkpoint building block, reading from
the lower level the state of the microbiota, which computes it dynamically as the PPS score.

Treatment administrations leverage a form of hierarchical signaling operated by the States Landscape model.
It manages antibiotic doses, possibly in combination with microbial reintegration, with a precise temporal organiza-
tion.

In each microbiota, bacterial cells can live either in resistant or non-resistant states. Also, they can carry graded
levels of resistance.

Standard HGT makes any bacterial cell move from a place corresponding to the non-resistant state to one for the
resistant state. The passage is regulated by an active checkpoint building block, which can transform non-resistant
cells in resistant ones, moving them in a dedicated place. This block enables after a stochastic time delay, modeling
the probability for resistance acquisition for the average bacterial cell in the microbiota.

Bacterial predation makes an Acinetobacterium cell consume any other cell, and, if present, acquire its resis-
tance factors, possibly cumulating it with other ones it had already. The event is regulated by an active checkpoint,
which enables after a time delay computed by kinetic parameters fromCooper RM, 2017. Also, it requires the presence
of a predator and a prey cell, respectively. A bacterial cell, either resistant or not, is subtracted from the microbiota,
while an Acinetobacterium cell possibly acquires a first, or additional resistance factor.

Bacterial duplication leverages a mechanism similar to the Mitosis building block. Depending on the availabil-
ity of ecological space within themicrobiota, which growth rates of subpopulation and overall availability of resources
contribute to computing dynamically, bacterial cells can divide. For E. Coli and A. Baumanii cells, duplication rates
correspond to kinetic parameters from Cooper RM, 2017.

Bacterial death leverages a mechanism similar to the Apoptosis building block. Depending on the entity of
antibiotic dose administered, which arrives from the top States Landscape model through a signal sensing building
block, a number of non-resistant bacterial cells die.

The Cell models are, in this case, colored tokens which can carry information about the bacterial species (E. Coli,
A. Baumanii, Bifidobacterium, or generic commensal bacterium) and the state of resistance of the single cell. In the
case of A. Baumanii, the resistance state is graded and can represent different levels of MDR.

Model integration

This applicative example illustrates the capability of the presented modeling approach for integrating information
from different sources. The model embeds mathematical descriptions from Cooper RM, 2017. Table 4.2 recapitulates
the main parameters employed. The initial conditions used in Asahara et al., 2016 are used to set up initial markings
for simulations, to depict the untreated individuals. The model simulates a gram of microbiota. Optimal relative pop-
ulation densities between predator and prey can make killing enhancement reach a factor of 3 Cooper RM, 2017. For
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making this behavior emerge, in the model initial conditions are set so that the population sizes of Acinetobacterium
and E.Coli recapitulate this proportion.

Table 4.2. Model parameters in the Acinetobacterium/E. Coli model. Quantities of bacterial cells are intended
per gram of sample. Kinetic rates are intended per hour. Taken from Bardini, Di Carlo, et al., 2018.

Model parameters Values Ref.
P0tot 10e10 total bacterial population
P0ByB 10e2 Initial Bifidobacterium population
P0AB 10e2 Initial Acinetobacterium population
KA 10e20 Growth saturation for Acinetobacterium
KE 10e4 Growth saturation for E. Coli
gammaA 1.34 Growth rate for Acinetobacterium
gammaE 1.51 Growth saturation for E. Coli
killing rate (ehnanced) 150 h-̂1 Frequency of predation events
HGT rate 0.15 h-̂1 Frequency of Horizontal Gene Transfer events

4.6.2 Experimental design
Simulations compare the behaviors of an untreated microbiota, another one receiving antibiotic treatment, and a third
one receiving antibiotic treatment combined with bacterial reintegration respectively, to study the spread of MDR in
the Acinetobacterium cells and of resistance in the overall bacterial population.

The experiments follow a timeline recapitulating that from Asahara et al., 2016.

• at day 0 (in Asahara et al., 2016, day -7) daily administration begins, and it goes on until day 14.

• at day 7 (in Asahara et al., 2016, day 0, when infection withMDRAcinetobacterium takes place) relative bacte-
rial population densities arise so to cause a killing enhancement of a factor of 2 in Acinetobacter, corresponding
to increasing the probability that they acquire MDR.

• at day 14 the experiment is interrupted, and the variables of interest assessed.

The simulation of treatment includes antibiotic administration and, possibly, bacterial reintegration with Bifi-
dobacterium 4.42.F.

Simulations cover 14 days. The model tracks both PPS and ARL scores at the end of the first, the seventh, and the
fourteenth days in the simulation timeline.

In Figures 4.44, 4.45, 4.46 and 4.47, 4.48, 4.49 we separately present results for PPS and ARL tracking respectively.
Antibiotic administration causes average PPS to increase significantly, especially at day 14: while in the first

experimental condition (no treatment), APPS is 72.29±0.07 (4.44), in the simulations including antibiotic treatment
it reaches the value of 359.21±30.11 4.45. In 4.46 we observe how the combination of antibiotic administration and
bacterial reintegration lowers the score both at day 7 and 14 compared to the case where antibiotics alone were
administered; after seven days of the combined treatment APPS is 35.25±0.51, and at day 14 it reaches the value of
235.94±7.9.

As can be observed, average ARL (AARL) tends to increase along the simulation time, reflecting the growing pool
of DNA exchanged through predation by Acinetobacterium. No significant variations are observed across experimen-
tal conditions (Figures 4.47, 4.48, 4.49), reporting that the MDR level in Acinetobacter grows steadily during the time
of the experiments, as exemplified by the simulation tracks.

These results considered together are coherent with those presented in Asahara et al., 2016, where the effect of
bacterial reintegration is measured evaluating the spread of resistant Acinetobacterium infection in the host during
antibiotic treatment. They show reductions of the Acinetobacterium infection spread when bacterial reintegration
combines with antibiotic treatment compared with the case antibiotic treatment is administered alone — considering
that as an indirect measure for the resistance level in Acinetobacter, results indicate a 30% reduction of resistance
level after bacterial reintegration. These results demonstrate, in this case, the capability of the presented model for
making consistent predictions from and over the experimental data they integrate.
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Even though antibiotic treatment and bacterial reintegration do not seem to affect the propensity of Acinetobac-
terium towards acquiring exogenous, potentially resistant DNA (as shown in Figures 4.47, 4.48, 4.49), they do affect
the overall resistance level of the microbiota, and thus the probability of a predation event leading to the acquirement
of multi-drug resistance takes place.
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Figure 4.43. Results for ED2 in case of traditional treatment. A single high dose of antibiotic targets
the microbiota. The administration of a single high dose of antibiotics reaches each microbiota instance,
yielding an average onset time for severe resistance (AT) of 162.87±7.78. Simulation tracks from these
experiments show healthy individuals (blue curve) progressively acquiring resistance. Some of them reach
severe resistance right away (yellow curve), while most of them pass through a phase of mild resistance
(orange curve). Taken from Bardini, Di Carlo, et al., 2018.
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Figure 4.44. Results of PPS tracking for ED3 in case of no treatment administration to themurinemicrobiotas.
When no treatment was administered to murine hosts, AP is 2.27 ±0.04 at day 0, 25.3±0.07 at day 7 and reaches
72.29±0.07 at the end of the experiment, at day 14. Simulation tracks show PPS increasing steadily and slowly
compared to 4.45). Taken from Bardini, Di Carlo, et al., 2018.
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Figure 4.45. Results of PPS tracking for ED3 in case of daily administration of antibiotic treatment to the
murine microbiotas. Simulating daily administration of antibiotic doses to the mice we observe, for the three
relevant time points of the experiment, an AP of 2.5±0.05 (day 0), very close to the result in 4.44; after seven
days of daily antibiotic administration, AP is 37.57±1.04 (day 7), and after seven days more reaches the value
of 359.21±30.11 (day 14). The simulation curve shows how PPS grows faster compared to 4.44, reflecting the
movement of population dynamics towards the establishment of the domination of the microbiota by resistant
species. Taken from Bardini, Di Carlo, et al., 2018.
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Figure 4.46. Results of PPS tracking for ED3 in the case of daily administration of antibiotic treatment com-
bined with Bifidobacterium reintegration to the murine microbiotas. The combination of antibiotic adminis-
tration and bacterial reintegration lowers AP values both at day 7 and 14. While AP at day 0 has a value of
2.54±0.04, similar to those reported in 4.44 and 4.45, after seven days of combined treatment daily administra-
tion AP is 35.25±0.51, and at day 14 reaches the value of 235.94±7.9. This result assesses the mitigating action
by bacterial reintegration over the resistance levels observed when simulating the administration of antibiotic
treatment alone 4.45. Simulation tracks show how PPS grows in time at a pace slower than that observed in
case of antibiotic treatment alone(4.44). Taken from Bardini, Di Carlo, et al., 2018.
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Figure 4.47. Results of ARL tracking for ED3 in case of no treatment administration to the murine microbio-
tas. When simulating a condition of absence of treatment, average ARL (AARL) assumes values of 4.83±0.12
at day 0, 7.6±0.19 at day 7 and 10.33±0.18 at the end of the experiment, at day 14. Simulation tracks show a
slow and steady increase of ARL along simulation time. Taken from Bardini, Di Carlo, et al., 2018.
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Figure 4.48. Results of ARL tracking for ED3 in case of daily administration of antibiotic treatment to the
murine microbiotas. Simulation of daily antibiotics administration to the murine microbiotas yields to AARL
values of 5.12±0.2 at day 0, 7.77±0.23 at day 7 and 10.61±0.22 at day 14. Similarly to 4.47, simulation tracks
show a slow and steady increase of ARL along simulation time. Taken from Bardini, Di Carlo, et al., 2018.
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Figure 4.49. Results of ARL tracking for ED3 in case of daily administration of antibiotic treatment combined
with Bifidobacterium reintegration to the murine microbiotas. Combining Bifidobacterium reintegration to
antibiotic doses in daily treatment administration AARL is 4.93±0.14 at day 0, 7.46±0.16 at day 7, and 10.13±0.15
at day 14, and simulation tracks show a slow and steady increase of ARL along simulation time, similarly to
what it is observed both in case of no treatment administration (4.47) and of daily antibiotic administration
alone (4.48). Taken from Bardini, Di Carlo, et al., 2018.
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4.7 Conclusions
This Chapter introduces the modeling approach developed for responding to requirements posed by systems biology.
This approachmainly responds to those posed by system complexity. It recapitulates many strengths from the existing
approaches from state of the art, both at the formalism and strategy level.

The Nets-within-nets formalism combines the computational advantages of discrete, agent-based and event-
driven models with complete mathematical description and visual representation. Supporting all the features of other
Petri Nets formalisms, NWNs have excellent expressiveness capability and support different levels of abstraction in
the same model. Also, it allows specifying a boundless number of levels, and their interdependencies. NWNs models
are equally suited for state-based and process-based representations.

Thanks to the capability to represent different types of information in the same model, the proposed approach
supports integration processes combining different existing models or pieces of knowledge is a representation based
on NWNs. The possibility of supporting model integration processes equals the capabilities of multi-level and hybrid
models, in addition tomaintaining formalism uniformity, facilitating subsequent formal analyses, and enablingmodel-
based knowledge representation and exchange.

The proposed modeling approach leverages NWNs for supporting multi-level and multi-context architectures.
That is, not only models represent multiple organization levels of the system. They support, in the same architecture,
the explicit representation of multiple views over the same level. In particular, it is possible to describe a biological
actor in reason of both its spatial context and its process context, at all model levels.

For these reasons, the approach flexibly applies to a variety of complex biological processes, modeling objectives
and domains of systems biology. Initially, the proposed method develops around the requirements posed by ontoge-
netic processes, which add on the top of those relative to systems biology a much stronger need to explicitly model
spatial and process organization of an evolving system. For this reason, the proposed models quickly adapt to appli-
cations posing a smaller set of requirements. This Chapter provides three application examples, each one including
a statement of the approach to the scientific domain and the modeling objective, the structure of a core functional
module for the topic of interest, and a specific case study or application example. The first example concerns ontoge-
nesis aiming to gain new insights and predict system behavior after mutations, and treats patterning as a functional
module, providing the applicative example of VPC specification in C. Elegans. The second example has synthetic biol-
ogy as an application domain, aiming to support the design of complex synthetic biological systems, and has cellular
communication between cultured cells as a functional module, which is applied, in a theoretical case-study fashion,
to NO-based, EGFP-producing inducible communication between mammalian cells in vitro. The third example con-
cerns epidemiology and aims to study the spread of antibiotic-induced antibiotic resistance in the microbiota and to
support the design of innovative treatment protocols able to prevent it. The central functional module in this example
covers HGT mechanisms in the microbiota, and the overall model also considers bacterial predation and MDR in the
murine microbiota, integrating mathematical descriptions from two experimental works. This model mainly relies
on the representation of states, rather than providing spatial aspects, showing how the proposed modeling approach
is easily adaptable not only in representing different types of information from the system, but also different orga-
nizations of knowledge. These kinds of choices are often determined by information availability, like in this case.
When spatial information is available or required for the model, the proposed approach is ready to embed it, being
the spatiality model intrinsic to the framework. This example also shows how the presented approach not only can
serve the scope of investigating causal, quantitative relations between different events, but they can also function as
supports for decision making processes and development of clinical strategies. Also, this application shows how the
integration of structured information from different sources can maintain formalism uniformity.

The presented approach relies on the specification of building blocks, recapitulating the concept of meta-transition
Bonzanni, Krepska, et al., 2009, which in turn compose functional modules. Each of these substructures is multi-
level and multi-context. Also, thanks to formalism uniformity, compositional processes based on functional modules
are then inherently supporting cohesiveness and consistency in model construction. Also, this provides a form of
modularity and allows for the direct porting of building blocks or functional modules from an application to another
one, as shown in the presented examples. Portable representationsmake knowledge portable, via either entire models,
building blocks or functional modules. Thanks to the capability for flexible abstractions of the presented approach, it
is possible to exchange more models in their most abstract form, recapitulating more of a modeling approach to the
general biological problem, and then tuning architecture, and the parameters of building blocks or functional modules
to the specific application case. In this way, the modeler retains more representational flexibility than if a direct model
modification occurs.
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In this way, the proposed approach also responds to some level to requirements relative to knowledge represen-
tation and exchange. It does so only for users able to manipulate the underlying modeling formalism. The semantics
of each building block can only emerge from knowledge stored in the model itself, which is self-explanatory for them.
To adequately respond to the requirements relative to systems biology as a research domain, it is necessary to take
into account its inherent diversity. Many different actors populate this rich research domain, and some have a purely
experimental background, and no education in computer science or modeling. Adequate knowledge exchange is
necessary to enable the effective collaboration between interdisciplinary profiles in systems biology. Accessible rep-
resentations make knowledge effectively exchangeable. Moreover, they can make non-expert users able to leverage
the inference capabilities of computational models.

To proceed in this direction, in the following Chapter a high-level model description language for the presented
modeling approach is introduced.
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Chapter 5

A model description language for
systems biology

5.1 Short summary
To make multi-level and multi-context NWNs models accessible for non-expert users as well, the Biological System
Description Language (BiSDL) has a high-level syntax recapitulating the domain-specific language of experimental
biologists. At the same time, it also covers the low-level formalism elements. Also, BiSDL supports modularity: a
description can make use of other descriptions, representing interconnected and nested models. The expert user can
build upmodels under themulti-level, multi-context approach using BiSDL, creating re-usablemodules corresponding
to biological structures and processes. They can store these modules in libraries. Non-expert users can access libraries
and access the knowledge stored in existing modules, as well as re-use, customize and combine them into high-level
models by merely connecting them, and tuning their parameters. A custom compiler generates NWNs models from
BiSDL descriptions, and a custom simulator directly simulates them. In this way, system dynamics is accessible as
well to the non-expert user.

5.2 Introduction
A diversity of professional profiles contributes to systems biology as a research domain. Computational biologists
easily apply and develop computational tools to tackle biological complexity. On the other hand, pure experimen-
talists have limits in accessing and using these tools, because their expertise lies in different technical and scientific
domains than computer science. An interdisciplinary field like systems biology grows out of diversity: different per-
spectives, information, and capabilities are indispensable for the field to effectively advance. The necessity to support
exchanges implies knowledge representation tools respond to the needs of such a diverse user base. In other words,
they should function as enablers, making a large amount of expert biological knowledge and the capabilities of com-
putational models accessible for the broader range of profiles possible, including pure computer scientists and pure
experimentalists.

Under this perspective, when functioning as knowledge bases, models must become accessible to non-expert users
as well, so they can get the information models to carry, and contribute to them with their own brand new expert
knowledge.

Like in other technological and scientific domains, in systems biology high-level, domain-specific languages have
the objective to make formal representations manageable for non-expert users as well. The strategy they rely on is
the creation of an intermediation layer between the user and the low-level formalism of the model. This layer needs
to be both user-readable and machine-ready.

The multi-level, multi-context modeling approach presented in the previous Chapter, relying on the Nets-within-
Nets formalism, targets complex biological systems expressing hierarchy, encapsulation, selective communication,
spatiality, quantitative mechanisms, and stochasticity. The modeling approach alone aims to target systems biology
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requirements on the front of knowledge inference and representation, but it satisfies them for a subpart of the potential
user base in systems biology: non-expert users are not familiar with these kinds of supports. This lack of competence
impedes knowledge exchange processes between expert users and them, which would be beneficial for both and sys-
tems biology in general. This Chapter introduces a model description language able to represent knowledge contained
in the NWN models in a way that makes it accessible and usable for non-expert users as well.

The deep insights required for modeling biological complexity require a holistic perspective over biological pro-
cesses. That is, it is necessary to comprise multiple system levels and different types of information in models, as well
as to the choice of the level of abstraction in different model parts. This choice affects the accuracy and expressivity
of the model, as well as the computational power required for simulating it. While High-Performance-Computing
(HPC) platforms can face the computational requirements implied, a different shade of complexity emerges on the
representational side. Systems biology shows remarkable diversity not only receiving the contributions from very
distant professional profiles, such as a computer scientist and an experimentalist. Diversity concerns experimental
biology itself as well. Biology as a research domain shows high compartmentalization but, contrarily to biological
membranes, boundaries are not that semi-permeable. The different sub-domains, individually, can only describe por-
tions of the overall system. Each of these sub-domains has specific scopes when investigating biological complexity,
and particular history, culture, and representational styles. This fragmentation poses a significant challenge to mod-
eling languages. First of all, it is necessary to understand the relationships between different sub-domains and their
respective scientific outputs in terms of knowledge generation. Then, this higher-level understanding must make
different information flow into a model using a uniform description language.

At the moment, communications between different sub-domains still need to improve, and this reflects in the
existence of a variety of description languages for models of biological complexity: each one somehow relates to the
representational style from a sub-domain of biology.

The proposed language aims to recapitulate the representational capabilities of existing domain-specific languages
in systems biology, providing a consistent representational style to facilitate knowledge representation and exchange.
For a more detailed introduction to the language see Muggianu et al., 2018.

Summing up, the presented model description language intends to serve two different purposes:

1. to be biologist-friendly, human-readable, able to model both the behavior and the structure of a biological
system, able to support several biological sub-domains, and flexible and modular enough to be used at different
levels of abstraction;

2. to be computation-ready, supporting the simulation of the modeled system. For this reason, BiSDL design
revolves around the syntax of the Nets-within-Nets formalism, and BiSDL descriptions automatically translate
into a fully executable NWN model.

Similarly to what already presented for the modeling approach, the fact the ultimate target process for the design
of BiSDL was ontogenesis does not impede the flexible application of the the language to other biological phenomena.
In fact, in its final form, the BiSDL is intended to be used to model a wide spectrum of biological systems.

In structuring the language, the VHSIC Hardware Description Language (VHDL), a very well-known language
used to model complex digital circuits and systems Perry, 1993 inspired the design and syntax.

5.3 Existing model description languages in systems biology
The COmputational Modelling in BIology NEtwork (COMBINE) intends to coordinate the ideation and development
of standards for models of biology COMBINE, 2018. To this aim, in the context of this initiative, different existing
languages, specific to many sub-domains of biology, have been analyzed and mapped. Figure 5.1 summarizes the ones
found to be most relevant according to the COMBINE initiative.

This section provides an overview of the existing formats for describing models in biology.

Languages for data exchange The BioPAX Data Exchange format Goldberg et al., 2010 intends to support
cross-database data exchange, making pathway data substantially more comfortable to collect, index, interpret and
share. The Synthetic Biology Open Language (SBOL) R. S. Cox et al., 2018; Galdzicki et al., 2014 supports the
exchange of information about structural and functional aspects of biological designs to embed into synthetic systems.
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Figure 5.1. Overview of existing standardization efforts in Systems and Synthetic Biology covered by COM-
BINE (from Schreiber et al., 2015). Taken from Muggianu et al., 2018.

Languages for visualization The Systems Biology Graphical Notation (SBGN) Le Novere et al., 2009 describes
in clear and visual way signaling pathways, metabolic networks, and gene regulatory networks.

Languages formodel exchange Exchanging data or visual representations pose an easier challenge, compared
to exchanging complete models. Under the knowledge exchange perspective, the model description is one of the
most delicate phases: it should support the development of reusable and easily integrated model architectures. At the
moment though models rely on different, often non-interoperable formalisms, and include references to databases
or ontologies not linked between each other. Also, knowledge exchange should rely on good practices on how to
generate and summarize simulation outcomes, so to easily share that as well.

The COMBINE initiative currently foresees four languages as virtuous formats for models of biology.

SystemBiologyMarkupLanguage (SBML) As inChaouiya et al., 2013, SBML is anXML-basedmachine-
readable format for representing models. In SBML, biological entities undergo modifications by processes that occur
over time. The SBML has, as frequent targets, biochemical models. Its syntax tightly links to the scopes of this
sub-domain, and the underlying mathematical formalism of choice: systems of differential equations.

CellML language As in Lloyd et al., 2004, CellML is an XML-based language including information about
model structure, equations describing the underlying processes, and metadata about the model facilitating model
storage and exchange. CellML is not related to a specific domain within biology, supporting the description of a wide
range of systems. Moreover, it is flexible enough to comprise newly discovered mechanisms.

NeuroML As in Gleeson et al., 2010, NeuroML is, in the first place, a collaborative initiative to develop an
XML-based description format for defining and exchanging descriptions of neuronal cells and network models. Neu-
roML is the language with the highest sub-domain specificity among those considered. The project also devises a
simulation engine. At the aim to improve NeuroML in the description of neuronal models, and in particular synapses,
developers designed LEMS Cannon et al., 2014, a Low Entropy Model Specification. LEMS supports a compact, non-
redundant, human-readable, human-writable and declarative model description style for biology. It is too generic to
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count as a domain-specific language. References to biological concepts or structures are not mandatory for the user.

Languages for exchange of simulation outcomes SED-ML Kohn and Le Novere, 2008 encodes the de-
scription of simulation experiments in XML, categorizing types of experiments that it is possible to perform.

In Yoshiyuki Asai, Abe, et al., 2014, authors describe the integration of two modeling mark-up languages. Their
platform combines representational capabilities, usability, and interoperability of two existing formats: the Systems
Biology Markup Language (SMBL) and the Physiological Hierarchy Markup Language (PHML).

SBMLHucka et al., 2003 targets sub-cellularmechanisms relying onODEs, while PHML suits hierarchical systems
Yoshiyuki Asai, Y. Suzuki, et al., 2008. In this work, a PHML framework embeds SBML modules, supporting the
representation of several system organization levels in a single description. When different modules communicate,
“get” or “set” functions consistently handle values from or to communicating modules. This approach carries the need
to perform consistency checks over the resulting model, which can show high computational complexity.

5.3.1 Limitations of available languages
All analyzed languages share to some extent the ability to describe entities, processes, and communications between
entities or between entities and processes. Nevertheless, none of them has all these characteristics, which are required
to describe models of complex and generic biological processes, integrated into a single language.

The target of the presented modeling approach is complex biological processes, such as ontogenesis. A model
description language needs to express all of the features the NWN formalism and the modeling approach to these
processes have, making them accessible to the non-expert user as well.

This challenges existing formats, starting from the requirement to express spatiality and mobility. Only CellML,
thanks to FieldML, and NeuroML that can describe the spatiality in the neurological field can express spatial in-
formation. Hierarchical organization as well and the underlying communication mechanisms in biological systems
challenge current description languages, which tend to provide models with a flat structure, except for NeuroML,
which is still too specific to the domain of the nervous system.

Table 5.1 recapitulates essential features of the formats considered, to highlight their strengths and limitations
considering the scope of the presented modeling approach.

5.4 Exploring biological semantics
What determines the effectiveness of a domain-specific language is its capability to support the natural way the user
thinks. At the aim of adapting the language semantics to the real needs of non-expert users, that is, experimental
biologists, the necessity emerges to map the actual way they represent knowledge through natural language. Two
strategies were put in place to investigate these aspects.

• qualitative user interviews with experimentalists;

• concept mining over existing ontologies for biological terms.

While the main advantage obtained from the interviews was collecting hints and caveats to orient the design pro-
cess, by performing concept mining more quantitative insights emerged, which guided the prioritization of biological
concepts to cover with the language semantics necessarily.

While the instrumental part of this workmainly involves text mining tasks, its real aim is better defined by concept
mining. That is, its objective is the extraction of concepts from biological ontologies. In the design of this study, a
concept is intended as a set of co-occurring words in ontologies lemmas, directly referring to the main linguistic
structures underlying knowledge representation in biology.

5.4.1 Co-occurrences networks
The first step to extract concepts from biological ontologies is to detect co-occurrent words among those populating
them. When analyzing ontologies, parameters guiding the detection of co-occurrences vary from those used inmining
longer texts. It is possible to interpret ontologies as sets of individual lemmas, i.e., sentences, or separate texts. Then,
the computation of co-occurrences considers every single lemma as a text of reference, and in each of these texts,
the maximum distance possible between words matches the length of the lemma itself, introducing specific caveats
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Table 5.1. Available modeling languages in systems biology . Taken from Muggianu et al., 2018.

Main Focus Mobility Spatiality Hierarchy Format

SBML Reaction Yes Yes Yes XML

CellML Cell Partial Partial 1 level XML

LEMS Generic Hierarchical Structure Yes Yes Yes XML

NeuroML2 Networked components Yes Yes Yes XML

NeuroML High level neuronal model No Yes Yes XML

MorphML Low level neuronal model No No No XML

NineML Components Events/Connection Partial Partial No XML

BioPAX Pathways No Partial Yes OWL/XML

SBOL Sequence No Partial Yes XML

Pharm-ML Pharmacometric No No No XML

in generating the co-occurrences matrix. For a more detailed discussion of the strategy underlying the text mining
strategy implemented, see Muggianu et al., 2018.

It is possible to visualize the co-occurrences matrix as a network, and in this case, visualization relied on the
Python library NetworkX Hagberg et al., 2008. In the network, weighted edges mark co-occurrences between pairs
of words, and nodes represent individual words. Nodes size is directly proportional to the occurrence counts of the
word they represent.

Figure 5.2 shows the results of network visualization over Cellular Component, a branch of the Gene Ontology.
The portion of the co-occurrences network shown displays relations between terms, highlighting differently col-

ored clusters. These clusters, in the presented analysis, define biological concepts of interest.
Biological concepts, as defined in this way, guide the choice of the main structures in the language syntax: their

design takes into account the concepts emerging from this study by making sure they can find proper representation.
This process relies on two main sources which guide the language design:

• Cell Behaviour Ontology instructed the syntactic structure;
• Gene Ontology provided the concept organization to embed in it, instructing the semantics of the language.

In particular, the structure of each description supported by the language devises:

METADATA This header section provides metadata about the model: creation date, names of the authors, and
name of the model. This part enables effective model exchange and traceability, making it possible to keep track of
modifications and actors involved in the model creation process.

MAIN In each description, the central section covers different abstraction levels. Starting from the higher-level of
description:
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Figure 5.2. A detail from the co-occurences network obtained from the Molecular Function
branch in Gene Ontology.

• the Environment recapitulates the most external component of the model. Its properties include a name, a type
(chosen from a predefined pool) and spatial information about the system, such as its dimensions and shape.
This section includes Entities and Processes:

– each Entity, as a subcomponent of the Environment, participates in the description of the structural as-
pects in the system. Its properties include a unique name, and a type chosen among those proposed by the
language. There are many types of entities, which differ by particular specifications, as better explained
in the following sections. Yet, all of them have in common the specification of spatial properties: shape,
dimension and position respect to the Environment.

– each Process, as another kind of subcomponent of the Environment, covers a part of the behavioral
aspects of the system: it describes either the functionality of an Entity or the relation between different
Entities. Its properties include a unique name, and a type chosen among those proposed by the language.

• The Hierarchy of the system covers the definition of the internal architecture of Entities. Each Entity can func-
tion as an Environment itself: for this reason, each Entity requires the same specifications as those described
above for the Environment. Processes as well can contain sub-Processes, following the specification scheme
of the Process structure in turn.

This general structure, when employed for describing systems biology models, face the great diversity and vast-
ness of the necessary vocabulary to include. Also, the inclusion of new concepts implies the re-implementation of a
whole Hierarchy of syntactic terms. Compiling BiSDL descriptions into NWNmodels at this stage is computationally
expensive, and the resulting compiled models, in this way are entirely opaque to users. Which satisfies the needs of
non-expert users, but it fails to satosfy those of expert users. They may want to manipulate biological knowledge at
all available levels of abstraction, from high-level descriptions of biological concepts to the NWN formalism elements
at the lower, model level. Moreover, besides exchanging knowledge under this paradigm, expert users may also want
to encode new concepts into the BiSDL corpus: they need to be able to modify structures at all existing levels.

The BiSDL structure evolves, following the intention to benefit both biologists with no expertise in computer
science and experts in computational biology.

This level of flexibility implies the representational power of the language can range from low-level models imple-
mentations, using the NWNs syntax, to high-level descriptions, whose semantics ties to biological concepts. In other
words, BiSDL intends to support two usage modes. On one side, non-expert users only perform model descriptions,
manipulating high-level concepts. Their main benefit is the possibility to access rich and structured knowledge bases
and to combine biological concepts and eventually to study their dynamics readily. On the other side, expert users
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manage both high-level descriptions andmanipulation of lower-level functional blocks. They have an additional bene-
fit, that is, thanks to their access to the low-level syntactic elements, they can create modules recapitulating biological
knowledge from scratch, contributing to populate the libraries non-expert users rely on for accessing that knowledge.
In other words, for non-experts BiSDL functions as a high-level, domain-specific model description language; for ex-
perts, it functions as a flexible modeling formalism. It allows manipulating syntactic structures at different levels of
abstraction from the model, from NWN formalism elements to BiSDL modules.

5.5 Sources of inspiration
BiSDL design takes inspiration from other endeavors on the front of domain-specific languages. Many other domains
present representational challenges, due to the complexity of the systems they intend to treat. In particular, the
domain of VHSIC (Very High-Speed Integrated Circuits) design provides good inspiration. In this field, the Gajski-
Kuhn Chart, or Y-Chart Gajski and Kuhn, 1983, depicts the different perspectives relevant to the design process.

Gajski-Kuhn Y-chart

In the VHSIC domain, Very-Large-Scale Integration (VLSI) is the process of creating an Integrated Circuit (IC) by
combining hundreds of thousands of elements into a single chip. The Y-Chart summarizes the good practice existing
in VLSI which devises the separation of the usage model from architectural and implementation details. also, it is
required to find a functional mapping between these three aspects.

Figure 5.3. The Gajski-Kuhn Y-chart.

As in Figure 5.3, three radial axes recapitulate the domains of interest. Each domain has different levels of ab-
straction, represented by concentric rings.
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The most external level represents the overall architecture of the chip, and the closer a level is to the center, the
more it includes implementation details.

The three axes cover the different aspects of interest, at all available levels of abstraction:

• the behavioral domain describes the temporal and functional behavior of the system;

• the structural domain describes subsystems and how they intertwine to form the overall system;

• the physical domain describes the geometry of the system and its sub-components, as well as their size, shape,
and position in space.

Intersections between concentric rings and radial axes point to different aspects, considered at the different ab-
straction levels. For a more thorough description of the behavioral aspects at different abstraction levels refer to
Muggianu et al., 2018.

VHDL

VHDL (VHSIC Hardware Description Language) Shahdad et al., 1985 is a domain-specific language to describe hard-
ware systems designed with the aid of the Gajski-Kuhn Y chart. As the Chart, VHDL can manage different levels of
abstraction in describing systems, with a focus on the structural and behavioral domains.

The Design Entity is the minimal unit in VHDL usage, and it describes hardware components as black boxes. That
is, it explicitly models only the interfaces they exhibit towards the external environment. The Design Entity applies
to different hierarchical levels of the system. For example, it can describe a logic gate, as well as an entire system,
implying links to architectures of different kinds, which in this context recapitulate three different views over the
system:

• Dataflow specifies logic expressions describing how elements of the language interconnect on the informational
plane, including block declarations and instantiations, necessary procedures and timing rules for execution.

• Structural specifies the interconnection of components at the functional level, that is, through the signals they
exchange.

• Behavioural describes the algorithmic functioning implementing system behavior, and follows a sequential
logic in terms of instruction execution, simulating circuit parts at a higher abstraction level than that of specific
components.

5.6 Biological Systems Description Language
As discussed in the introduction, BiSDL needs to be biologist-friendly and computation-ready. On the one hand, this
means that some features of the language must link to the NWN formalism used to simulate the described system.
On the other hand, its syntax must be able to hide the technicalities of the final implementation, allowing a focus on
the description of the actual biological system. The design process started from the examples provided by the Y-Chart
and the VHDL and adapted the principles underlying these existing tools to the challenge of making NWN models
accessible to both expert and non-expert users.

A Y-Chart for BiSDL

The Gajski-Kuhn Chart develops for a domain belonging to the field of engineering. More specifically, it dedicates
to top-down design processes, in which the designer has, in principle, total control over function implementation
through manipulation of system components. For this reason, it is intended to cover all components the designer
may use. Each sub-component is a known entity in the physical system, and its behavior is possible to identify and
model in an accurate way. COmplexity, in this case, emerges from a large number of components from the system,
and their intertwinings and interconnections. On the other hand, dealing with biological complexity a top-down
approach is not feasible, at least in the way hardware engineering originally conceived it. System biology models
necessarily perform approximations and omissions, mainly due to the lack of knowledge about biological complexity.
For a more thorough discussion of the relationship between life sciences and engineering, see Section 2.2.4.

Considering this premise, the Y-Chart has many interesting characteristics able to guide endeavors in compu-
tational systems biology. For example, the Physical domain can respond to the requirements concerning spatiality
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biological complexity poses to modeling formalisms. The different abstraction levels in the Y-Chart reflect the original
intention to support the manipulation of BiSDL models at higher and lower levels.

At the aim to adapt the Y-Chart to the biological semantics, it is necessary to implement some modifications.
This Section provides a detailed description of the BiSDL Y-Chart, as it constitutes the nucleus of the language and
supports the following descriptions. Figure 5.4 recapitulates the presented scheme.

Figure 5.4. The BiSDL Y-Chart.

The three radial axes refer to the domains to cover in the description of biological systems:

• The Structural domain focuses on relations and communications between subparts. Different entities compose
a model, simple or complex, and combine. This axis specifies the different abstractions performed on biological
structures and how BiSDL manages them.

• The Behavioral domain describes the system focusing on processes and behaviors, including processes and
functional activations taking place during the execution of the model.

• The Spatial domain explicitly describes spatial aspects of subsystems and their interrelations. Not only it covers
geometrical aspects such as the shape and the dimension of system elements. It also describes their absolute
and relative positions and directional movement.

While in the VHDL Y-Chart concentric circles refer to different levels of abstraction from the physical hardware
system, in BiSDL they map to different abstractions from the NWN model to describe, which deals with abstraction
from the physical system in turn, as better explored in the previous Chapter. These two perspectives collapse together
when BiSDL serves the direct manipulation of elements from the NWNs formalism in model construction processes.

It is possible to observe the different levels in the Chart acquire different meanings at the three intersections with
the axes.
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Ist level At the most inner circle, low-level NWNs formalism elements live. Places and their interconnections
describe structural and possibly spatial aspects; transitions and their local rules describe the behavior of the system
during execution.

IInd level At this level, different NWN elements combine and form composite network motifs. This level links
to more complex representations for more extensive substructures in the model and the interconnections between
them, as well as for more detailed spatial descriptions. These structures follow the definition of meta-transitions
Bonzanni, Krepska, et al., 2009 on the behavioral plane; that is, they are network structures corresponding to an
identifiable complex process in the model. At this level information still has a general semantics, and does not link to
any particular domain.

IIIrd level One level higher, network motifs acquire biological semantics, providing descriptions of biological
processes (Behavioral domain), biological structures and their functional relations (Structural domain) and spatial
aspects to this structures (Spatiality domain). Biological Building Blocks as described in Section 4.3 link to this level.

IVth level At the higher abstraction level, the NWN formalism underlying BiSDL models is completely opaque.
Entities center primarily over biological semantics: complex biological structures descriptions combine different
Building Blocks and interconnect with each other. Complex, yet identifiable biological processes emerge from them,
and their spatial features are modeled in their entirety by detailed spatial descriptions. Complex Functional Modules
from Section 4.3 relate to this level.

A description style for BiSDL

Considering the adaptations of the Y-Chart to the purposes of computational biology, this section describes how the
VHDL worked as a starting point in ideating the BiSDL description style.

VHDL inspires BiSDL mainly respect to three main characteristics:

• Different description domains

• Modularity

• Design Entity as a black box

Different description domains BiSDL explicitly cover Structural, Behavioral and Spatial aspects of the de-
scribed system.

Modularity Systems biology tends to represent biological complexity combining holistic and reductionist ap-
proaches. In fact, on one side it is good to have comprehensive representations of the whole system, its subparts and
their interconnections, from which system behavior emerges. On the other hand, there is also the tendency to refer
to precise functional building blocks that it is possible to associate to known behaviors, so to deal with at least partly
understandable structures. These structures, on the representational side, correspond to modules maintaining their
identity across models, and combine to form more complex structures. For this reason, Modularity is a central feature
for a model description language. For the language, modularity not only is natural to the current representation of
biological complexity, but it also enables the re-use of existing modules in different models. Also, once the boundaries
of a module are defined, it is possible to modify it, creating different versions of the same module. In BiSDL, each
module has Behavioral, Structural and Spatial aspects.

Design Entity as a black box In BiSDL, Modules are the fundamental Design Entities. AModule can be treated
as a black box, making explicit only their interfaces and set-up parameters, mediating their connections to other
Modules. Connections between Modules require either the fact they share a sub-Module or the use of a particular
Entity, that is, the Channel, implementing synchronous communication mechanisms. To be unambiguously identified
with a specific biological element, Modules need to carry a reference to a well-known knowledge base. This expedient
facilitates reliable knowledge exchange, as well as the easy inclusion of Modules in existing models. Libraries can
store existingModules, allowing the non-expert users as well to re-use them. From a biological point of view, a module
could correspond to any biological entity or process at any hierarchical level. For example, a module can describe a
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simple protein, a gene, a complete pathway, a metabolic subnetwork, an entire cell, or a biological process (e.g., gene
transcription, functional activation of a protein or its degradation).

The NWNs modeling approach presented includes the concepts of Building Block and Functional Module already.
Modules easily map to these constructs, making them easier to modify or merely combine and re-use.

All of these aspects reflect into the general template, which both expert and non-expert users can use to produce
BiSDL specifications.

5.6.1 The general template
In BiSDL descriptions, all Modules use the general template depicted in Figure 5.5.

PACKAGE <package1> 
... 
PACKAGE <packageN> 
 
ONTOLOGY <ONTOLOGY_NAME>=<url> 
... 
ONTOLOGY <ONTOLOGY_NAME>=<url> 
 
MODULE <name> (<type> <nameparam>,.....) 
  
 BIOLOGICAL REFERENCE  
  <ONTOLOGY_NAME>.<ID_WITHIN_THE_ONTOLOGY> 
 
 ENTITIES 
   PLACE <name_place>,.... 
  ENTITY <name_entity>,.... 
  CHANNEL <name_channel>,.... 
 
 INIT  
  <place_name>.attribute(<value>) 
  <entity_name>.attribute(<value>) 
  <entity_name> = <module_entity_name>(<params>,..) 
 
 PROCESSES 
  process( keyword:entities_declaration, 
   keyword:entities_declaration, 
   ..., 
   {transition_function}, 
   delay(N) 
  ) 
 
  <module_process_name>(<param>,....)   
END 

 Figure 5.5. BiSDL general template. Taken from Muggianu et al., 2018.

Following the structure of the general template, this section expands on the features supported by BiSDL.

Libraries of modules Since the general idea is to have a language that allows the description of a biological
system in a way that is both human-readable and ready to be translated into an NWNs model, it is necessary to
support both Modules creation and simple re-use. BiSDL libraries are supposed to store existing Modules, which
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can then be used to create BiSDL descriptions. The BiSDL itself does not define official libraries: it just supports
modularity so the users can populate and rely on them.

Figure 5.5 shows the general BiSDL template. BiSDL descriptions start with the PACKAGE declarations, which
can specify what to include from libraries.

Relevant ontologies The ONTOLOGY directives are used to unambiguously associate Modules with known bi-
ological entities. To do this, BiSDL requires specification of a set of URLs to recognized sources of knowledge (e.g.,
Gene Ontology Consortium, 2018, Pathway Ontology BioPortal, 2018).

Tunable Module parameters Following is the MODULE section, which contains the actual description of the
module. AModule namemust be unique inside the package containing it. Optionally, theModule declaration contains
the respective parameters, whose value is specified at instantiation.

Before describing the core structure and behavior of the module, BiSDL requires specification of its BIOLOGICAL
REFERENCE, i.e., the unique link to an element of one of the ontologies declared in the ONTOLOGY section. This is
performed according to the following syntax:

<ONTOLOGY_NAME>.<ID_WITHIN_THE_ONTOLOGY>

Inside each MODULE, BiSDL allows the description of the modeled biological entity under the three domains from
the Y-Chart.

Usage ofmodules In this part, the biological identification ofModules directs their functionalities. The ENTITIES
sub-section instantiates the elements that the module will use accordingly. The interaction among Entities describes
the behavior of the module. Each Entity will be linked to its implementation (MODULE) in the INIT section.

In BiSDL, there are three types of ENTITIES:

• ENTITY: a complete Module, implemented following the usage rules described in this section, declared in the
PACKAGE section and drawn from libraries;

• PLACE: a place intended under the NWNs formalism;

• CHANNEL: a component specifically intended for synchronous communication between different Modules.

In an ideal hierarchical BiSDL description, only the lowest level modules will explicitly make use of the NWNs
elements, and the higher levels support a high-level biological semantics.

The INIT section initializes each instantiated ENTITY, declaring its actual origin within one of the included
libraries, and setting, if present, the required parameters. In the case of a PLACE, the INIT section is used to set a
name, the initial token marking (the type of token(s), their value, and their quantity), and the ontology ID linked
to it. Tokens can be of type int, float, double, string, black token (no type), or a complete Module (user-defined or
taken from one of the included libraries). Different operations can target different token types. For example, for
the numerical types all the basic mathematical operations are allowed (sum, difference, division, multiplication). The
syntax to assign tokens to a place is the following.

place_name.token(token type * N)

N is the number of tokens.
The INIT section also sets the relative speed at which the Entity must be simulated, considering relative time

scales in the overall model hierarchy. Each speed is a multiple of the minimal time unit in the simulation, which
corresponds to the speed of the fastest module.

Both ENTITY and PLACE modules have a location within the BiSDL 3D grid attached. If exact coordinates are
missing, default coordinates assignment occurs.

After instantiating and initializing all Entities of the description, the PROCESSES section is used to create the
behavioral domain of the model, specifying relations between Entities, as well as behavioral aspects. A low-level
behavioral rule is a NWNs transition, which can be defined as follows:

PROCESS(keyword:entities_declaration,
keyword:entities_declaration,...,
{transition function}, delay(N))
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The keyword:entities_declaration pairs are used to specify the input/output properties of the transition:
the keyword, which can be IN, OUT, or BI, specifying the direction of the arcs from and to the entities listed in the
entities_declaration as:

{entity name[arcs_number],...,
entity name[arcs_number]}

Incoming (IN) arcs are responsible for consuming tokens from places, whereas outgoing arcs (OUT) are responsible
for producing tokens into a place; bidirectional arcs (BI) are used to check the marking of a place.

The transition function parameter specifies enabling and firing rules in transitions:

{if (enabling_function) firing_function}

Basic operations includemodification of token values and assignment of tokens to places after evaluating enabling
rules. These operations can function with a partly stochastic behavior as well.

PROCESSES also have the delay(N) attribute, defining the amount of time elapsing between transition enabling
and firing. This attribute is specified using the time unit from the INIT section.

CHANNELS use a particular transition firing function. In fact, they necessarily interlock transitions with at least
another Module. This sets up a synchronous communcation mechanism between Modules, having a direction, that is,
the two ends of the CHANNEL are not equivalent. On one end, the down-link transition starts the communication, on
the other hand the up-link transition receives the communication in a synchronous way. The down-link belongs to the
Module carrying the CHANNEL declaration in the ENTITIES section, while the up-link engages in the communication
following this syntax:

module_downlink:channel()

Token flow can proceed both from down-link to up-link and viceversa.
The PROCESS construct specifies which tokens are exchangedwithin the CHANNEL, and to which input and output

places it connects, with this syntax:

when( module downlink:channel(tk)) {
tk = place IN.token

}

or
when( module downlink:channel(tk)) {

place OUT.token = tk
}

The PROCESSES section specifies relations between Modules loaded from the librariesas the PACKAGE section
describes. In this case, it takes as arguments the Entities that need to enter in relation.

5.7 Application examples
This Section provides three application examples. The first one is the simplest one, and it aims to illustrate BiSDL
syntax at the low-level, including NWNs elementsmanipulation. The second example aims to show the detailed BiSDL
description for a model of a relatively simple biological process. The third one relates to the example provided for the
NWNs modeling approach to ontogenesis and primarily aims at giving a hint about user experiences, describing both
the expert and non-expert usage modes.

A water-based toy example

To clarify the actual usage of BiSDL, we present a simple toy example involving the creation of a molecule of water.
This example does not show all BiSDL potential in responding to the complex requirements posed by systems biology
to representational means. It is relevant to the life sciences application domain in general, both for chemical and
biochemical reactions belong to one of the relevant organization levels from complex biological systems. The choice
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of the molecule is appropriate also for life (as we know it) is water-based. This example intends to be simple, aiming
mainly at explaining basic BiSDL functionalities.

Figure 5.6 shows this simple toy model of a chemical reaction involving 𝐻2𝑂. To obtain two tokens of water it is
necessary to have one 𝑂2 token and 2 𝐻2 tokens. The two source molecules 𝐻2 and 𝑂2, and the final molecule 𝐻2𝑂
are defined as places in the ENTITIES section. H2 and O2 are initialized with 𝑚 and 𝑛 black tokens each in the INIT
section. A transition from the PROCESSES section models the chemical reaction. In the definition of the two input
arcs O2 and H2 the code specifies that two H2 tokens and one O2 are needed to enable the transition and generate two
H2O tokens.

2
2H2

O2

H2O

ONTOLOGY 
Chebi=“https://ebi.ac.uk/chebi/searchId.do?chebiId=” 
 
MODULE H2O_chemical reaction (INT m, INT n) 
  
 BIOLOGICAL REFERENCE  
  Chebi.CHEBI:15377 
 
 ENTITIES 
   PLACE O2, H2, H2O 
 
 INIT  
  O2.token(black_token() *m) 
  H2.token(black_token() *n) 
 
 PROCESSES 
  process( IN: {O2, H2[2]}, OUT:{H2O[2]}} 
  
END 

 Figure 5.6. 𝐻2𝑂 chemical reaction. Taken from Muggianu et al., 2018.

This Module models the chemical reaction directly manipulating elements from the Petri Nets formalism. Once
created, the Module belongs in the ENTITIES section of another Module, for example as:

ENTITIES
ENTITY H2O_react
....

INIT
....
H2O_react = H2O_chemical_reaction(1,2)

In the following Section, additional application examples focus on other BiSDL capabilities. In particular, it
presents the descriptions of a signaling cascade, and that of the application example from Section 4.4.2, illustrating
the modeling approach targeting ontogenesis: the VPC specification process in C. Elegans.
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5.7.1 Application example: the MAPK signaling pathway
In this Section, we will present an example of BiSDL modeling of the RAS/RAF /MAPK signaling pathway shown in
Figure 5.7. This pathway is part of more extensive model description, presented in the following Section.
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Figure 5.7. RAS/RAF /MAPK signalling pathway. Taken from Muggianu et al., 2018.

The extracellular EGF-like signal binds with its receptor (transcribed from the EGFR-like receptor gene): this is
where the pathway starts. The EGFR-like receptor activates in turn, and binds and activates the Grb2/Sos protein. This
protein reacts with and activates the RAS protein, which finally binds and activates the MPK1 protein generating the
final MPK1 activated protein. This pathway ends in the production of the Map Kinase Kinase active protein, the only
protein in the model for which degradation works explicitly.

The BiSDL description of the pathway includes Transcription, Activation, and Degradation building blocks. In
Figure 5.8, the general template presented in 5.6.1 shows the top-level BiSDL description of the model.

First of all, the code includes the PathwayRegulations library, comprising the necessary building blocks, and
links to the ontologies that will be employed.

In the MODULE declaration the code defines the model interface, which includes: an EGF-like signal, the MPK1
protein and its activated form, and an EGFR-like receptor. All the entities required to model the pathway are listed:
the RAS and Grb2/Sos proteins (with their activated forms), and a EGFR-like activated receptor protein.

The INIT section provides links to the employed existingModules. In this case, all of them link to a simple_protein
model. As shown in Figure 5.9, the simple_protein is modeled as a NWNs Place. Required parameters are the
name of the protein, an ID from one of the included ontologies, and a token type. In this example, the INIT section
creates a Place for each protein and imposes a marking to each place.
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PACKAGE PathwaysRegulations 
ONTOLOGY Proteins =   
”https://research.bioinformatics.udel.edu/pro/entry/PR%3A” 
ONTOLOGY Gene =  
”https://www.ncbi.nlm.nih.gov/gene?cmd=Retrieve&dopt=full_ 
report&list_uids=” 
ONTOLOGY PathwayOntology = 
“http://bioportal.bioontology.org/ontologies/PTS/?p=classes 
&conceptid=http%3A%2F%2Fscai.fraunhofer.de%2FPWDICT%23” 
 
MODULE RAS_RAF_MAPK_sig_path (ENTITY EGF-like_signal, 
         ENTITY mpk_1_act,  
         ENTITY mpk_1,  
          ENTITY EGFR-likeRec) 
 
 BIOLOGICAL REFERENCE 
  PathwayOntology.ID0176 
  
  ENTITIES 
  ENTITY RAS, RAS_act, EGFR-likeRec_act 
  ENTITY GRB-2/505, GRB-2/505_act         
   
 INIT 
  GRB-2/505 = simple_protein(“GRB2/505”, 
           Proteins.000008220, 
            black_token()*3) 
 RAS = simple_protein(“RAS”,Proteins.000013743, 
           black_token()*3) 

  GRB-2/505_act = simple_protein(“GRB-2/505_act”, 
   Proteins.000008220,black_token()*3) 

    RAS_act = simple_protein(“RAS_act”, 
Proteins.000013743,black_token()*3)  

    EGFR-likeRec_act = simple_protein(“EGFR-likeRec_act”, 
      Proteins.000006933,black_token()*3) 
  
 PROCESSES 
  transcription(RAS, Gene.3845) 
  transcription(EGFR-likeRec, Gene.1956)   
    transcription(GRB-2/505, Gene.2885) 
    activation(EGFR-likeRec, EGF-like_signal,  
            EGFR-likeRec_act) 
    activation(GRB-2/505, EGFR-likeRec_act,  
            GRB-2/505_act ) 
    activation(RAS, GRB-2/505_act, RAS_act) 
    activation(mpk_1, RAS_act, mpk_1_act) 
    degradation(mpk_1_act, 100) 
END 
 
 
 
 

Figure 5.8. RAS/RAF /MAPK signalling pathway BiSDL model. Taken from Muggianu et al., 2018.
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MODULE simple_protein(STRING name, STRING ID, TOKEN token) 
   
 BIOLOGICAL REFERENCE 
  ID 
 ENTITIES 
   PLACE protein  
 INIT  
  protein.name = name 
  protein.token(token) 
END 
 
 
MODULE simple_gene (STRING name, TOKEN token, STRING ID) 
   
 BIOLOGICAL REFERENCE 
  ID 
 ENTITIES 
   PLACE gene 
 INIT  
  gene.name = name 
  gene.token( token ) 
END 
 
 
MODULE transcription (ENTITY protein, STRING ID) 
  
 ENTITIES 
   PLACE gene 
 INIT 
   gene = simple gene(protein.name + ”_wt”,ID,  
         black_token()) 
 PROCESSES 
  process(BI:{gene}, OUT:{protein} )  
 
END 
 
 
MODULE degradation (ENTITY protein, INT n) 
  
 PROCESSES 
  process(IN:{protein}, delay(n) ) 
END  
 
 
MODULE activation (ENTITY protein_to_activate,  
     ENTITY protein_active,  
     ENTITY protein_act) 
  
 PROCESSES 
  process(BI:{protein_active[4],protein_to_activate[4]}, 
      IN:{protein_to_activate}, OUT:{protein_act} )  
 
END 

Figure 5.9. BiSDL library elements. Taken from Muggianu et al., 2018.
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The PROCESSES section put these entities in relation: transcription processes involve RAS, Grb2/Sos, and EGFR-
likeRec.

The Transcription Module creates a new place modeled by the simple_gene module. Therefore, with the
three transcription processes, the model includes three new places, each initialized with one black token, model-
ing the genes that transcribe the required proteins. The PROCESSES section of the transcriptionModule contains
a transition operating the creation of tokens from ”gene” to ”protein” places.

Activation Modules model the passage of a protein to its active state. They require three Entities: the inac-
tive protein (protein_to_activate), the protein (protein_active) performing activtion, and the active pro-
tein (protein_act). The PROCESSES section of the Activation Module has a transition creating a token in the
protein_act placewhen enough tokens are present in the protein_to_activate and protein_active places.

DegradationModules describe mpk_1_act degradation, having a transition which consumes tokens from the
”input” protein place after a time delay.

106



5.7 – Application examples

Figure 5.10. Visual representation of the model in SNAKES generated with the GraphViz plugin.
Taken from Muggianu et al., 2018.
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5.7.2 Application example: VPC specification in C. Elegans
Section 4.4.2 recapitulates into details the biological process of VPC specification in C. Elegans, presenting its NWNs
model and its simulation. A BiSDL description of that model completes the example, providing an overview of the
presented framework. The main objective of this Section is to provide the reader with a hint about the user expe-
rience of BiSDL, from both the expert and non-expert perspectives. For a full implementation of the BiSDL code,
see Flavia Muggianu, 2018. The complex Patterning Functional Module and several Building Blocks compose the
VPC Specification NWNs model. This Section recapitulates how different users can approach BiSDL dealing with this
example.

Theexpert user encodes knowledge By building upModules from scratch, ormodifying existing ones, expert
users manipulate the BiSDL description at every abstraction level. In particular, in the presented examples existing
Modules for the Cell Model are assembled to form a complete description.

This section aims to provide a flavor of how a BiSDL-based model construction process can work. A first step,
in this case, is to describe using BiSDL the building blocks from the VPC modeling example, and drawing the proper
interconnections and hierarchical relations between Modules.

The user provides a first description of the top layer in the model, devising ISG and DL elements. Figure 5.11
shows the description corresponding to the ISG and DL model in section 4.4.2.
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Figure 5.11. BiSDL Module for the ISG and DL models for VPC specification. Taken from Muggianu et al., 2018.

After this, each specific Module from the loaded PACKAGES needs to be specified. For the CellStructures
PACKAGE, simple cell (Figure 5.12), cellular communication (Figure 5.13) and bilateral (Figure 5.14) cover the interac-
tions taking place between cell positions in the ISG.
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Figure 5.12. BiSDL description for the simple cell Module. Taken from Muggianu et al., 2018.

Figure 5.13. BiSDL description for the cellular communication Module. Taken from Muggianu et al., 2018.

Figure 5.14. BiSDL description for the bilateral Module. Taken from Muggianu et al., 2018.

The Signalling PACKAGE relies on the juxtacrine interaction (Figure 5.15), paracrine interaction (Figure 5.16)
and hyp7 interaction (Figure 5.17) Modules.

Figure 5.15. BiSDL description for the juxtacrine interaction Module. Taken from Muggianu et al., 2018.
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Figure 5.16. BiSDL description for the paracrine interaction Module. Taken from Muggianu et al., 2018.

Figure 5.17. BiSDL description for the hyp7 interaction Module. Taken from Muggianu et al., 2018.

After that, the user describes Modules relative to the model of Pn.p cells. Figure 5.18 shows the description
corresponding to the Cell model in section 4.4.2.
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Figure 5.18. BiSDL Module for the Cell model in the VPC specification example. Taken from
Muggianu et al., 2018.

After this, each specific Module from the loaded PACKAGES is specified. For the Pathways PACKAGE, the
LIN3/LET23 (Figure 5.19) and the DSL/LIN12 (Figure 5.20) pathways are described.
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Figure 5.19. BiSDL Module for the LIN3/LET23 pathway from the Cell model in the VPC specification
example. Taken from Muggianu et al., 2018.
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Figure 5.20. BiSDL Module for the DSL/LIN12 pathway from the Cell model in the VPC specification
example. Taken from Muggianu et al., 2018.

The LIN3/LET23 pathway recapitulates the EGFR pathway example from the previous section. For a more detailed
description of the Modules employed in pathway descriptions, and for the description of those from the Signaling
PACKAGE, see Flavia Muggianu, 2018.

The presented BiSDL-based model construction process yields as a final product the BiSDL description of the
overall VPC specification process. Also, it physiologically produces, as by-products, all Modules used for composing
it. Both can populate libraries, facilitating the reusability of both the overall model and its subparts.

The non-expert user re-uses knowledge The non-expert user can access BiSDL libraries, and use the Mod-
ules present in there to reuse complete BiSDL descriptions or some of the Modules composing them. This kind of use
can aim both at studying the underlying model in itself, or at embedding it in larger models, or even at combining
some of its subparts with other existing descriptions, creating, in this way, brand new models. BiSDL Modules have
parameters that users can easily fine-tune, adjusting and customizing existing descriptions to their specific scopes.

Figure 5.21 provides a scheme of the BiSDL circular pipeline supporting knowledge encoding and decoding.
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Figure 5.21. BiSDL pipeline supporting knowledge encoding and decoding for the VPC specification appli-
cation example. Taken from Muggianu et al., 2018.

5.7.3 Go with the flow: from BiSDL descriptions to simulations
BiSDL descriptions are designed to automatically translated into NWNs models. A BiSDL compiler is currently under
development, and a first prototypical version can translate BiSDL models into executable Python code based on a
custom extension of the SNAKES Python library Pommereau, 2015, which a custom simulator can directly handle.

Figure 5.22 recapitulaes the flow from descriptions to simulations.
Figure 5.23 shows the automatically generated Python code of the Transcription Module, while Figure 5.10

depicts the NWNs model automatically compiled from this BiSDL description.
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Figure 5.22. Scheme of the flow from BiSDL descriptions, to NWN models and their simulation.

class transcription: 
 def __init__(self ,protein,ID,net): 

        gene = simple_gene(protein.module_place.name + "_wt",  
  ID, [BlackToken()], net) 

  
  process_func0=ProcessFunction() 
 
  net.process("transcription", process_func0,  
   output_places = [protein], bidir_places=[gene]) 
 

 
Figure 5.23. Phyton code snippet for transcription process. Taken from Muggianu et al., 2018.

5.8 Conclusion
BiSDL is an ongoing effort to create a new language able to model complex biological use cases. BiSDL is intended
to overcome several weaknesses of existent languages and to group their strengths. Whereas other languages rely
on the XML syntax, we chose a much more human-readable format to make the language biologist-friendly. To
facilitate learning and the use of libraries and their link to different ontologies, we are working on the development of
a complete toolkit including an editor, a parser, and a simulator. The simulator will provide a graphical user interface
to help the user customize each simulation easily. While developing these examples, prototypical versions of a BiSDL
compiler and a simulator for extended SNAKES NWNs models took shape. The complex of the NWNs modeling
approach, the BiSDL specification, the custom compiler, and simulator constitute a prototype of the entire flow from
a BiSDL description to the simulation of compiled NWNs models.
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Chapter 6

Discussion

6.1 Short summary
The proposed computational framework devises a modeling approach that collects contributions from the different
subdomains involved, and a high-level model description language making models accessible for the non-expert users
in the field. The goal is to foster true interdisciplinarity in systems biology by creating a common playground for all the
stakeholders. The resulting genuinely shared perspective should allow to ask new questions, and orient the growing
technological capabilities both on the computational and high-throughput analysis techniques fronts. Ultimately,
the proposed framework wants to contribute, as an enabler, to the cultural shift from multi-disciplinarity to inter-
disciplinarity in systems biology.

6.2 Discussion
Diversity generates value Effective collaboration allows for redefining biological complexity under a com-
prehensive perspective, leveraging the full spectrum of representational capabilities present in the diverse world of
systems biology. A better, comprehensive and shared understanding of complexity in biology can set a starting point
for methodological and instrumental paradigm shifts, in fact creating a discipline out of many. This section recapit-
ulates the presented contributions under this perspective, pointing out the scope of the proposed framework within
this scheme.

Systems biology, having entire biological systems as objects of investigations, collects the contributions of the dif-
ferent traditional research domains centering over each separated system portion. This approach poses the challenge
to deal with diversity: different scientific profiles contribute to each subdomain, which has its particular subculture
and technical language. Comprehension of diversity reflects not only in vocabulary but primarily on the cultural views
emerging in representational endeavors over biological complexity. Several definitions of biological complexity exist,
each one borrowed from a pre-existing concept from another domain.

Nowadays, it is reasonable to consider computational tools as that central to the quest of understanding life, that
there is no more such research field as purely experimental biology. All scientific endeavors in life sciences must
be considered at least in part as aided by computational tools and approaches Markowetz, 2017. For this reason,
talking about diversity in systems biology it is necessary to cover not only the different sub-domains of experimental
disciplines, for example, molecular biology, physiology, and genetics. Indeed, computational sciences as well find a
place in these considerations, bringing to the melting pot even more different perspectives and approaches.

In the presented work, cultural diversity within systems biology appears like an excellent opportunity for re-
defining biological complexity by leveraging the diversity of different perspectives and representational means avail-
able.

This cultural challenge has both human and technological sides. Scientists from the different subdomains of
systems biology are indeed humans, with their technical and representational capabilities, or scientific ”natural” lan-
guage. The approaches and tools they use for generating and managing scientific knowledge express their cultural
specificities, both in macroscopic approaches and in technicalities.
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In other words, systems biology needs to pass from multi-disciplinarity it exhibits in the current moment to real
inter-disciplinarity. As highlighted in the Editorial titled ”How to avoid glib interdisciplinarity,” from Nature 552, 148
from 2017, very diverse scientific endeavors take with themselves the risk to fail at cross-domain communication. The
risk is that all collaborative efforts result in parallel, domain-specific advancements diverging each one towards the
scopes of its original field. Multi-disciplinary domains risk failing at evaluating the relevance of contributions, due
to the absence of shared criteria across disciplines. Also, difficulties in communicating across boundaries pose a risk
to lose the opportunity to generate knowledge and insights by directly access existing information and interpreting
it under a different perspective than that which generated it.

To effectively leverage diversity, and transform systems biology into a genuinely interdisciplinary domain, tech-
nology can work as an enabler for collaboration between scientists with different backgrounds. This transformation
requires to take care of both the human and technological sides to the challenge.

A central point to this Ph.D. work is to define a role for computational tools in this context. In particular, the
presented computational framework intends to support the collaboration of different researchers, providing accessi-
ble knowledge management tools making them able to speak a common language. In this context, diversity refers to
the coexistence of experimentalists from different subdomains in life sciences, computational biologists, bioinformati-
cians, synthetic biologists and researchers from computational and information sciences. Also, it refers to researchers
intending to perform bottom-up explorations of the system, and engineers having a top-down, design-oriented ap-
proach to biology.

Given this primary objective, the proposed framework also responds to specific requirements posed by biological
complexity itself.

Knowledge representation and inference In particular, in the last decades, fast technological advancements
in both analytical and computational techniques allowed for the production and analysis of growing bodies of data.
While this sets the basis for the construction of a large and ever-growing body of black-box predictive models of
biology, on the other hand, it hinders a genuine understanding of systems functioning. Also, black-box models fail to
function as informative knowledge bases, and thus to support knowledge representation and exchange even between
scientists from the same subdomain. Also, they do not provide any mechanistic insight over the system, failing to
support any possible engineering process relying on a clear link between system structures and implementable func-
tions. For this reason, the proposed framework comprises a modeling approach that organizes data-driven insights
into existing expert knowledge representations. In this way, it leverages technological capabilities within the frame
of current understanding, in order to either enrich or contradict existing hypotheses.

Suitably representing the existing body of knowledge not only serves the scopes of state-of-the-art knowledge
exchange. It also furthers knowledge inference, by allowing to build up models that can test and generate hypotheses,
guiding subsequent experimental designs and ultimately orient and guide the excellent capabilities of high-throughput
analysis technologies.

Summing up, facing the increasing availability of data, the proposed framework intends to enable different scien-
tific profiles to ask the right questions while investigating biological complexity in a genuinely collaborative manner.
Also, it intends to store the answers into models, making them available and understandable for all the stakeholders
so that they can pose further and better questions at the next iteration.

In particular, the presented framework tackles the knowledge management cycle of systems biology at different
points. It comprises a modeling approach, responding to knowledge inference and representation requirements, and
a domain-specific language, making the models accessible for all the stakeholders.

For better explaining how the proposed modeling approach intends to enable diversity-driven scientific collabo-
ration, this paragraph invites the reader to an audacious, yet concrete abstraction. This thought has the only purpose
of describing the premises and scope to the modeling approach presented, and it does not intend to make for a philo-
sophical statement about the nature of physical objects, but it surely partially recapitulates some principles from ontic
structural realism (for a proper discussion of this theory and its controversies, see McKenzie, 2017). After this nec-
essary premise, let’s consider the knowledge body collects and interprets under a shared (propositional) perspective
different information out of single perceptions. Informational objects populate this shared structure, together with
the stories involving them. Objects are static, out-of-time entities, defined only in reason of their properties, which
also define the potential interactions they may engage in. Stories are sequences of events objects can take part in,
with either active or passive roles, along time. Knowledge exploration, under this scheme, devises two modes: object
manipulation, aimed to extract out-of-time interaction capabilities from defined structures, and narration, aimed to
extract procedural information concerning different interaction schemes emerging as sequences of events organized
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in time.
In systems biology, knowledge comprises both objects and stories: available information concerns either biologi-

cal structures, belonging to any system organization level, or biological processes, involving functional activations of
such structures. Using the vocabulary from well-known biological knowledge bases, biological entities and biological
processes map to objects and stories, respectively. That is, biological entities carry information about the structure and
potential interactions, and biological processes recapitulate the sequence of events taking place in time if a particular
subset of potential interactions for the entities involved takes place, one after the other.

Taking this notion to the task of considering different representational means, it easily relates to the difference
between denotational and operational semantics. The first one better suits the representation of static structures, nat-
urally drawing potential, out-of-time connections between sub-structures, and defining features of biological systems
in reason of the functional interaction schemes they could generate. It is possible to infer knowledge from mathemat-
ical models following this semantic by analyzing their structure, besides by simulating them. Operational semantics
more naturally represents sequences of events, and their main focus is to make the temporal dynamics emerge from
the formal description of a system. They tend to be analyzed by exploring the states space they can generate, or in
general by execution.

It is necessary that a representational tool manages both biological entities and processes naturally since they are
artifacts inherent to knowledge representation of biological complexity.

In addition to that, the fact systems biology includes entities and processes from multiple system levels poses
the need to represent the underlying system hierarchy, and the possible cross-level connections. It is necessary to
perform an additional abstraction from the system, since many of these connections only model the links between
multiple representations of the same biological entity, each one living at different levels in the model, but correspond
to the same structure in the physical world.

The inherent stochastic behavior to living systems challenges the representation of biological processes. Each
punctual interaction in a process can yield, with more or less known probabilities, different outcomes. In this way,
each process explodes in all the possible paths it can undergo considering all the combinations of underlying stochastic
choices for interacting biological entities.

Defined by the potential interactions they can engage into, biological entities can be represented, at each time
along a process, by the interactions they currently engage into. For this reason, the context they currently live into
has the potential to furtherly reduce the set of possible interactions for the biological entity. At the same time,
a biological process can devise a context change for a biological entity, potentially yielding a shift in the scheme
of potential interactions it can undergo after that. These shifts can affect the overall system behavior in reason of
different events characterizing the biological process. The intention to represent this shift poses the need for an even
higher-level abstraction, that is, the segregation of biological structures and the contexts they may find themselves
into along a biological process.

Since contexts themselves are nothing more than the collection of potential touchpoints between the considered
biological entity and other entities from the system, this reasoning holds for those other entities as well. The necessity
to further the abstraction from the system emerges: representational means need to segregate the capabilities for
interaction from the biological entities involved - all of them. In this way, the context is a composite biological entity
itself, and it is possible to flexibly mediate the interactions between entities accurately at each time point along the
overall biological process.

To better organize this movement towards the dynamic segregation of biological entities from their context, it
is possible to perform a further distinction: different aspects compose the context for a system and its subparts. In
choosing the aspects to consider, the proposed modeling approach goes back to the distinction between abstract
objects and stories. That is, two perspectives over the overall context for each biological entity in the system find
explicit representation. The first one recapitulates spatial aspects to the biological system. In each moment of the
overall process, this spatial model mediates the collapse of the potential interactions scheme into a specific scheme
of actual interactions. This mediation, in the physical system, relies on spatial proximity between entities to decide
whether each potential interaction takes place at that moment Bardini, Politano, et al., 2017a. The second one
intends to provide a process-related context to the biological entity, which, similarly to the spatial model, reduces the
set of possible interactions the biological entities can undergo, basing on the premise they need to coexist in time in
order to interact. In this way, it is possible to embed into representations kinetic aspects from multiple system levels
and make them relevant for the overall system evolution. Moreover, more importantly, the combination of the two
contextual models draw a dynamic landscape for the overall system to evolve into which is abstract from the system
itself but allows its parts to interact between each other following context-based constraints.
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This approach bounds the scheme of potential interactions characterizing the overall system - considered as an
object - making it collapse into specific contexts, selecting the actual interactions taking place along the overall bio-
logical process - considered as a story.

In addition to that, systems biology not always provides full resolution in describing complex structures and
behaviors of biological systems. Also, not all models intend to provide a full-detail representation of a system. Infor-
mation availability and the modeling scope impose in concert great flexibility to representational means, which need
to allow for different degrees of abstraction in the same model. Flexible abstractions also allow to limit model com-
plexity while preserving model accuracy: models can get simpler while their most relevant parts preserve a higher
level of detail. In Bulik et al., 2009, the parametrization of the model of a metabolic network generates detailed
mechanistic equations for the most relevant model parts and more abstract representations for the rest of the model.

All these aspects considered together define the strategy underlying the multi-level and multi-context modeling
approach proposed, which relies on a formalism supporting flexible abstractions, and both denotational and opera-
tional semantics. That is, it allows both to describe complex objects of biological knowledge, and to tell all of their
(known) stories.

All of these aspects concerned knowledge representation and inference and could hold for each of the subdomains
composing systems biology. As another objective, the proposed approach aims to comprise knowledge from all of
the potential contributors to research in biology. For this reason, the formalism of choice also supports the consistent
representation of different information in the same model, allowing for the natural inclusion of knowledge speci-
fied under the different formalisms emerging from domain-specific sub-cultures in systems biology. For supporting
this, models need to be capable to embed both functional, hypothesis-driven information, similar to that tradition-
ally shared by experimental biologists in diagrammatic form, and quantitative information flowing out of systematic
analytic procedures over the system of interest.

The intention to infer knowledge out of models brings along the necessity to consider the traditional caveat go-
ing by the words of ”all models are wrong” Box, 1976. They are nothing but tools designed to get insights over a
phenomenon, and many different models, even under the same approach, may show similar performance. Model
selection is the task to pick the best fit for the modeling objective, and different strategies exist, basing on different
evaluation criteria Kirk et al., 2013. The most straightforward strategy of choice relies on the Ockham’s razor prin-
ciple, which in this context goes under the definition of the principle of parsimony: the simplest, or least complex
model among same-performance models is the top choice Raykov and Marcoulides, 1999; Sober, 1981.

At the aim of gaining new insights over both biological entities and processes, models undergo execution. This
procedure brings the complexity of the system, as represented under the presented approach, to a computational
perspective. Complexity, in the computational domain, finds a measure in the number of effective parameters in the
model Spiegelhalter et al., 2002. In computational models, this translates in the number of instructions to execute to
simulate the system dynamics. In general, models following the presented approach end up comprising vast schemes
of potential interactions. Moreover, while context-based constraints may reduce possibilities to consider along each
stage of a process on a semantic level, from the syntactic, and then the computational point of view, instead, they
generate additional instructions to execute to operate the model. A hierarchical structure and the communication
channels across its levels increase computational complexity even more. Moreover, usually, models of this kind tend
to support modeling objectives devising large portions from the system of interest. On the overall, this has a cost in
terms of computational complexity.

The benefit behind this cost is the maximization of accuracy, reflecting both in the capability of the models to
predict system behavior accepting a certain degree of uncertainty Steyerberg et al., 2010, as well as to guarantee its
reliability as a knowledge base Macklin et al., 2014; Matthews et al., 2008.

For facing the necessary computational cost, high-performance distributed computing systems can play a decisive
role Holzhutter et al., 2012. For this reason, the presented modeling framework includes a custom simulator, which
is set to run on these systems.

An additional and peculiar aspect to models of systems biology concerning parameter identification needs consid-
eration. Different models can represent the same system with comparable accuracy. This trend holds for both model
architecture specification and parameter identification. Considering a fixed model structure, performing parameter
identification on it can take to non-unique, and separate sets of parameters. On this topic, considering the work pre-
sented in Gutenkunst et al., 2007a, models of biology exhibit what authors define as parameter sloppiness. In other
words, parameter sensitivities have loose constraints. Authors claim this is a universal feature of systems biology
models, actually representing the fact that different parameter sets may correctly model system behavior. The reason
they hypothesize is that the system itself exhibits high robustness to parameter perturbations. These considerations
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highlight some criticalities around parameter uncertainty in systems biology models, hindering the supposed relia-
bility of models as knowledge bases Matthews et al., 2008. The authors suggest that models should better work as
predictive tools Daghir-Wojtkowiak et al., 2017.

In the presented approach, models aim both at performing accurate predictions over system behavior Gutenkunst
et al., 2007a, and to provide a reliable and understandable knowledge base for systems biology. Parameter uncertainty
and model understandability are to be considered as important issues as prediction accuracy and seeking parsimony
in model construction for maximizing computational feasibility. Also, models need to support clarity and understand-
ability Houy et al., 2012.

Each part of a model should carry verified parameter values: model re-usability Donatelli and Rizzoli, 2008 and
interoperability Bichindaritz, 2006 should lead the choices of the modeler wanting to contribute to the presented
framework. Also, it could be the first step to enable the collaboration between experimentalists and theoreticians,
scientists and engineers working in systems biology Macklin et al., 2014; Waltemath, Karr, Bergmann, Chelliah,
Hucka, Krantz, Liebermeister, Mendes, C. J. Myers, Pir, et al., 2016a,b.

Knowledge representation and exchange Model re-usability and interoperability support knowledge ex-
change, but in most cases, they do only among modelers, that is, researchers who can understand and produce knowl-
edge expressed under the modeling formalism. Themodeling approach alone causes an improvement compared to the
pre-existing situation since at least computational biologists from different subdomains can speak the same language
when using it. But, it still limits knowledge exchange to the scopes of representation and a restricted user-base: at
this point, models fail to make biological knowledge accessible for non-expert users, such as experimental biologists,
and exchangeable in general.

To fully realize the objective of creating value out of the diverse range of profiles contributing to systems biology,
the presented framework comprises BiSDL, a domain-specific model description language, providing an intermediary
layer making model-based knowledge accessible for non-experts. Also, it is possible to automatically generate sim-
ulable models from BiSDL descriptions, allowing them to access both objects and stories from systems biology body
of knowledge.

This intermediary layer has a high-level syntax following semantics which intends to be close to the natural,
domain-specific language of experimental life scientists. At the same time, it is possible to automatically generate
models based on the formalism supporting the presented modeling approach from BiSDL descriptions. Also, low-
level BiSDL syntax supports the direct usage of the bare formalism.

In this way, expert users can build up models using low-level BiSDL, and organizing them into modular objects
recapitulating the biological system of interest. Such Modules populate libraries, which the non-expert users can rely
on for drawing, customizing and combining objects which are relevant to their research scopes.

Under this perspective, expert users encode knowledge into BiSDL libraries, while non-expert users decode
knowledge from them. Both these figures have an active role in enriching the knowledge base with their exper-
tise into this scheme. Encoders actively perform model construction processes, embedding available information
from the state-of-the-art, while decoders, to understand, guide or improve experimental designs, actively choose how
to use available modules, performing, in fact, a model composition and tuning process.

Towards a systems biology culture This scheme of contribution intends to enable the different stakehold-
ers to share not only data and information but knowledge as well, intended as their propositional interpretation of
competence over information usage in the relevant contexts.

Also, populating and using the libraries of BiSDL Modules can work as a first step in the direction of the creation
of a lingua franca for systems biology. The final, more ambitious objective is to make all of them fluent and aware of
the pragmatics in using the language. This process may involve more or less steep learning curves for the different
users: modelers need to learn biology, and experimentalists the computer science behind BiSDL models. Under this
perspective, BiSDL intends to function also as an educational tool, progressively taking all actors involved not only
beyond a linguistic barrier but towards a shared, brand new cultural playground. In this direction, the framework
only intends to provide a container for the active contributions of researchers, setting the conditions for re-definitions
of biological complexity to emerge from them. A good sign of the fact a systems biology pragmatics is taking shape
would be observing a computer scientist and an experimental biologist telling jokes in BiSDL which are fun for both
of them.

Behind this goal, the proposed framework intends to enable and foster connection among the diversity of perspec-
tives populating systems biology, so every actor involved can get curious and proactively contribute to advancing,
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leveraging the technological means available, the frontier of knowledge.
In this way, diversity in systems biology becomes an opportunity to bring value to each discipline contributing

to it, transforming this multi-disciplinary approach to a genuinely inter-disciplinary one, in the direction of creating
a whole new discipline out of many.
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Chapter 7

Conclusions and Future Perspectives

7.1 Short summary
The framework at the moment provides a prototypical version of the complete flow from BiSDL descriptions to the
simulation of NWNs models. In the future, the modeling approach should be tested for scalability, considering both
a broader spectrum of intracellular mechanisms and a more significant number of cells in the system. Also, the sim-
ulator should adapt to parallel computations, so to handle more computational complexity. The framework should
devise complexity reduction strategies to improve computational performances. Bioinformatic pipelines should sup-
port partly data-driven models construction processes involving not only parameter identification but also model
architecture. The framework should also include model analysis routines to explore models formally. A smart user
interface should embed the full flow from BiSDL descriptions to simulations allowing easy model exploration and
design. This interface could also rely on a visual version of BiSDL, and simulation outcomes visualization.

7.2 Conclusions and Future Perspectives
The presented work introduces a computational framework for knowledge management in systems biology. A mod-
eling strategy and a model description language are the main pillars of the framework, and a custom compiler and
simulator complete the flow from descriptions to simulations.

This section briefly recapitulates the main contributions, highlighting current limitations and potential future
developments.

The choice of the NWNs formalism supports the satisfaction of all requirements posed by biological complexity
and systems biology inherent diversity. Models proposed under the presented approach function, in principle, both
as good knowledge bases and prediction tools. At this stage, some limitations emerge which impose improvements
in the further development of the framework.

Visual complexity Large, intricate models push the limits of visual representation capabilities of Petri Nets.
When the model becomes too large, this hinders its understandability. Under this perspective, the necessity emerges
to include an easy-to-use, graphical user interface for model visualization and design in the framework. This GUI,
to improve understandability, should support smart zooming and de-zooming functions over models, leveraging the
existing modular structure inherent to BiSDL-specified models to allow users to select which modules to explode and
which ones to compress when performing knowledge explorations over the model.

Computational complexity Highly detailedmodels do not scale well with system size and complexity, yielding
to increased computational times. The design of the flow from BiSDL to simulations needs to include, for custom
simulator for extended-SNAKES models, the capability to run on distributed computing platforms, so to face this
computational challenge with increased computational power. Moreover, complexity reduction algorithms should be
part of the framework, making models ready to be simulated in the most efficient way when their usage is mainly
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oriented to perform predictions. This improvement on the overall should support good scalability of the proposed
approach not only over different application examples but also over increasing system complexity to represent.

Data-driven model construction The presented approach naturally supports both hypothesis-driven and
data-driven information processing in building up models. It is easy to translate the diagrammatic representation
of an entire scheme of relations into a graph-based model. Data-driven procedures, at this stage, only involve the
identification of parameter values in the architecture. That is, their scope is to provide quantitative information over
functional relationships already present in the model architecture. In the future, it would be useful to comprise in the
proposed framework automatic pipelines for data-driven model construction, supporting the at least partial design of
model architecture from data. A first application could target on single-cell RNA-seq data, providing a transcriptional
profile of single cells, allowing to identify them, and study their heterogeneity and state changes along with different
processes in pseudotime Mayer et al., 2018; Trapnell et al., 2014. The transcriptional profile of each cell could au-
tomatically generate a minimal Cell model; this Cell model could undergo network enrichment to include new omic
pools than transcriptomics; pseudotime analysis could set up the Differentiative Landscape model; complementary
spatial gene expression data could build up and initialize the Interactive Spatial Grid. The framework should have the
capability to automatize, at least partially, a mainly data-driven model construction process.

Model analysis Models following the presented modeling approach can undergo exploration by both analysis
and formal verification. Some execution-based techniques such as model checking apply to systems biology models
Kwiatkowska et al., 2008. The proposed framework should include a toolkit for model analysis, to gain deeper
insights and explore the knowledge stored in it in different ways. In particular, it could be interesting to explore
States Landscape (or Differentiative Landscape) models in reason of the informational entropy associated to each
Cell model state, in order to build up a further possibility for interpretation of the observed phenomena, and for the
generation of new hypotheses about the states changes cells undergo across such landscapes.

Flow The complete flow at this stage devises a custom compiler generating NWNs models out of BiSDL descrip-
tions, specifying them using a custom extension of the SNAKES Python library, as well as a custom simulator. The
compiler and the simulator are functioning prototypes, and their separate and joint functioning needs to undergo
systematic testing phases for usability and robustness. A basic prototype of the GUI is under development, and it
will need further efforts for making the framework more comfortable to use. This interface should support both
smart model exploration, and easy model construction, possibly providing a visual version of BiSDL and supporting
a drag-and-drop interaction style. These improvements would be especially useful for the educational side of the
framework.

Libraries BiSDL supports modularity, and modules can be created, customized and re-used. Users can create and
populate libraries, from which to take existing modules to use. In order to support these actions, expert users need
to populate libraries, encoding knowledge into modules and putting them into shareable packages. This process is
foreseen as self-supervised, also thanks to the metadata attached to each module, allowing for tracking its creation
and author.

Industrial applications The presented modeling approach supports the generation and optimization of op-
erative protocols for automatic bioreactors. An Italian patent application for extending the scopes of the proposed
framework towards bioengineering applications is under development. The computationalmethod object of the patent
application describes how the multi-context, multi-level model of a biological system and the bioreactor culturing it
can generate optimized protocols given a desired scope for the process.
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Chapter 8

Glossary

Biological system A biological system is a complex network of biological entities of interest. Biological
entities belong to different organization levels, and each organization level is centered over a different dimensional
scale. Biological systems define in fact different structures, from single biomolecules, to molecular networks, organs,
organisms and populations of individuals.

Biological complexity A notion of complexity comprising recurrent features of biological systems: hierar-
chy, compartmentalization, selective communication, adaptation, stochasticity and concurrency.

Systems biology Systems biology as a researchmethod is the study of biological systems which encompasses
all their organization levels using quantitative reasoning, computational models and high-throughput experimental
technologies. Systems biology defines an interdisciplinary research domain collecting the contributions of a diversity
of different domains on both the experimental and computational sides: from molecular biology to clinical research,
from mathematics to software engineering. Systems biology combines the reductionist and the holistic approaches
in researching biological systems of interest.

Reductionist approach Reductionism in scientific research aims to provide explanations for ever smaller
entities for the phenomena of interest.

Holistic approach Holism in scientific research aims to explain systems as wholes, that is, as more of the
combinations of their subparts and their relations.
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